Motivated by the novel properties of two-dimensional materials, MoS2 has been extensively explored with discoveries surging in the recent years. Such impressive progress benefits from the success in synthesizing nanostructured MoS2 with precisely controlled parameters including edge density and crystalline phase. In this review, we focus on the synthesis of MoS2 with expanded interlayer spacing and their applications in energy storage, catalysis and environmental remediation, highlighting the importance of tuning interlayer spacing on improving performance of MoS2. The challenges faced in this emerging research area and perspective research directions are also discussed.

Read full text on ScienceDirect

DOI: 10.1016/j.mattod.2016.10.004