Metals can be processed to reach ultra-high strength, but usually at a drastic loss of ductility. Here, we review recent advances in overcoming this tradeoff, by purposely deploying heterogeneous nanostructures in an otherwise single-phase metal. Several structural designs are being explored, including bimodal, harmonic, lamellar, gradient, domain-dispersed, and hierarchical nanostructures. These seemingly distinct tactics share a unifying design principle in that the intentional structural heterogeneities induce non-homogeneous plastic deformation, and the nanometer-scale features dictate steep strain gradients, thereby enhancing strain hardening and consequently uniform tensile ductility at high flow stresses. Moreover, these heterogeneous nanostructures in metals play a role similar to multiple phases in complex alloys, functionally graded materials and composites, sharing common material design and mechanics principles. Our review advocates this broad vision to help guide future innovations towards a synergy between high strength and high ductility, through highlighting several recent designs as well as identifying outstanding challenges and opportunities.

Read full text on ScienceDirect

DOI: 10.1016/j.mattod.2017.02.003