A new carbon-based material for sodium-ion batteries can be produced from waste apples. Image: KIT/HIU.
A new carbon-based material for sodium-ion batteries can be produced from waste apples. Image: KIT/HIU.

Two new materials – a carbon-based active material produced from waste apples and a material of layered oxides – could help reduce the costs of future energy storage systems, as both are sustainable materials with excellent electrochemical properties. Developed by researchers at the Karlsruhe Institute of Technology (KIT)’s Helmholtz Institute Ulm in Germany, the materials could prove of use in sodium-ion batteries and are described in papers in ChemElectroChem and Advanced Energy Materials.

Sodium-ion batteries are not only far more powerful than nickel-metal hydride or lead acid batteries, but also represent an alternative to lithium-ion batteries, as the initial materials needed are highly abundant, easily accessible and available at low cost. Hence, sodium-ion batteries are a very promising technology for stationary energy storage systems that can be used with renewable energy technologies such as wind and solar.

Now, researchers from the Helmholtz Institute Ulm, led by Stefano Passerini and Daniel Buchholz, have made an important advance in the development of electrode materials for sodium-based energy storage systems. For the negative electrode, they have synthesized a carbon-based material from waste apples that possesses excellent electrochemical properties. So far, they have demonstrated more than 1000 charge and discharge cycles of high cyclic stability and high capacity. This discovery represents an important step towards the sustainable use and exploitation of resources such as organic waste.

The material developed for the positive electrode consists of several layers of sodium oxides. Unlike the positive electrodes frequently used in commercial lithium-ion batteries, this material doesn’t contain cobalt, which is expensive and environmentally hazardous. Nevertheless, in laboratory tests, this material achieved the same efficiency, cyclic stability, capacity and voltage as materials containing cobalt.

Both these materials mark an important step towards the development of inexpensive and environmentally friendly sodium-ion batteries.

This story is adapted from material from Karlsruhe Institute of Technology, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.