Global Advanced Metals (GAM), a leader for almost 70 years in the production of tantalum and niobium products, has undertaken to study the effect of oxygen on laser printed tantalum parts. Angular tantalum powder of low and high oxygen content was spheroidized via radio-frequency plasma under argon. The particle size distributions (PSD) were controlled before feeding the angular powder and the spherical powder PSD matched that of the feed powder, with no ‘fuzz’ or satellites and good Hall flow. The spherical powder was passivated slowly with oxygen to maintain nearly the same oxygen content as that of the feed angular powders. The samples of high and low oxygen powders were laser printed, under argon, providing tensile bars for stress–strain and microscopic investigations. Low oxygen spherical powder led to parts with higher elongations and ultimate tensile (UTS) and microscopic evidence of ductile fracture.

This article appeared in the January–February 2020 issue of Metal Powder Report. Log in to your free materialstoday.com profile to access the article.

Already a Materials Today member?

Log in to your Materials Today account to access this feature.