Worldwide, about 1,000 tons of mercury is produced per year. The resulting pollution makes water and soil unusable, and poses substantial health risks to people nearby.

University of Utah researcher Ling Zang hopes to address this growing problem in China and beyond with a new test for detecting mercury. The test promises to be faster and cheaper than conventional tests, which require samples to be sent to a laboratory, can take weeks to process and can cost hundreds of dollars.
“It’s very exciting as a scientist to be able to transfer what you are developing on the bench-top in the lab to the marketplace, and to serve society,” said Zang, who was recruited to the university’s Department of Material Science and Engineering in 2008 by the Utah Science Technology and Research (USTAR) initiative. USTAR is a state office that drives innovation and economic growth by attracting talented researchers to Utah.
The new test starts with a liquid solution of a perylene dye, which emits a green fluorescent light. Zang attached the mercury-binding group to the perylene, so when mercury is added, the liquid becomes less fluorescent. The less fluorescent the liquid, the more mercury is present. To measure the fluorescence, Zang uses a custom hand-held photodetector, an electronic device that measures light.
After years of work, Zang has proven his new test, and he is close to selling it to companies and governments across the world that want to monitor mercury pollution. The test can detect mercury down to 0.20 parts per billion (ppb), which is well below the Environmental Protection Agency’s standard of 2 ppb for drinking water. The cost of running the analysis has yet to be determined, but it is expected to cost a fraction of exiting tests.
This story is reprinted from material from The University of Utah with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source