Periosteum is a tissue fabric layer on the outside of bone, as seen in the upper diagonal segment of the tissue image volume. The natural weave of elastin (green) and collagen (yellow) are evident when viewed under a microscope. Elastin gives periosteum its stretchy properties and collagen imparts toughness. Muscle is organized into fiber bundles, observed as round structures in the lower diagonal segment of the tissue image volume. Image: Professor Melissa Knothe Tate.
Periosteum is a tissue fabric layer on the outside of bone, as seen in the upper diagonal segment of the tissue image volume. The natural weave of elastin (green) and collagen (yellow) are evident when viewed under a microscope. Elastin gives periosteum its stretchy properties and collagen imparts toughness. Muscle is organized into fiber bundles, observed as round structures in the lower diagonal segment of the tissue image volume. Image: Professor Melissa Knothe Tate.

For the first time, biomedical engineers at the University of New South Wales (UNSW) in Australia have woven a 'smart' fabric that mimics the sophisticated and complex properties of one of nature's most ingenious materials, the bone tissue periosteum.

Having achieved proof of concept, the researchers are now ready to produce fabric prototypes for a range of advanced functional materials that could transform the medical, safety and transport sectors. Patents for the innovation are pending in Australia, the US and Europe.

Potential future applications range from protective suits that stiffen under high impact for skiers, racing-car drivers and astronauts, through to 'intelligent' compression bandages for deep-vein thrombosis that respond to the wearer's movement, and safer steel-belt radial tires. The research is reported in a paper in Scientific Reports.

Many animal and plant tissues exhibit 'smart' and adaptive properties. One such material is the periosteum, a soft tissue sleeve that envelops most bony surfaces in the body. A complex arrangement of collagen, elastin and other structural proteins gives periosteum amazing resilience and provides bones with added strength under high impact loads.

Until recently, a lack of scalable 'bottom-up' approaches has stymied the ability of researchers to use smart tissues to create advanced functional materials. Melissa Knothe Tate, professor of biomedical engineering at UNSW, and her colleagues have now mapped the complex tissue architectures of the periosteum, visualized them in three dimensions on a computer, scaled up the key components and produced prototypes using weaving loom technology.

"The result is a series of textile swatch prototypes that mimic periosteum's smart stress-strain properties," said Knothe Tate. "We have also demonstrated the feasibility of using this technique to test other fibers to produce a whole range of new textiles."

In order to understand the functional capacity of the periosteum, the team used an incredibly high fidelity imaging system to investigate and map its architecture. "We then tested the feasibility of rendering periosteum's natural tissue weaves using computer-aided design software," Knothe Tate explained.

The computer modelling allowed the researchers to scale up nature's architectural patterns to weave periosteum-inspired, multidimensional fabrics using a state-of-the-art computer-controlled jacquard loom. This loom is known as the original rudimentary computer, first unveiled in 1801.

"The challenge with using collagen and elastin is their fibers, that are too small to fit into the loom. So we used elastic material that mimics elastin and silk that mimics collagen," said Knothe Tate.

In a first test of the scaled-up tissue weaving concept, a series of textile swatch prototypes were woven, using specific combinations of collagen and elastin in a twill pattern designed to mirror periosteum's weave. Mechanical testing of the swatches showed they exhibited similar properties to those found in periosteum's natural collagen and elastin weave.

First author and biomedical engineering PhD candidate, Joanna Ng, said that the technique had significant implications for the development of next-generation advanced materials and mechanically-functional textiles. While the materials produced by the jacquard loom have potential manufacturing applications – one tiremaker believes a titanium weave could spawn a new generation of thinner, stronger and safer steel-belt radials – the UNSW team is ultimately focused on the machine's human potential.

"Our longer term goal is to weave biological tissues – essentially human body parts – in the lab to replace and repair our failing joints that reflect the biology, architecture and mechanical properties of the periosteum," Ng said.

An NHMRC development grant received in November will allow the team to take its research to the next phase. The researchers will work with the Cleveland Clinic and the University of Sydney's Tony Weiss to develop and commercialize prototype bone implants for pre-clinical research, using the 'smart' technology, within three years.

This story is adapted from material from the University of New South Wales, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.