By using CompoSIDE, the researchers have demonstrated that his scaling approach to composites design can be applied to 3D composites structures.
By using CompoSIDE, the researchers have demonstrated that his scaling approach to composites design can be applied to 3D composites structures.

Professor Research Emeritus of Stanford University, Stephen Tsai, is seeking an industrial pilot project to further demonstrate the benefits of the Trace-based design, which uses CompoSIDE, a web-based composites design engineering program developed in the U.K.

By using CompoSIDE, Professor Tsai’s team at Stanford and the CompoSIDE team have demonstrated that his scaling approach to composites design can be applied to 3D composites structures to develop composites designs within 2-3% accuracy margins, without the need for extensive and costly modelling and material testing.

According to Professor Tsai’s theory of universal stiffness and strength for trace-based composite laminates, trace-normalised stiffness components for all modern carbon-polymer composites laminates converge to nearly identical values. This universal stiffness means linear scaling, such as that found in a homogenous material, can be applied to the design. As a result, only a few simple tests are required to characterise composites materials. This approach simplifies composites design to the extent that it is similar to designing with aluminum. Tsai’s breakthrough means designers and engineers now have a new framework for design, testing and manufacturing validation.

Commercial benefits

Having used FESpace and LAMINASpace within CompoSIDE to test trace-based scaling, the next stage is to work with an industrial partner with a composites pilot project to benchmark the theory in the field.

‘The extensive evaluation performed by CompoSIDE shows trace-based scaling models to have strong correlation with the FE results,’ said Professor Tsai. ‘We are now seeking to demonstrate the commercial benefits with a project featuring a highly loaded structure that has weight and costs challenges so we can confirm the potential of this new approach.’

‘The implications of this work are far-reaching,’ added CompoSIDE joint MD Julien Sellier. ‘Composites offer a unique solution to many highly-loaded applications. However, design, test and development costs and risks are often perceived to be barriers for adopting this technology. Trace-based scaling removes many of the complexity and cost barriers to using composites.’

‘To fully test the benefits and market applicability using a pilot project, we would like to hear from firms in the early stages of developing a composites product or application,’ he added. ‘By working with Professor Tsai’s Stanford team and CompoSIDE, our industrial partner will have the opportunity to benefit from cost savings, time reductions, quality improvements and faster time to market.’

This story is reprinted from material from CompoSIDE, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier.