There is rapid progress in the field of 3D printing technology for the production of electrodes, electrolytes, and packages of batteries due to the technique’s low cost, a wide range of geometries printable, and rapid prototyping speed by combining computer-aided design with advanced manufacturing procedures. The most important part of 3D printing applied in batteries is the printing of electrodes, electrolytes, and packages. These will affect the battery energy/power density. However, there are still several challenges that need to be overcome to print active and stable electrodes/electrolytes for energy storage systems that can rival that of the state-of-the-art. In this review, the printing materials, and methods for batteries from liquid to solid-state batteries are discussed and recent examples of this technique applied in high power/energy batteries are highlighted. This review for batteries will cover 3D printing technologies, printed cathode, and anode in conventional batteries, and printed solid-state electrolytes in solid-state batteries. The working principles, advantages, and limitations for solid-state batteries via the 3D printing method will be discussed before highlighting the printing materials for electrodes and electrolytes. We will then discuss how to modify the electrode and solid-state electrolyte to raise the electrochemical performance of solid-state batteries using 3D printing. Finally, we will give our insights into the future perspectives of this printing technique for fabricating batteries.

Emerging application of 3D-printing techniques in lithium batteries: From liquid to solid

See full text for more information.

Read full text on ScienceDirect

DOI: 10.1016/j.mattod.2022.07.016