A model is given for the effective diffusion of interstitial solutes in the presence of traps. It goes beyond Oriani's by taking into account, in a simple way, the connectivity between interstitial trap sites. It shows, in particular, that the typical dimension of a network of trap sites, connected by low barriers, appears squared in the diffusion coefficient. Therefore, a large precipitate can be inefficient if it offers a fast diffusion path, even if each individual trap site is deep. The model is illustrated in the case of hydrogen trapping at vacancies in Ni, using ab initio calculations for migration barriers and Kinetic Monte Carlo for validation. Trapping/detrapping kinetic parameters for “Thermal Desorption Spectra” analysis are also given.

This article originally appeared in Acta Materialia103, 2016, Pages 334-340.

Sign up or log in to your free Materials Today account to download the full article.

Already a Materials Today member?

Log in to your Materials Today account to access this feature.