Doped lithium titanate nanoparticles could be incorporated into the Li-ion batteries used in electric or hybrid automotive applications.
Doped lithium titanate nanoparticles could be incorporated into the Li-ion batteries used in electric or hybrid automotive applications.

The high energy density of lithium-ion (Li-ion) batteries make them a popular energy storage technology, especially in mobile applications such as personal electronics and electric cars. However, the materials currently used in Li-ion batteries are expensive, while many of them, like lithium cobalt oxide, are also difficult to handle and dispose of. What is more, batteries using these materials have relatively short lifetimes.

These shortcomings have led scientists to develop novel materials for next generation Li-ion batteries: two promising electrode materials are lithium titanate and lithium iron phosphate. The materials are readily available, safe to use, and easy to dispose of or recycle. Most importantly, batteries manufactured using these materials have significantly longer cycle and calendar lifetimes compared to current battery technologies. However, these new materials are currently hampered by their low electrical conductivity.

Scientists at the University of Eastern Finland (UEF) in Kuopio have now come up with a potential solution to this low conductivity problem, which is reported in a paper in the Journal of Alloys and Compounds.

"The electric conductivity problem can be solved by producing nanosized, high surface area crystalline materials, or by modifying the material composition with highly conductive dopants, " explains Tommi Karhunen, a researcher in the UEF Fine Particle and Aerosol Technology Laboratory. "We have succeeded in doing both for lithium titanate in a simple, one-step gas phase process developed here at the UEF Fine Particle and Aerosol Technology Laboratory."

"The electrochemical performance of Li-ion batteries made out of the above mentioned material is very promising," says Jorma Jokiniemi, director of the UEF Fine Particle and Aerosol Technology Laboratory. "The electrochemical properties were studied in collaboration with Professor Ulla Lassi's group from Kokkola University Consortium Chydenius. The most important applications lie in batteries featuring, for example, fast charging required for electric buses, or high power needed for hybrid and electric vehicles."

This story is adapted from material from the University of Eastern Finland, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.