Scientists from the Fraunhofer Institute for Structural Durability and System Reliability LBF have competed a project to look into physical testing can benefit from numerical methods.

While numerical simulations have massively accelerated product development over the past few decades, physical tests are widespread and will not lose significance over the next few decades, the organization said. Therefore, numerical models should be validated and approval testing must be carried out.

As part of its Digitization in Testing Technology project a Fraunhofer team developed tunable components and a mechanical hardware-in-the-loop interface. The tunable components can allow continuous adjustment of mechanical characteristics, and if tunable rubber mounts are used as a development tool, with stiffness and damping adjustable independently of each other, it is possible to forgo the first bearing prototypes, the scientists explained. This makes it possible to provide the mount manufacturer with improved specifications at an early stage of development.

‘The transfer of numerical simulation methods into the physical world of testing makes it possible for development processes to be drastically accelerated and costs to be reduced,’ said Jan Hansmann, research associate and project manager at Fraunhofer LBF. Furthermore, our technologies and test rig components offer new possibilities for validation of numerical simulation models.’

This story uses material from Fraunhofer, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier.