Inspired by the structure of a leaf, which is constituted of veins, midribs and laminas, we report the synthesis of aerogels based on nanocarbon complexes that exhibit good electrical conductivity, large internal surface area and stable structural integrity upon cyclic compression. These materials are prepared as monolithic solids from suspensions of unzipped and partially exfoliated multi-walled carbon nanotubes. Under optimized oxidation conditions, all the walls of the multi-walled carbon nanotubes are unzipped but only the outer tubes are exfoliated, creating nanoscale multi-layered graphene oxide sheets attached to inner trench-like structures. The exfoliated parts provide high surface area and functional groups, while the inner trench-like structures remain relatively intact and thus retain their electrical conductivity and mechanical properties, which facilitates charge transport and structural stability for the aerogel. The hydrophilic functional groups on the graphene oxide nanosheets make these structures highly soluble, and as a result, the density and mechanical properties can be adjusted to a large extent without sacrificing the porosity or cell wall uniformity. These nanocarbon aerogel complexes exhibit high damping capability with no significant change in piezoresistive properties after more than 4500 compressive cycles, and its original shape can be recovered quickly after compression release.
This paper was originally published in Carbon 77 (2014) 637–644.
To read more about this article, click here.
egg white proteins can be transformed into ultralightweight carbon aerogels for highly efficient water purification
A novel graphene-based aerogel with a structure similar to meringue is the lightest sound insulation material ever manufactured.
Register for a free webinar presented by Prof Jeffrey C. Grossman, MIT.
A novel platinum-gold alloy, 100 times more durable than high-strength steel, is believed to be the most wear-resistant metal in the world.