Featuring size-tunable electrical and optical properties, semiconductor quantum dots (QDs) are appealing intensive interests in developing ingenious luminescent materials for chemosensory and biological applications. The surface modification of QDs with functional ligands not only fine-tunes the physiochemical properties and fluorescence emission behaviors, but also induces the designated interplay between analytes and probes for special determination. In this review, the fundamental principles guiding the rational design of high-efficiency luminescent sensors with surface engineering are overviewed. The state-of-the-art applications of QDs-based probes are highlighted for the sensing of molecular substrates and ionic species as well as various biological applications, with the inherent recognition mechanisms elaborated for representative cases. The challenge and future research direction in this emerging and promising research field are also discussed.

Read full text on ScienceDirect

DOI: 10.1016/j.mattod.2017.02.006