Neutron imaging is a non-destructive technique that can reveal the interior of many materials and engineering components and also probe magnetic fields. Within the past few years, several new imaging modes have been introduced that extend the scope of neutron imaging beyond conventional neutron attenuation imaging, yielding both 2- and 3D information about properties and phenomena inaccessible until now. We present an overview of the most important advances in the application of neutron imaging in materials research with a focus on novel techniques such as energy-selective imaging, interferometric imaging with phase gratings, and polarized-neutron imaging. Examples given include the investigation of fluid dynamics in fuel cells, materials phases and structural heterogeneities, distribution of strains, and magnetic structures or phase transitions.

Read full text on ScienceDirect

DOI: 10.1016/S1369-7021(11)70139-0