Toward stretchable batteries: 3D-printed deformable electrodes and separator enabled by nanocellulose

Abstract:

The needs for stretchable batteries surge as wearable and epidermal electronics emerge. The development of stretchable batteries, however, remains a grand challenge, as the battery components are intrinsically brittle and fracture easily under mechanical loading. Existing efforts to increase the stretchability of battery components often involve complex fabrication processes and thus are not viable for scalable and cost-effective manufacturing. To address this challenge, herein a facile yet effective strategy is developed to fabricate stretchable electrodes and separator for Li-ion batteries using extrusion-based 3D printing of active materials mixed with nanofibrillated cellulose. The resulting electrodes and separator can achieve reversible stretchability of 50%. After 50 stretching cycles, the resistance of the electrodes under 50% stretch only increases by 3%. The origin of the exceptional mechanical and electrical performances of the 3D-printed battery components is twofold: (i) excellent deformability enabled by the 3D-printed serpentine structure at the component level; (ii) the robust nanoscale structure due to the high aspect ratios of nanofibrillated cellulose and carbon nanotubes and the strong interactions between nanofibrillated cellulose and carbon nanotubes or among the individual cellulose fibers at the material structure level. The facile 3D printing of the patterned electrodes/separator leads to low-cost manufacturing of high-performance stretchable Li-ion batteries, demonstrating its promising potential to enable stretchable energy storage devices for wearable and epidermal electronics.

Read full text on ScienceDirect

DOI: 10.1016/j.mattod.2022.02.015