Biwu Ma, associate professor of chemical and biomedical engineering at Florida State University. Photo: Bill Lax/Florida State University.
Biwu Ma, associate professor of chemical and biomedical engineering at Florida State University. Photo: Bill Lax/Florida State University.

A research team at Florida State University (FSU) has discovered a new crystal structure of organic-inorganic hybrid materials that could open the door to new applications for optoelectronic devices like light-emitting diodes (LEDs) and lasers. The team published their research in a paper in Nature Communications.

Associate professor of chemical and biomedical engineering Biwu Ma has been working with a class of crystalline materials called organometal halide perovskites for the past few years as a way to build highly functioning optoelectronic devices. In this most recent work, his team assembled organic and inorganic components to make a one-dimensional (1D) structure.

"The basic building block of this class of materials is the same, like a Lego piece, with which you can assemble different structures," Ma said.

These Lego-like pieces, known as metal halide octahedra, can form three-dimensional (3D) networks, two-dimensional (2D) layers or even 1D chains. While 3D and 2D structures have been extensively explored, 1D structures are rare. Ma's team found a way to put these pieces together in a chain and then surround them with organic pieces to form a core-shell-type wire.

Millions of the organic-coated wires then stack together to form a crystalline bundle; from a distance, these structures look like crystal needles. This is the first time scientists have observed these hybrid materials forming a crystal structure like this.

The crystal structure displays very interesting optical properties, Ma said. For example, it is highly photo luminescent, which could prove of use for various different technologies. Hybrid metal halide perovskites have received increased attention in recent years for their potential applications in various types of photon-related technologies such as photovoltaic cells, LEDs and lasers. This new study takes that work one step further by showing that this 1D structure could make an efficient material for producing bright light.

"They are good light emitters," Ma said. "This research tells us we have the capabilities to develop new structures and these materials have great opportunities for practical applications for devices like LEDs or lasers."

Ma came to FSU as part of the Energy and Materials Strategic Initiative with a mission of producing high-tech materials for next-generation, energy-sustainable technology. His work is supported through the Energy and Materials Initiative and collaborators at the FSU-based National High Magnetic Field Laboratory, where some of the experiments were conducted.

This story is adapted from material from Florida State University, with editorial changes made by Materials Today. The views expressed in this article do not necessarily represent those of Elsevier. Link to original source.