Abstract: Combining triboelectric nanogenerator (TENG) and textile materials, wearable electronic devices show great application prospects in biomotion energy harvesting and multifunctional self-power sensors in this coming intelligent era. However, fabrication method by rigidly stitching two or more individual fabrics together and working mode that must cooperate with external materials, make textile-based TENG bulky, stiff, uncomfortable and hinder their range of application. Here, by using a double needle bed flat knitting machine technology, a 3D double faced interlock fabric TENG (3DFIF-TENG) is designed as self-powered, stretchable and substrate-free wearable TENG sensors (such as a bending sensor to detect arm bending degree, pressure sensors) and energy harvesting devices. Besides, due to the unique 3D structure and after improving the structure by knitting a woven fabric-TENG in the middle layer, the 3DFIF-TENG can be further used as a multifunctional sensors, such as a 3D tactile sensor. Besides, by knitting a woven fabric-TENG in the middle layer of the 3DFIF-TENG, it can be further used as a multifunctional sensor, such as a 3D tactile sensor. The substrate-free and 3D structure design in this paper may provide a promising direction for self-powered, stretchable wearable devices in energy harvesting, human motion or robot movement detection, and smart prosthetics.

3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors


Read full text on ScienceDirect

DOI: 10.1016/j.mattod.2019.10.025