
ON SPINODAL DECOMPOSITION* 

JOHN W. CAHN t 

The stability of a solid solution to all infinitesimal composition fluctuations is considered, taking surface 
tension and elastic energy into account. It is found that for infinite isotropic solids, free from imperfections 
the spinodal marks the limit of metastability to such fluctuations only if there is no change in molar volume 
with composition. Otherwise the elastic energy due to a fluctuation stabilizes the solution and alters the criterion 
for the limit of metastability. For an unstable solution the kinetics of decomposition are discussed and the 
expected mean particle size or wavelength of the most rapidly growing fluctuation is derived. 

SUR LA DECOMPOSITION SPINODALE 

L’auteur considere la stabilite d’une solution solide en relation avec des fluctuations infinitesimales de la 
composition. En tenant compte de la tension superficielle et de l’energie elastique, on trouve que pour des 
solides isotropes infinis et exempts d’imperfections, la decomposition spinodale indique la limite de metastabi- 
litt aux fluctuations considerees seulement dans le cas oh il n’intervient pas de modification du volume molaire 
avec la composition. Autrement, l’energie Clastique resultant dune fluctuation stabilise la solution e tmodifie 
le critEre de la limite de metastabilite. L’auteur discute de la cinetique de la decomposition dam le cas d’une 
solution instable et il en deduit la dimension moyenne de la particule ou de la longueur d’onde associee 
a la fluctuation la plus rapide. 

UBER DIE UMSETZUNG AN DER SPINODALEN 

Die Stabilitiit einer festen Losung gegentiber allen infinitesimalen Schwankungen der Zusammensetzung 
wird betrachtet, dabei werden Oberflachenspannung und elastische Energie mit bertlcksichtigt. Es wird gezeigt, 
da8 im unendlichen, isotropen und fehlerfreien Festkorper die Spinodale nur dann die Grenze der Metasta- 
bilitat beztiglich solchen Schwankungen darstellt, wenn sich das molare Volumen mit der Zusammensetzung 
nicht andert. Andernfalls stabilisiert die mit der Schwankung verkniipfte elastische Energie die Liisung und 
verandert die Bedingungen fur die Grcnze der Metastabilitlt. Fur eine instabile Lijsung wird die Kinetik der 
Umsetzung diskutiert und die zu erwartende mittlere TeilchengriiDe oder die Wellenltinge der am schnellsten 
wachsenden Schwankung abgeleitet. 

1. INTRODUCTION 

In his classic treatment of stability of phases, 
Gibbs(l) separated into two categories the infini- 
tesimal changes to which a metastable phase must 
be resistant. One is a change that is infinitesimal 
in degree but large in extent, as exemplified by a small 
iomposition fluctuation spread over a large volume. 
If a phase is unstable to such a fluctuation, then 
there is no barrier (other than a diffusional one) 
to a continuous transformation to a more stable 
phase. Gibbs formulated the general conditions 
necessary for this type of instability. Specifically 
he showed that a necessary condition for stability 
for a fluid phase to such a fluctuation be that the 
chemical potential of each component increase 
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with increasing density of that component. For 
a two component fluid this condition is equivalent 

to a2G 
( i a c2 T. P 

> 0 where G is the Gibbs free energy 

per mole of solution and c the composition. On 
a binary phase diagram the boundary of the unstable 

region is defined by the locus of E 
( ) 

=0 and 
a c2 T. P 

is usually but inappropriately called the spinodal. 
This condition for instability can be traced conti- 
nuously to Gibbs’ original work, and initially received 
much attention in Germany after a German transla- 
tion by Ostwald of Gibbs’ paper was published 
in 1891, although reference to Gibbs was rarely made. 

In recent years there have been a number of wor- 
kers who have extended Gibbs’ concept of the spi- 
nodal to solid solutions(2-5) without clear proof 
that it continues to be valid. It is the purpose of the 
present paper to explore its validity. 
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The other changes considered by Gibbs are those 
which are large in degree but small in extent, an 
example being that of an infinitesimal droplet of 
material with properties approaching those of the 
more stable phase. This has given rise to the well- 
known classical nucleation theory. The two cate- 
gories have apparently led to two irreconcilable 
schools, although they were clearly compatible to 
Gibbs. Recently it has been showr+‘) that the 
mechanism of nucleation approaches the mechanism 
of spinodal decomposition continuously as the 
spinodal is approached. 

The main controversy revolved around the apparent 
neglect of surface tension in the theories of spinodal 
decomposition. The answer to this controversy 
is in the fact that within the spinodal the solution 
is not unstable to fluctuations which form small 
droplets, but unstable to long range fluctuations, 
which are sufficiently large in extent that the surface 
tension contributions are always smaller than the 
volume energy contributions. In a recent paper 
Hillert,“) in fact, considers the kinetics of decom- 
position within the spinodal of a regular solution 
with near neighbor interactions only, taking inci- 
pient surface tension into account, and in the present 
paper Hillert’s treatment will be extended to three 
dimensional isotropic solids and generalized to any 
type of solution free from structural imperfections 
that give rise to long range elastic fields. 

2. THE SPINODAL CONCEPT 

(a) Incompressible isotropic binary solution of constant 
molar volume 

It will be simpler first to consider an isotropic 
solid solution free from imperfections in which 
the molar volume is independent of both composition 
and pressure. For such a material it is possible@) 
to write the total Helmholz free energy as 

F = S [f’ (c) + x (V@l dV , 
” 

(1) 

where f’(c) is the Helmholz free energy of a unit 
volume of homogeneous material of composition 
c and x(VC)~ is the first term of an expansion repre- 
senting the increase in free energy due to introducing 
a gradient of composition. The second term gives 
rise to surface tension. Since we shall be concerned 
with testing the stability of an initially homogeneous 
solution to infinitesimal composition fluctuations 
the gradients will also be infinitesimal and the second 

term will be completely sufficient to describe the 
contribution from the incipient “surfaces” (between’ 
regions differing in composition). Higher order 
gradient energy terms will be negligible, except 
at very large gradients. 

We may also expand f’(c) about the average 
composition c0 

f’(c) =f’(c,) + (c - co) g ( 1 c 

_ 
cu 

$ _! (c - coy azf’ 
2 ( ) a3 c=co ’ 

(2) 

The difference in free energy per unit volume 
between the initial homogeneous solution and one 
with a composition given by 

c-c,= Acos/?x (3) 
is 

(4) 

If this is negative, then the solution is unstable with 
respect to sinusoidal fluctuations of wavelength 
2x/p. Both terms are quadratic in the amplitude, 
so the stability criterion is initially independent 
of amplitude. 

We shall assume it to be positive; otherwise we 
would have negative surface tension, and no stability 
even outside the spinodal. With Pf’/ac2 > 0 the 
solution is stable with respect to infinitesimal sinusoi- 
dal fluctuations of all wavelengths. With a2f’/dc2 < 0 
the solution is unstable with respect to infinitesimal 
sinusoidal fluctuations of wavelengths greater than 
2x//$ where 

24pC = [-wX/(a2f'/aC2)1:. (5) 

This concept was first given by Hillert”), and shows 
that as the spinodal is approached the critical wave- 
length approaches infinity. The effect of incipient 
surface tension is to disallow the solution to decompose 
on too small a scale. 

Now consider an arbitrary composition fluctu- 
ation. It can always be described by its Fourier 
components and, because of their orthogonality, 
the total change of free energy is the sum (or integral) 
of the free energy change accompanying each Fourier 
component. It is therefore sufficient to consider 
only the individual sinusoidal fluctuations in testing 
for stability to infinitesimal composition fluctuations; 
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if it is stable to all of these individually, it is stable 
to all infinitesimal fluctuations. If it is unstable 
to any of these it is obviously unstable, since we have 
taken surface tension into account. 

For an infinite system, the limit of instability 
corresponds to the spinodal; for a finite system, 
neglecting changes in its exterior surface the spinodal 
curve is to be modified to take into account the 
fact that p can not be zero. Instability occurs ap- 
proximately for a value of 

(ay/ac‘q = - 9, 

where L is the largest linear dimension of the system. 
Since x is of the order of xTCN:13 where T, is the cri- 
tical temperature and NV the number of atoms in 
a unit volume, this is a negligibly small correction 
except for very small systems. 

It may be worthwhile to point out that equation 
(1) requires some sort of smoothing process and 
that for really short wavelength fluctuations its 
meaning would be doubtful. Happily in this 
application we have a short wavelength cut-off to 
the fluctuations of interest, because of the gradient 
energy term. 

(b) Isotropic binary solid solution free from imper- 
fections 

In the previous section we considered a solution 
of constant molar volume. As a result, composition 
fluctuations were not accompanied by strains. In 
this section allowance for strain energy will be made. 
In order to do this we will require that ,f’(c) be the 
Helmholz free energy of l/V, moles of stress free 
homogenous material where V,, is the molar volume 
of material of composition cO. It therefore is directly 
proportional to the free energy usually measured, 
except for a pressure term, which is negligible at 
one atmosphere. It is also the free energy needed 
to describe the equilibrium of two incoherent phases. 
If we consider a long range infinitesimal composition 
fluctuation in a perfect crystal there will be coherency 
strains if the molar volume is a function of composi- 
tion. This will introduce additional energy. Because 
we are considering infinitesimal fluctuations only 
we may neglect the effect of spontaneously created 
dislocations in modifying the strain energy of the 
fluctuation, since such dislocations would require 
a finite energy. 

Let us as before consider a fluctuation described 
by equation (3) in an isotropic material in which 
the stress free molar volume for small (c-c,) is 
given by 

V(c) = V,(l + 317(c-c,)) = V()(l + 34 cos/%X), 

and the stress free strain is a pure dilatation, q being 
the linear expansion per unit composition change. 
The components of total strain resulting from this 
composition fluctuation are 

.sT =A7 ’ +ycos,9x I.2 l-v (7) 
ET = &zZ = &zU = &zZ = Ezx = 0. 

YY 

The elastic strain is the difference between the total 
strain and the stress free strain and is 

E;~ = E;~ = - Arj cos 

&E = c@ = &E =O 
=.?I y2 2s 3 

and the corresponding stress is 

Bx 
(8) 

c -0 55 - 

AEr 
0 

Y?l = 
Ozt = - ‘- cos /lx 

l-v 
(9) 

0 w = cya = 02, - - 0, 

where E is Young’s Modulus for the average composi- 
tion. The variation of E with composition enters 
only in higher order terms. The local elastic strain 
energy per unit volume is thus 

and the average elastic energy per unit volume is 

il (a,, &fj) dV = !?f? 
2 (l-v) 

which is independent of the wavelength. 
It is possible to derive the elastic energy of an 

arbitrary composition fluctuation. By Fourier ana- 
lysing the composition, finding the elastic energy 
of each Fourier component and noting that the 
components do not interact, one obtains that the 
total elastic energy of an infinite isotropic solid 
with an arbitrary composition fluctuation is 



798 ACTA METALLURGICA, VOL. 9, 1961 

where 

a%2E 

l--y’ 
(11) 

a2 = J (c - ctJ2dV. 
V 

The elastic energy depends only on the integrated 
square deviation from the average composition 
and is independent of the other details of the fluctu- 
ation. Thus instead of equation (1) we have 

F= 
SL 

f’(c) + ;y, (c - CO)2 + x(ocy 
I 

dV. (12) 

V 

AF 
’ A2 ---=- 

v 4 
(13) 

As before, if this is negative then the solution is 
unstable with respect to sinusoidal fluctuations 
of wavelength 2x//?. Again all terms are quadratic 
in amplitude, so that the stability criterion is initially 
independent of amplitude. We find that the solution 
should remain stable to infinitesimal fluctuations 
inside the spinodal until 

ay9 < _ 2r2E 
a2 I--y’ 

The limit of stability is given by the locus of 

azf' _- + 2r2E o p=. 
ac2 l-v 

(14) 

This condition reduces to the spinodal if q = 0. 
In order to estimate the magnitude of the change 
in the stability condition due to coherency strains, 
let us compute the distance on a phase diagram 
between the spinodal and the stability condition 
for several systems; Au-Ni for which q is large 
and Al-Zn and Au-Pt for which q is small. Let 
us express the difference as an undercooling below 
the critical point for a material of the critical compo- 
sition. For this approximately 

= 4k(T - T,)N,,. 

The spinodal is at T = T,; instability sets in at 

T’-TT= r2E 
2(1 - v)kNv ’ 

(15) 

Thus coherency stress will stabilize a solid solution 
against infinitesimal composition fluctuations for 

TABLE 1 

System I rl 
qW(l - y) kNv 

T 

Al-Zn 0.0257 40 

Au-F% 0.038 200 

Au-Ni 0.15 2000 
-Y 

a large undercooling below the spinodal. The pheno- 
menon is clearly consistent with the great stability 
which Au-Ni exhibits to decomposition. Precipitation 
at higher temperatures is clearly cellular. For all 
compositions in the two phase field the solid solution 
remains unchanged until the cell front passes,(B) 
which is not what is expected if the solution were 
unstable. 

(c) The effect of the free surface 

In the infinite solid the total strain normal to the 
sinusoidal fluctuations has to be zero. In the vicinity 
of a free surface this need not be and some reduction 
of the elastic energy is to be expected. In addition 
a certain amount of interaction between Fourier 
components will occur. The extreme of this is for 
a finite solid with a constant composition gradient 
across it. For such a solid there is no elastic energy 
whatsoever. Thus a finite solid free from imperfec- 
tions becomes unstable at the spinodal to such 
a composition fluctuation involving the whole crystal 
if we neglect gradient energy and changes in surface 
tension due to composition changes at the free 
surfaces. 

(d) The effect of imperfections 

The effect on the stress field of various imperfec- 
tions will be such as to give rise to “atmospheres” 
in which the composition is so altered as to reduce 
the elastic energy. At certain critical compositions 
some imperfections give rise to atmospheres which will 
grow without limit, and it is highly unlikely that 
these compositions will be closely related to the 
spinodal. 
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3. KINETICS OF DECOMPOSITION WITHIN THE 
SPINODAL 

Hil’ld’) has treated the kinetics of spinodal 
decomposition by considering a diffusion equatiun 
in which the thermudynami~ factors are included. 
Because the chemical potential decreases with increasing 
concentration of that component within the spinodal, 
the direction of the diffusive flux must correspond 
to a negative diffusion coefficient. In addition the 
diffusion equation must contain a higher order 
term reflecting the thermodynamic contributions 
of the gradient energy term. This will, for example, 
express the fact that in an equilibrium two phase 
mixture, composition gradients can exist at inter- 
faces without a corresponding fhtx. 

Because of the complexity of his fo~ulatjun, 
Hillert had to constrain his composition fluctuation 
to those in which all composition gradients were 
along a given crystallographic direction, that is, 
normal to lattice planes of constant composition. 
In this paper, this artificial constraint on the gradients 
will be removed, and elastic energy introduced. 
By limiting ourselves to the initial stages of decompo- 
sition, it will be possible to get an analytic expression 
for the rate of growth and form of the composition 
fluctuation, which was not possible in Hillert’s 
method. On the other hand the present treatment 
does not lend itself as readily to the consideration 
of the later stages of spinodar decomposition. In 
a homogeneous alloy the quantity (af’/&) is pro- 
portional to the difference in the chemical potential 
of the two components, since it is the change in free 
energy when we replace some of one component 
by another. In the presence of a gradient, if we 
make a local change in composition we also change 
the local gradient. The quantity, corresponding 
to (af’fac) and proportional to the chemical potential 
difference, is called the variational derivative. Consider 
a variation in composition 

1 
6c 

V 

f- 2?cvc S(rJc) dV* (16) 

After integrating the last term by parts this becomes 

The quantity in brackets is the change in free energy 
due to a local change of composition SC, We may 
now define a positive quantity 34 such that the net 
flux of B atoms is given by 

and 

If we confine our interest to the initial stages of 
spinodal decomposition we may neglect all terms 
not linear in c and obtain 

34~+37%-2&f~Y7~~ (18) 

The quantity M[(d2f’/@) + (2q2E/1 - v)] is now 
identified with the interdiffusion coefficient and 
(--IMx) is the thermodynamic correction factor for 
incipient surfaces. Note that the coherency strains 
have altered the usual thermodynamic factor ap- 
pearing in the diffusion coefficient. 

Equation (18) has one serious fault for small 
fluctuations, and that is that it can not possibly 
describe nucleation. It describes a system whose 
free energy decreases monotomically by a diffusion 
process, and therefore does not permit the small 
but finite excursions necessary for nucleation. 

Equation (18) has a general solution of the form 

where A@& obeys the differential equation 

8A 
-Z!Z 

at 
,@A - 2M@A , 

and therefore 

4&O = 4&W exp [R(P)% 

where 
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Comparison with equation (13) shows that the kinetic 
amplification factor R is negative when the solution 
is stable to that fluctuation. It is zero for /Ic and 
positive for longer wavelengths and has a maximum 
at exactly 1/2 times the critical wavelength. 

Consider an homogeneous solution within the 
spinodal. It will have initially a certain amount of 
fluctuation from the average composition which 
may be written as a Fourier integral 

c(r,O) - c0 = J A@,O) exp (i(3 . r) dg. 
P 

Each Fourier component of that fluctuation will 
grow or diminish according to its wavelength and 
at any later stage 

c(r,t) - co = J-4(&0) exp [R(p) t + ig . 4 4$ (21) 
P 

Because of the maximum in R as a function of wave- 
length, those components of the fluctuation with 1/2 
times the critical wavelength will grow fastest and will 
dominate. This principle of selective amplification 
depends on the initial presence of these wavelengths 
but does not critically depend on their exact amplitude 
relative to other wavelengths if the time t is large 
compared with l/R(@,/1/2). It does not depend on 
any additional assumptions, since different wave- 
lengths can coexist and do not interfere with one 
another. 

We can not say much about the actual rate of 
spinodal decomposition, except to place an upper 
limit on it. 

where a is defined in equation (10). The quantity 
dlna/dt will be greatest when the fluctuation is sinu- 
soidal with wavelength 21/%//Ic. Since it will approach 
zero as the limit of metastability is reached, it is 
unlikely that this mechanism of spinodal decomposition 
will be observed near the limit of metastability; 
for it is too slow there, and long before it will have 
a chance, ordinary nucleation and growth resulting 
from finite fluctuations not permitted by equation 
(18) will have taken over. However, well inside 
the unstable region when the critical wavelength 
has become small, this spinodal mechanism may be 
the observed one. 

4. DISCUSSION 

We have seen that the concept of a region in the 
phase diagram in which the solution is unstable 
to infinitesimal fluctuations is unaltered by the 
introduction of surface tension and elastic energy. 
However, the details are altered. Surface tension 
prevents decomposition of the solution on too fine 
a scale, without altering the criterion for stability. 
Elastic energy alters the criterion itself. 

We have examined only infinitesimal fluctuations. 
For these, the treatment of the elastic energy and 
incipient surface free energy is exact. By considering 
the rate of growth of the fluctuations it was possible 
to make some prediction about the nature of the 
finite fluctuations resulting from the infinitesimal 
ones. To treat the problem more fully requires the 
introduction of higher order terms, particularly 
in the free energy expansion, so that the fluctuation 
will cease growing when equilibrium is reached. 
This was done in one dimension by Hillert.“) It is 
hoped that the interparticle distance or wavelength 
expected from considering the initial stages of decom- 
position will persist at least until the stage of coalescen- 
ce when larger particles will grow at the expense 
of smaller ones. 

There is no nucleation barrier when the solution 
is unstable to infinitesimal fluctuations, but that 
does not mean that decomposition will proceed by 
a spinodal mechanism. Within the unstable part 
of the phase diagram, sufficiently near the limit 
of metastability such a mechanism will be slower 
than a nucleation and growth mechanism whose 
rate need not vanish at the limit. Thus the expected 
change of mechanism will not be observed at the 
spinodal in solids for two reasons: 

(1) Elastic energy will change the criterion for 
the limit of metastability. 

(2) The rate of the spinodal mechanism is initially 
too slow to compete with a nucleation and growth 
mechanism. 

These two factors are most serious near the critical 
temperature, and spinodal decomposition should 
not be observed there. At lower temperatures the 
spinodal curve is not sufficiently well known to permit 
a clear test of the shift, except when the predicted 
shift is very large as it is in the Au-Ni system. In 
fact nothing which could possibly be interpreted 
as spinodal decomposition has been reported at 
high temperatures for Au-Ni. Even for Al-Zn it 
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has been reported that the solid solution undercools 
by about 10°C in the vicinity of the critical temper- 
ature.“@ Presumably at only 10°C undercooling 
it decomposes by a nucleation and growth mechanism. 

How does one experimentally distinguish between 
a spinodal and a nucleation and growth mechanism? 
For much of the decomposition attributed to the 
spinodal it has been possible to show that it was 
clearly nucleation and growth since decomposition 
started at a few nucleation centers and spread from 
there.ul) The problem is much more subtle when 
there is apparently easy and copious volume nuclea- 
tion, especially to phases intermediate in composition. 
True spinodal decomposition should possess the 
following properties. 

(1) It should occur everywhere within a sample, 
except that near a structural imperfection the rate 
or mechanism may be different. 

(2) The amplitude of composition fluctuations 
should grow continuously until a metastable equili- 
brium is reached with a preferential amplification 
of certain wavelength components. The investiga- 
tions on spinodal decomposition(3-5) in systems 
in which side bands appear, have shown these criteria 
are satisfied. Whether there are other mechanisms 
which give rise to similar behaviour but which do 

not rely on instability to infinitesimal composition 
fluctuations remains to be seen. 
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