As you are already aware, the NLP 2000 System was launched last year for bioscience research. It is a simple, user-friendly desktop nanolithography platform which can deposit sub-micron sized features of a wide variety of materials on virtually any planar surface. The NLP 2000 System employs high resolution nanopositioning stages, greatly simplifying the deposition process. With the launch of three new Application Notes that further validates the utility of the NLP 2000 System in biological applications, NanoInk promises to be a valuable partner to the life science community.

The first of these Application Notes demonstrates successful use of the NLP 2000 System for the functionalization of cantilever-based biosensors. Micro- and nanocantilevers are the most simplified microelectromechanical (MEMS) based devices available for analyte sensing applications. Nanocantilever biosensors are easily multiplexed and can achieve attogram level sensitivity, so they are particularly well-suited to disease screening, point mutation analysis, blood glucose monitoring, and chemical and biological warfare agent detection. NanoInk has developed a simple and reliable methodology for functionalizing micro- and nanocantilevers using an NLP 2000 System protein deposition approach.
A second new bioscience NLP 2000 System Application Note supports the printing of functional hydrogels. Hydrogels are three-dimensional cross-linked polymer networks that demonstrate physical characteristics very similar to those of natural tissue. As a result, functional hydrogels fabricated at sub-cellular scales have utility in proteomic analyses, drug screening, biological sensor development, and cell culture applications. NanoInk has validated the feasibility of generating consistent and reproducible nanoscale functional PEG hydrogel patterns with the NLP 2000 System.
With our third new Application Note, we clearly demonstrate that the NLP 2000 System, which is capable of printing multiple substances with nanometer precision at defined locations, is ideal for creating multiplexed protein nanoarrays. Compared to conventional protein microarrays, nanoscale arrays have the benefit of reduced sample and reagent quantities (which lowers assay cost), higher detection sensitivity, improved ability to interrogate sub-cellular features, and better compatibility with lab-on-a-chip technologies.
NanoInk is dedicated to developing and supporting a wide range of biological applications for the NLP 2000 System. These three new Application Notes are just the first step toward proving this commitment.
Please visit or call (847) 679-8807 for more information on the NanoFabrication Systems Division, the NLP 2000 System, and related Application Notes.