In this study, a simple and highly accurate semi-analytical method called the Differential Transformation Method (DTM) is used for solving the nonlinear temperature distribution equation in a longitudinal fin with temperature dependent internal heat generation and thermal conductivity. The problem is solved for two main cases. In the first case, heat generation is assumed variable by fin temperature and in the second case, both thermal conductivity and heat generation vary with temperature. Results are presented for the temperature distribution for a range of values of parameters appeared in the mathematical formulation (e.g. N, εG, and G). Results reveal that DTM is very effective and convenient. Also, it is found that this method can achieve more suitable results compared to numerical methods.

This paper was originally published in Case Studies in Thermal Engineering 4 (2014) 1-8.

Log in to your free Materials Today account to download the full article.

Interested in Thermal Analysis?

Watch our free presentations at the Thermal Analysis page here.

Already a Materials Today member?

Log in to your Materials Today account to access this feature.