These images show the different silver nanostructure shapes, including silver nanowires, tested by the Duke researchers. Images: Ian Stewart and Benjamin Wiley.
These images show the different silver nanostructure shapes, including silver nanowires, tested by the Duke researchers. Images: Ian Stewart and Benjamin Wiley.

By suspending tiny metal nanoparticles in liquids, Duke University scientists are brewing up conductive ink-jet printer ‘inks’ able to print inexpensive, customizable circuit patterns on just about any surface.

Printed electronics, which are already being used on a wide scale in devices such as the anti-theft radio frequency identification (RFID) tags found on the back of new DVDs, currently have one major drawback. For the circuits to work, they first have to be heated to melt all the nanoparticles together into a single conductive wire, making it impossible to print circuits on inexpensive plastics or paper.

A new study by Duke researchers now shows that tweaking the shape of the nanoparticles in the ink might eliminate the need for heat. The researchers report their findings in a paper in ACS Applied Materials & Interfaces.

By comparing the conductivity of films made from different shapes of silver nanostructures, the researchers found that electrons zip through films made of silver nanowires much easier than films made from other shapes, like nanospheres or microflakes. In fact, electrons flowed so easily through the nanowire films that they could function in printed circuits without the need to melt them all together.

"The nanowires had a 4000-times higher conductivity than the more commonly-used silver nanoparticles that you would find in printed antennas for RFID tags," said Benjamin Wiley, assistant professor of chemistry at Duke. "So if you use nanowires, then you don't have to heat the printed circuits up to such high temperature and you can use cheaper plastics or paper."

"There is really nothing else I can think of besides these silver nanowires that you can just print and it's simply conductive, without any post-processing," he added.

These types of printed electronics could have applications far beyond smart packaging. Researchers envisage using the technology to make solar cells, printed displays, LEDS, touchscreens, amplifiers, batteries and even some implantable bio-electronic devices.

Silver has become a go-to material for making printed electronics, Wiley said, and a number of studies have recently measured the conductivity of films made from silver nanostructures with different shapes. However, experimental variations make direct comparisons between the shapes difficult, and few reports have linked the conductivity of the films to the total mass of silver used, an important factor when working with a costly material.

"We wanted to eliminate any extra materials from the inks and simply hone in on the amount of silver in the films and the contacts between the nanostructures as the only source of variability," said Ian Stewart, a recent graduate student in Wiley's lab and first author of the paper.

Stewart used known recipes to cook up silver nanostructures with different shapes, including nanoparticles, microflakes, and short and long nanowires, and mixed these nanostructures with distilled water to make simple ‘inks’. He then invented a quick and easy way to make thin films using equipment available in just about any lab – glass slides and double-sided tape.

"We used a hole punch to cut out wells from double-sided tape and stuck these to glass slides," Stewart said. By adding a precise volume of ink into each tape ‘well’ and then heating the wells – either to relatively low temperatures to simply evaporate the water or to higher temperatures to begin melting the structures together – he created a variety of films to test.

The researchers say they weren't surprised to discover that the long nanowire films had the highest conductivity. Electrons usually flow easily through individual nanostructures, but get stuck when they have to jump from one structure to the next, Wiley explained, and long nanowires greatly reduce the number of times the electrons have to make this ‘jump’.

But they were surprised at just how drastic the change was. "The resistivity of the long silver nanowire films is several orders of magnitude lower than silver nanoparticles and only 10 times greater than pure silver," Stewart said.

The team is now experimenting with using aerosol jets to print silver nanowire inks in usable circuits. Wiley says they also want to explore whether silver-coated copper nanowires, which are significantly cheaper to produce than pure silver nanowires, will give the same effect.

This story is adapted from material from Duke University, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.