Super-small particles of silicon react with water to produce hydrogen almost instantaneously, according to University at Buffalo researchers.

In a series of experiments, the scientists created spherical silicon particles about 10 nanometers in diameter. When combined with water, these particles reacted to form silicic acid (a nontoxic byproduct) and hydrogen — a potential source of energy for fuel cells.

The reaction didn’t require any light, heat or electricity, and also created hydrogen about 150 times faster than similar reactions using silicon particles 100 nanometers wide, and 1,000 times faster than bulk silicon, according to the study.

The speed at which the 10-nanometer particles reacted with water surprised the researchers. In under a minute, these particles yielded more hydrogen than the 100-nanometer particles yielded in about 45 minutes. The maximum reaction rate for the 10-nanometer particles was about 150 times as fast.

Swihart said the discrepancy is due to geometry. As they react, the larger particles form nonspherical structures whose surfaces react with water less readily and less uniformly than the surfaces of the smaller, spherical particles, he said.

Though it takes significant energy and resources to produce the super-small silicon balls, the particles could help power portable devices in situations where water is available and portability is more important than low cost. Military operations and camping trips are two examples of such scenarios.

This story is reprinted from material from University at Buffalo, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.