These are resistance-temperature-applied-magnetic-field diagrams of four materials that exhibit extreme magnetoresistance, showing the similarities. Image: Cava lab.
These are resistance-temperature-applied-magnetic-field diagrams of four materials that exhibit extreme magnetoresistance, showing the similarities. Image: Cava lab.

A new study from Princeton University has revealed a unifying connection between seemingly unrelated materials that exhibit extreme magnetoresistance, which could help in the search for other, novel materials with this property. Extreme magnetoresistance is the ability of some materials to drastically change their electrical resistance in response to a magnetic field, a property that could be useful in magnetic memory applications.

"The chemistry of these materials looks completely different but they're connected on a profound level by their physics," said Robert Cava, professor of chemistry and corresponding author of a paper on the work in the Proceedings of the National Academy of Sciences.

Numerous materials with extreme magnetoresistance have been reported since the Cava lab first discovered extreme magnetoresistance (originally termed 'large magnetoresistance') in tungsten(IV) telluride (WTe2) two years ago.

Researchers in the Cava lab have now noticed that five materials with extreme magnetoresistance yet very different structures and chemical compositions share the same characteristics when their resistance-temperature-applied-magnetic-field diagrams are measured. This diagram maps the temperature and magnetic field strength at which a material's magnetoresistance turns on and then saturates. Using these phase diagrams as a clue, scientists may be able to identify other materials with extreme magnetoresistance.

Detailed investigations by Fazel Tafti, a former Cava lab postdoc and physics PhD, revealed a common feature related to the materials' electronic structures, leading the researchers to propose a picture of the underlying physics that unifies these chemically-disparate materials. According to Cava, this kind of research, where materials chemistry and materials physics meet, is what his lab and its collaborators enjoy the most.

"Now we hope that other people will think about this, and make more measurements to see whether our proposal for the unifying physics holds up to more intense scrutiny," Cava said. He was confident that first author Fazel Tafti, now an assistant professor of physics at Boston College, would get to the bottom of this phenomenon. "Physicists quest for truth," he said.

This story is adapted from material from Princeton University, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.