A resilience to extreme conditions by the most transparent, lightweight and flexible material for conducting electricity could help revolutionize the electronic industry, according to a new study.

Researchers from the University of Exeter have discovered that GraphExeter – a material adapted from the ‘wonder material’ graphene - can withstand prolonged exposure to both high temperature and humidity.

The research showed that the material could withstand relative humidity of up to 100 per cent at room temperature for 25 days, as well as temperatures of up to 150C – or as high as 620C in vacuum.

“This is an exciting development in our journey to help GraphExeter revolutionize the electronics industry."Monica Craciun, University of Exeter engineer

The previously unknown durability to extreme conditions position GraphExeter as a viable and attractive replacement to indium tin oxide (ITO), the main conductive material currently used in electronics, such as ‘smart’ mirrors or windows, or even solar panels. The research also suggests that GraphExeter could extend the lifetime of displays such as TV screens located in highly humid environments, including kitchens.

Lead researcher, University of Exeter engineer Dr Monica Craciun said: “This is an exciting development in our journey to help GraphExeter revolutionize the electronics industry.

“By demonstrating its stability to being exposed to both high temperatures and humidity, we have shown that it is a practical and realistic alternative to ITO. This is particularly exciting for the solar panel industry, where the ability to withstand all weathers is crucial.”

Dr Saverio Russo, also from the University of Exeter, added: “The superior stability of GraphExeter as compared to graphene was unexpected since the molecules used to make GraphExeter (that is FeCl3) simply melt in air at room temperature.

“Having a metallic conductor stable at temperatures above 600C, that is also optically transparent and flexible, can truly enable novel technologies for space applications and harsh environments such as nuclear power centrals.”

At just one atom thick, graphene is the thinnest substance capable of conducting electricity. It is very flexible and is one of the strongest known materials. The race has been on for scientists and engineers to adapt graphene for flexible electronics. This has been a challenge because of its sheet resistance, which limits its conductivity.

This story is reprinted from material from Exeter University, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.