Environmentally compatible energy management is one of the biggest challenges of the 21st century. Low-temperature conversion of chemical to electrical energy is of particular importance to minimize the impact to the environment while sustaining the consumptive economy. In this review, we shed light on one of the most versatile energy-conversion technologies: heterogeneous catalysts. We establish the integrity of structural tailoring in heterogeneous catalysts at different scales in the context of an emerging paradigm in materials science: catalytic nanoarchitectonics. Fundamental backgrounds of energy-conversion catalysis are first provided together with a perspective through state-of-the-art energy-conversion catalysis including catalytic exhaust remediation, fuel-cell electrocatalysis and photosynthesis of solar fuels. Finally, the future evolution of catalytic nanoarchitectonics is overviewed: possible combinations of heterogeneous catalysts, organic molecules and even enzymes to realize reaction-selective, highly efficient and long-life energy conversion technologies which will meet the challenge we face.

Read full text on ScienceDirect

DOI: 10.1016/j.mattod.2015.08.021