Abstract: The effective incorporation of photovoltaic (PV) elements into the urban environment, specifically in buildings, is a challenging process. Apart from the aesthetic limitations of having black and opaque PV cells when installed in building façades, they are not optimally positioned for high-efficiency electric energy generation because of shadowing effects due to neighboring trees and buildings. Emphasis is given to luminescent solar concentrators (LSCs) that have emerged as an appealing solution for concentrating a large area of sunlight into a small beam of high field intensity. The coupling of PV cells to the edges of LSCs also presents an exciting strategy to PV urban integration. Here, we outline the mechanistic framework for LSCs, review the current experimental state of the art involving optically active centers in various geometrical device configurations, and discuss the performance quantification of LSCs currently in development. For the sake of completeness, a brief discussion of the other spectral converters suitable for PV applications is also reported.

Spectral converters for photovoltaics – What’s ahead
Read the full text on ScienceDirect
Read full text on ScienceDirect

DOI: 10.1016/j.mattod.2019.10.002