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Abstract-A microscopic diffusional theory for the motion of a curved antiphase boundary is presented. 
The interfacial velocity is found to be linearly proportional lo the mean curvature of the boundary. 
but unlike earlier theories the constant of proportionality does not include the specific surface free 
energy. yet the diffusional dissipation of free energy is shown to be equal to the reduction in total 
boundary free energy. The theory is incorporated into a model for antiphase domain coarsening. Experi- 
mental measurements of domain coarsening kinetics in Fe-AI alloys were made over a temperature 
range where the specific surface free energy was varied by more than two orders of magnitude. The 
results are consistent with the theory: in particular. the domain coarsening kinetics do not have the 
temperature dependence of the specific surface free energy. 

R&sum&-Nous presentons une theorie microscopique de la diffusion appliquke au deplacement d’unc 
paroi d’antiphase curviligne. Sous trouvons que la vitesse de I’interface est proportionnelle B la 
courbure mo!enne du joint. mais. contrairement au cas des theories antkrieures. la constante de 
proportionnaht6 n’inclut pas I’energie libre superficielle SpCcifique. bien que la dissipation par diffusion 
de I’energie libre soit Cgale 6 la diminution de l’energie libre totale du joint. Nous incorporons cette 
theorie dans un modtle de la croissance des domaines antiphases. Nous avons efTectui des mesures 
expirimentales de cinetiques de croissance des domaines dans des alliagys Fe-Al. pour une gamme de 
tempkratures dans laquelle I’energie libre superficielle specilique varlalt de plus de deux ordres de 
grandeur. Les r&ultats sont en bon accord avec la theorie; en particulier. les cinetiques de grossissement 
des domaines ne varient pas. en fonction de la temptrature. comme l’tnergie libre superficielle. 

Zusammenfassung-Es wird eine mikroskopische, auf Diffusion aufbauende Theorie fir die Bewegung 
einer gekriimmten Antiphasengrenze vorgelegt. Man findet, da0 die GrenzflXchengeschwindigkeit linear 
mit der mittleren Kriimmung der. Grenze zusammenhtingt. die Proportionalit&konstante jedoch 
anders als bei friiheren Theorien die freie OberflIchenenergie nicht enthllt. Es wird aber gezeigt, da13 
die durch Diffusion dissipieite freie Energie der Verminderung der gesamten freien Energie der Grenze 
entspricht. Die They2 wird in ein Model1 der Vergrijberung van Antiphasendomanen eingearbeitet. 
Die Kinetik der DomznenvergrBberung wird an Fe-Al-Legierungen experimentell iiber einen Tem- 
peraturbereich gemessen, in dem die spezifische freie OberflIchenenergie iiber mehr als zwei 
GrBDenordnungen variiert. Die Ergebnisse stimmen mit der Theorie iiberein: insbesondere weist die 
Kinetik der DomlnenvergrGberung die Temperaturabhgngigkeit der spezifischen ObertlIchenenergie 
nicht auf. 

1. INTRODUCTION 
Internal surfaces in solids-such as grain boundaries, 
coherent interphase interfaces and antiphase bound- 
aries-are in general non-equilibrium features of real 
crystalline solids. They have a positive excess free 
energy. Thus, in polycrystalline materials, grain 

boundaries migrate to reduce the total amount of 
grain boundary area. Local atomic arrangements near 
rapidly moving interfaces can dialer significantly from 
arrangements near slowly moving ones. giving rise, 
for example. to impurity-drag phenomena. A com- 
plete theory of interfacial motion in solids would have 
to account not only for the local structure, excess 
free energy and geometry of the interface. but also 
for the topological nature of the interfaces as a whole. 

in order that the evolution of the microstructure 

could be understood. 
Resistances to interfacial motion in solids are often 

diffusional. Grain growth in pure metals requires re- 
arrangement of atoms in a grain boundary region, 
thus requiring diffusion’over distances of the order 
of an atomic spacing. Long-range diffusion can also 
be required for interfacial motion, such as for the 

growth of a precipitate from supersaturated solution. 
or in cases where impurities segregate to the interface 
and tend to be carried along with the interface as 
it moves. 

Theories to explain many of these phenomena have 
been proposed [l-4]. A widely-used phenomenologi- 
cal theory of interfacial motion [l. 21 states that inter- 
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facial velocity V is proportional to thermodynamic 
driving force, the proportionality constant being a 
positive quantity called the mobility. The driving 
force in this theory is the product of the mean of 
the local principal curvatures (K, e K2) of the 
boundary and its excess free energy per unit area 6. 
resulting in the relationship 

V= PG(K, -I- K,), (1) 

where p is the mobility which in some theories is 
inversely proportional to interface thickness [2]. One 
of the motivations for the present study was to test 
equation (1) experimentally for a problem in which 
the surface free energy dependence could be investi- 
gated. When an order-disorder transition is higher- 
order, the antiphase boundary (APB) energy is known 
to tend to zero continuously at the transition tem- 
perature [S], thus providing a means to vary the mag- 
nitude of the surface free energy over a wide range. 

Another approach to the theory of interfacial 
motion. used by Langer and Sekerka [63, is based on 
solving a diffusion equation that has been modified 
to account for the thermodynamics of non-uniform 
systems [7]. The premise is that this modified free 
energy is the basis of a diffusion potential whose 
gradient leads to a flux [SJ. Langer and Seketka have 
used this diffusion theory to describe motion and de- 
viations from equilib~um in a plane interface between 
two phases differing in composition and being forced 
to move because of imposed fluxes through the bulk 
phases. The mathematical problem was quite cumber- 
some in that there were three regions with differing 
diffusion scales: the two phases and the interfacial 
region itself. Interfacial motion was controlled by 
long-range diffusion. 

A much easier problem to study using the diffusion- 
theory approach is the motion of a curved APB. 
These are coherent interfaces separating domains with 
identical properties in crystals with long-range order, 
the domains differing by a relative displacement 
which is not a superlattice translation. If the differ- 
ences between the atomic species were ignored, the 
two domains would be part of the same crystal. 

There are alternative ways of considering APBs and 
their properties. It is customary to think of them as 
surfaces, having geometrical properties such as area 
and curvature, thermodynamic and chemical proper- 
ties such as excess free energy per unit area and 
adsorption, and kinetic properties such as their vel- 
ocity in response to a driving force. But APBs also 
have a thickness which tends to infinity at the critical 
point [5]. They are therefore also volumes in which 
there ark composition and order parameter gradients. 
As long as the radii of curvature greatly exceed the 
thickness, both descriptions are feasible and it 
becomes important to learn whether or not they are 
equivalent. 

Near the critical point where the interface is thick 
and the gradients are small it has been shown [S, 73 
that the excess free energy due to this inhomogeneous 

region describes the surface free energy. In this paper 
we will show that the diffusion that results from the 
gradients in the inhomogeneous region leads to a 
translation of the boundary proportional to its mean 
curvature but independent of irs surface fire energy. 
We do not explicitly introduce surface free energy, 
nor for that matter curvature. into the diffusion equa- 
tion, only the gradients in long-range order parameter 
q. Within a curved ‘surface’. the quantity V2q contains 
quantities that originate from APB curvature and 
lead to interfacial motion. Because the surface free 
energy is not a factor in the velocity. we then test 
the predictions of this theory against the phenomeno- 
logical theory in systems which have second-order 
transitions and thus where surface free energy can 
be varied by several orders of magnitude. 

The theoretical treatment that follows was pre- 
sented earlier [9] in abbreviated form. The experi- 
mental data presented here in support of the theory 
are much more extensive and conclusive than in the 
earlier paper. We note that a recent paper by Chan 
[lo] treating a more genera1 problem than that con- 
sidered here obtains theoretical results similar to 
those we present. 

2. DIFFUSE-INTERFACE THEORY 
AND ANTIPHASE 3OUNDARIES 

Since we will treat interface motion in terms of 
a diffusion equation which has been modified to 
account for gradients in the vicinity of coherent inter- 
faces, it is useful to recall some basic results of diffuse- 
interface theory [7]. 

We assume the existence of a function fo, the free 
energy per unit volume of a homogeneous phase which 
is a function of the long-range order parameter q. 
For systems with second-order transitions, a11 scalar 
properties includingf, must be even functions of the 
order parameter, because states with order parameter 
q’ and states with order parameter -rj are identical 
(except for a relative displacement). Below the transi- 
tion temperature,f, has the characteristic double-well 
form indicated in Fig. 1. For such a system the lowest 
energy state is given by 

Hence for a system with a second-order transition, 
the equilibrium order parameters are of equal magni- 
tude and opposite sign (+c and -q. in Fig. 1). The 
APB is simply the interface between two regions, one 
with order parameter +rl, and the other -qr 

Since the interfacial region near an APB comprises 
a volume in which the order parameter has values 
intermediate between +q, and -qc surface excess 
free energy depends on both the details of the func- 
tion f0 and the spatial variation of the order par- 
ameter in the interfacial region. It is customary in 
discussing excess free energy due to interfaces to in- 
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Fig. 1. The free energy per unit yolumefb is an even func- 
tion of long-range order parameter q. Below the critical 
temperature._& has minima at fq,.. && is the increase in 

f, when q differs from v<. 

traduce the function Af, which is simply the free 
energy difference between a homogeneous state of ar- 
bitrary order parameter and that with q = +qr (see 
Fig. 1). For the entire system, the excess free energy 
due to interfaces is given by 

AF = JJJ Afd I;: (3) 

where the function Ajis given by (7) 

Af= AfO + 2++)’ (4) 

and R is calied the gradient energy coefficient. It can 
also be shown [S, 1 l] that the variational derivative 
bAF/61. which is the change in AF when q is varied 
at a point in a system in which 9 is varying spatially, 
is given by 

SAF = SAf, 
-&- --.&- - 2KV”& (5) 

For planar interfaces at equilibrium, the variational 
derivative aAF/sq must vanish everywhere, and AF 
will have its minimum value. That is, 

where g is distance normal to the interface (along the 
gradient of 0). The first integral of equation (6) gives 
the expression for an equilibrium planar interface [7] 

(7) 

Interfaces exist only if h’ is positive. 
Equation (7) is readily integrated by separation of 

variables [7] to give the equilibrium profile of a planar 
interface when the function Al* is known, subject to 
the boundary conditions 4 = rfr at x = X, and 
1 = -Q. at x = - X. Since the equation is invariant 
to translation we choose a particular solution q&g) 
such that n,(O) = 0. By combining equations (3), (4) 
and (7) the excess free energy per unit area 6 of a 
planar interface can be expressed 

(8) 

Also, by using equation (7) to change the integration 
variable in equation (8). 

**‘l. 

G= 
i 

2(~Afb)* ’ dq. (9) 
* -‘Ill 

For a coherent interface in an unstrained cubic lattice. 
c is independent of crystallographic orientation of the 
interface [7]. 

Interfacial thickness is easily estimated if the func- 
tion A& is known. An approximate relationship [7] 
for the APB thickness l over which Sq’?g differs 
appreciably from zero is easily developed from equa- 
tion (7) with the result 

i = ~~~Cti/~A~~~~~~~~. uot 

where (A&.X is the (local) maximum value of AfO 
which occurs at q = 0. 

For an equilibrium planar APB. the solution to 
equation (7) for the profile ‘l&g) is invariant to trans- 
lation. In the following section, we develop a kinetic 
theory for diffusion in the interfaciai region contain- 
ing a curved APB. We investigate the implications 
of the kinetic theory when it is assumed that at some 
instant a gently curved moving boundary has the pro- 

file rip(g). 

3. MICROSCOPIC THEORY FOR 
ANTIPHASE BOUNDARY MOTION 

The kinetic equations of continuous ordering reflect 
the fact that the long-range order parameter n is not 
a conserved quantity. If the free energy is not at a 
minimum with respect to a local variation in ‘I, we 
postulate that there is an immediate change in q given 

by 

where z is a positive kinetic coefficient. Substituting 
equation (5) into (1 i). we obtain for the time-depen- 
dent problem 

(12) 

where M = 2ra has dimensions of a diffusion coeffi- 
cient (m”/s). This non-linear equation is similar to the 
time-dependent GinsburgLandau equation in which 
there is no conservation. It has been discussed by 
Kawasaki [ 123 and Metiu er a!. [13]. Because of the 
ZAQSq term it is non-linear. Its solution will give 
the evolution of the q field for any initial q distribu- 
tion. We now investigate the application of equation 
(12) to the problem of the evolution of an 1 field 
in three dimensions which initially describes a curved 
APB. 

It can be shown from a theorem by Wiener (14) 
that a curved APB obeying equation (12) cannot be 
in equilibrium; that is, there are no time-independent 
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solutions. For a spherical APB there is a simple proof 
which is a coroIIary to one given previously [l 5-J. We 
wish to demonstrate that there are no sphericalfy 
symmetrical solutions to 

with the boundary conditions that at g = 0. 
q = q,. f 0 and dq,/dg = 0: and at g = x, q = -q, 
and dq/dg = 0. if we multiply this equation by dddg 
and integrate term by term we obtain respectively for 
each term 

and 

Because the last integral is always positive, there is 
no solution to equation (13) with these boundary con- 
ditions. The only spherically symmetric time indepen- 
dent solution of equation (12) is p = constant, which 
does not satisfy the boundary conditions below the 
critical temperature. 

We now consider the time dependence of the order 
parameter within a curved APB as given by equation 
(12). We assume that the principal radii of curvature 
of the APB are iarge compared to the equi~brium 
thickness and that initially the normal profile of the 
APB is the same everywhere along the APB. Equation 
(I 2) can be rewritten by expanding the term V2g. Thus 
if t is a unit vector normal to the surfaces of constant 
q, the vector Vq is given by 

(14) 

where L”q/ag is the rate of change of 4 in the direction 
oft. Then we have (see Appendix) 

Since the divergence of a unit normal vector to 
a surface is equal to the negative of the mean curva- 
ture (K, + K,)[16], we have for the kinetic equation 

l In the present treatment we adopt the convention that 
the mean curvature is positive when the surface is concave 
on the side toward which g is directed. Thus a spherical 
domain has its surface normal directed inward. An 
opposite convention was used in reference [Pf. with the 
result that equations (IO) and (11) of that paper have the 
opposite sign to the analogous equations in this paper. 

where K1 and Kz are the principat curvatures of the 
iso-q surfaces.* 

Equation (16) is a general equation governing the 
time-dependent readjustment of q near a curved APB. 
We now investigate the motion of a gently curved 
APB which at some particular time has the profile 
q,(g) at all normal sections. For this case. equation 
(7) is valid, and we obtain for the kinetic equation 

The velocity (&/Zc) of a constant q surface in the 
boundary region is given by 

In the limit in which the principal radii of curvature 
are much greater than the interfacial thickness. the 
curvatures of the various iso-q surfaces can be con- 
sidered to be independent of the vafue of the coor- 
dinate g. Therefore a11 surfaces of constant q at a 
‘point’ in the interface will move with the same vel- 
ocity K given by equations (17) and (1 St as 

v= &l(KI + K,) (19) 

and the assumed interfacial profile q&g) wilt be pre- 
served in the moving interface. 

It is interesting to note at this point that there is 
a significant difference between equation (,19) and the 
early phenomenological theory which states that the 
velocity is proportional to surface free energy multi- 
plied by mean curvature, equation (1). In the present 
development, the surface free energy does not appear 
in the relationship. 

4. MACROSCOPIC THEORY OF 
DOMAIN GROWTH 

Because instantaneous velocities and ~stantaneous 
principal curvatures of a point on the interface are 
difficult to measure, a direct experimental test of 
equation (19) is difficult to devise and execute. WC 
therefore choose to incorporate our result into a 
theory of antiphase domain coarsening. in which 
averages of curvature and velocity are r&ted. 

Starting with the linear relation between local 
velocity and mean curvature. equation (19), and the 
geometrical relation between the change in area 6(dS) 
when an element of area dS of a curved surface moves 
a distance V&t in time 6t 

we obtain after rearrangement and substitution of 
equation (19) 

dS 
- = 
dr 

-M 
f 

(K, + K2)2 d.S. (21, 

in which the time dependence of the experimentall? 
measurable total surface area S appears instead of 
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the local velocities. We define the averaged squars 
mean curvature KX 

. 
K,f, = ((K, 4 K,)‘) = f (K, + K?)‘dS. (22) 

i 

The surface area in a unit volume of specimen. S,. 
then obeys the relation 

dS, -= -. 
dt 

CfK$S,. (13) 

We now consider superlattices having only two 
antiphase domains. The B2 (CsCl) structure is an 
example. If dislocations in the crystal are ignored. 
each domain is multipiy connected [17]. As the 
domain structure coarszns, interconnections are 
broken. and both Ki and S, decrease. If we assume 
that during coarsening the statistical measures of the 
structure change only as a result of the length scale 
changes, then both .Sz and Ki will be proportional 
to the reciprocal of the square of this length scale. 
Hence 

I(: = 4s;. (23) 

where statistical similarity of the structure during 
coarsening implies that Q is a constant. Substituting 
equation (23) into (22) and integrating. we obtain 

[S,(t)] -2 - [s,(o)]- L = 2#Mt, (24) 

where S,(O) is the initial value of S, and S,(t) is the 
valuz at time t. 

5. DISSIPATION IN THE 
MICROSCOPIC THEORY 

As has been noted in the introduction, it is custom- 
ary to view surface 2x22s~ properties (like free energy) 
on a per unit area basis, thus treating the interface 
as a geometrical surface. In such a picture, inter-facial 
motion lowers the free energy of the system by de- 
creasing the surface area of the interfaces. Thus the 
dissipation, or rate of free energy decrease for the sys- 
tem due to interfacial motion is given by 

SF dS 
-;_ 
CC =%. (25) 

In our treatment we did not implicitly define the 
surface tension 2 and the only irreversible process 
was diffusional. Since the calculated velocity does not 
depend on u it becomes important to check whether 
the dissipation due to the diffusion that leads to inter- 
face motion is equal to that given by equation (25). 
The dissipation is given by a volume integral 

ZF 
-= 
SK 

It is interesting to note that the integrand SAF/S~*ZI~,/Z~ 
which is I?AJ/& in a unit volume is not the dissipation 
because there can be a flux of free energy. A moving 
APB. for instance, will ‘carry’ excess free energy along 

with it and in so doing som2 elemrnts of volumz will 
lose and some will gain free energy. 

For the caSe of ‘almost planar’ APBs, whose radii 
of curvature greatly exceed the interfacial thickness. 
equation (17) is valid. Making use of equations (5). 
(15) and (17). equation (26) gives for the dissipation 

?F 
. * -=- 

?t 
2~ C’I -+‘(KL + K,)dz,. i > zg 

(27) 

The volume of intsgration in equation (27) can be 
separated into two parts: one for the antiphase 
domain interiors. and on2 for volumes which com- 
pletely contain the ~nhomogeneous regions where 
there are interfaces. The first part does not contribute 
to the dissipation. as Eq/c’g is zero everywhere within 
the domain interiors. An elsment of volume in th2 
second part can be expressed as 

dc = dg.dS (28) 

where dS is an-element of surface area and g, as 
before, is the distance along the gradient (see Fig. 2). 
Since the interface is thin relative to its radii of curva- 
tures dS and K, and K, are independent of g. and 
the volume integral can be expressed 

where the integration limit 6 is su~ciently large to 
extend into regions on both sides of the interface 
where &7/Q vanishes. From equation (8). the first in- 
tegral in equation (29) is seen to be equal to u, the 
surface free energy. Comparing the second integrand 
with equation (21). we have 

J7 V((K, + KJdS = - ‘$ (30) 

and hence equation (29) becomes 

SF dS -_=fl-_. 
St dt 

Q.E.D. 

The microscopic theory. in which interfacial motion 
as derived from a diffusion equation as not being pro- 
portional to D gives the correct expression for dissipa- 
tion of surface free energy. 

6. SELECTION OF EXPERLMENTAL 
SYSTEM 

Equation (19) is thr central result of the theory for 
APB motion which we wish to test experimentally. 
We have chosen to test the theory by studying the 
coarsening of antiphase domain structures in systems 
that have second-order transitions. Two critical 
aspects of the theory can be tested: first. that equation 
(24) is obeyed for domain coarsening at a fixed tem- 
perature; and second. that over a range of tempera- 
tures where CT can be varied appreciably, the quantity 
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Fig. 2. An element of ‘surface volume in a sheet of finite 
thickness containing a diffuse interface. The volume ele- 
ment dc is equal to dg-dS if the thickness of the inhomo- 
geneous region is small relative to the radii of curvature. 

+M in equation (24) does not have the temperature 
dependence of 6. The surface free energy can be 
varied appreciably in any system in which the order- 
disorder transition is second order. Examples are 
Cu-Zn. Fe-Al and Fe-Si. 

A portion of the Fe-Al coherent phase dia- 
gram[t8. 19,20,21] is reproduced in Fig. 3. The 
phases z:, FeAl, and Fe,Al possess the AZ(b.c.c.), 32 
and DO, structurest, respectively. The FeAl phase is 
stable far from stoichiometry; the excess iron atoms 
are accommodated substitutionally on the aluminum 
sublattice. The x I* FeAl phase transition is second- 
order along a tine in the phase diagram which ter- 
minates at a tricritical point [22] at about 23% AIS 
and 890K; below this temperature the phase change 
is first-order. The FeAl--r FesAl transition is second- 
order until it terminates at a three-phase invariant. 

: 
700 I I I 

20 22 24 26 28 30 

Atom percent alumrum 

Fig. 3. The coherent phase diagram for the Fe-Al system 
c20.2 13. 

t Strukturbericht notation. 
1 All compositions reported in this paper are atomic per- 

cent. 
SAs noted earlier, FesAI specimens received an inter- 

mediate FeAl ordering treatment which was carried out 
at about 900 K for at least 1 h. 

Atomic arrangements and possible APB displace- 
ment vectors in the B3 and DOS structures are shown 
schematically in Fig. 4. In the 82 structure. there is 
only one kind of APB. having a ja,(lll) displace- 
ment vector. in the DOa structure two types of 
displacement vectors produce APBr &(l Ii} and 
jd,( 100). The two types in the DO3 structure can 
be distinguished by dark-field electron microscopy 
[23]. We chose to perform an electron microscope 
study of domain coarsening in an Fe-23YJl alloy 
with FeAl order. and in an Fe-247641 alloy we stud- 
ied domain growth in both the FcAl and Fe,Al 
phases. In the Fe,Al phase, we studied growth of the 
jab{ 100) antiphase domains only. This was accom- 
plished by producing very large j&l If} domains 
in an FeAl ordering treatment prior to heat treatment 
in the Fe,Al region of the phase diagram. A fine-scale 
Fe,Al domain structure consisting of only two 
domains, distinguished by a jab{ 100) displacement, 
forms within each FeAl domain. This fmer domain 
structure is topologically very similar to that in the 
FeAl phase. 

An extensive domain coarsening study in an Fe-Co 
alloy with smaI1 vanadium additions has already been 
made by English [17]. Domain coarsening in an 
Fe-49%Co-2Y;V alloy with B2 order was studied by 
X-ray diffraction. We have chosen to re-examine these 
data in the light of our new theory. although there 
are no data close to the disordering transition. 

7. EXPER~~~ENTA~ TECHSIQUES 

The Fe-Al alloys used in this study were the same 
ones used in an earlier study [24]. Their nominal 
compositions are Fe-23.O%Al and Fe-24.O%Al. The 
following heat treatment sequence was used: homo- 
genization treatment at 1050K or above in an inert 
atmosphere, followed by a brine quench; and a single 
ordering and antiphase domain growth ~eatment~ at 
a temperature below the critical temperature for 
ordering, followed by a brine quench. For the homo- 
genization treatment the material was in rod form, 
having 3 mm dia. For the ordering and domain 
growth treatment, discs 3 mm in dia. and 0.2 mm 
thick were wrapped in stainless steel foil and heat 
treated in molten sait or lead. The temperature of 
the molten bath was typically maintained constant 
to within 1 K during heat treatments. Electron micro- 
scope samples were prepared by electropolisbing the 
3 mm discs using techniques described earlier [24]. 

Heat treatment times used for the single ordering 
and domain growth heat treatments were very much 
greater than the time necessary for complete ordering: 
in this way the term S;‘(O) in equation (24) was made 
negligibly small. The maximum allowable heat treat- 
ment times are determined by the dislocation density 
in the sample, because APBs terminate at dislocations 
having a Burger’s vector which is not a translation 
vector of the superlattice. Domain growth stopped 
when domain size became of the order of the disloca- 
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FeAl Fe,AI 

Fig. 4. Atomic arrangements and possible superlattice displacement vectors for the ordered phases 
FeAl and Fe,AI. Both phases are derivatives of b.c.c. 

tion spacing. Thus for measurements of the kinetics 
of antiphase domain coarsening, we endeavored to 
have the mean linear intercept for APBs be consider- 
ably smaller than the mean distance between disloca- 
tions, or other factors that interfere with the statistical 
simiiarity assumed in equation (23). The Fe,Al 
domain coarsening heat treatments were terminated 
before the Fe,AI domain size reached the prior FeAl 
domain size. 

Measurements of APB surface area per unit volume 
were made on transmission electron micrographs 
using standard quantitative metallographic pro- 
cedures C25.261. For each data point a minimum of 
38 intersections of APBs with the test circle were 
counted, making the sampling error for .S, less than 
10”;. Because micrographs were taken from areas of 
finite specimen thickness, a first-order correction was 
applied in cases where a test line was tangent to (thus 
overlapping the projected image width) an APB in 
a micrograph. In such a case one intersection of the 
test line with the APB was counted. 

An analysis of English’s data for domain growth 
in the Fe-Co-2V alloy requires that a value for S;*(O) 
in equation (24) be taken into account because the 
m~~imum domain sizes achieved in these experiments 
were so small. The following method was used: Eng- 
lish reported domain sizes achieved after different 
heat treatment times for several temperatures, and 
also the time for the samples to reach 90% of the 
equilibrium value of the order parameter at each tem- 
perature. Heat treatment times which were longer 
than this were considered to produce ‘fully’ ordered 
specimens, and these data were used for the present 
domain growth analysis. The longest heat treatments 
at 898, 838, 823 and 798 K were discarded because 
it appeared that there might have been systematic 
errors in the domain size measurements when the 
domain sizes were large. A linear regession analysis 
of D’ vs t (where D is the domain size and t is the 
heat treatment time) for the remaining data at each 
temperature was made. From the slope, a ‘best’ value 
of (.Szr)-’ at each temperature was computed. 

8. EXPERIMENTAL RESULTS AKD 
DISCUSSION 

8.1 Time dependence 

The time dependence of antiphase domain coarsen- 
ing at constant temperature has been extensively in- 
vestigated by others [27-331. We expect a linear rela- 
tionship between time and the square of the domain 
size during the period where equations (1) or (19). 
and equation (23) are valid. Implicit in (1) and (19) 
is an absence of anisotropy, which obviously elimin- 
ates domain coarsening studies in LIZ structures such 
as Cu,Au [30,31-J and Ni,Fe[32] from consider- 
ation. Equation (23) eliminates the initial time period 
during which asymptotic domain shape implied by 
equation (23) is being established. It also eliminates 
the long time period where the domain size is 
approaching the grain or specimen size or the disloca- 
tion spacing, whichever is smallest. 

Since this paper is concerned with the distinction 
between equations (1) and (19), the time dependence 
is not a central issue. Nevertheless it is worthwhile 
to point out that the expected time dependence was 
found both by English [I73 as shown by his Fig. 2. 
and by us in a singie check (Table I, Fe-24D/4 
898 K). The time dependence implies that .Sft is a 
constant in time, but not in temperature. It is equal 
to 2$M if equation (19) is valid, or 24~0 if equation 
(1) is valid. These should differ greatly in their tem- 
perature dependence near the critical point where G 
tends to zero. We note that several workers have 
studied isothermal domain growth in the Fe,AI phase 
experimentally at temperatures below 694 K. 
[27,28,29] where the ordering times are rather long. 
Careful scrutiny of the accompanying data concerning 
the kinetics of the ordering reaction [27,29] show 
that most of the reported data on domain size are 
for heat treatment times shorter than or approxi- 
mately equal to that required for complete ordering. 
For this reason, we do not make use of these results 
in testing our theory. 
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Table I. Antiphase domain growth in Fe-AI and Fe- 
G-X alloys 

T(K) 

Fe-217,;A I, FeA 1 order 

990 
987 
983 
963 
953 
931 
904 
898 
898 
871 

r (s) 1 S:t: - t (m’/s) 

300 
300 

;:; ; :;I” 

300 I.5 x to-:: 
300 1.1 x 1o-*s 
300 1.1 x 10-1s 
600 5.6 x IO-l6 

t200 2.2 x to-‘6 
36X@ 1.1 x to-‘6 
360 1.t x to-‘6 

3600 3.9 x to-” 

Fe-23xAI. FeAi order 

908 
904 
895 
889 
884 
883 2 1 

1200 disordered 
1100 1.3 x lo-l6 
1440 6.9 x 10-l’ 
LZGO 5.4 x lo-” 
1100 1.6 x LO-” 
6ooO 3.6 x to-‘* 

Fe-24”i’AL Fe&l order 0 
768.5 68.Joo 1.0 x lo-l9 
758 86,400 7.1 x to-?* 
748 86.400 6.4 x IO-” 
720 1.64 x lo6 5.8 x 1O-‘o 

Fe-26.5, Fe,At order [40] 
823 1.01 X 10s 2 x to-‘8 

Fe-Co-ZV, FeAl order I: i7f 
898 60 - 240 6.9 x to-” 
853 120 - 950 I.0 x lo-l9 
838 240 - 3200 43 x lo-= 
823 880 - 5500 1:2 x t0-?O 
798 910 - 14,800 3.6 x to-” 

S.2 Temperature dependence 

Our data for domain coarsening in Fe-Al alloys 
is listed in Table 1. In Fig. 5 we show Stt vs tempera- 
ture for these data on an Arrhenius pIot. On such 
a plot the deviations from a straight line demonstrate 
the presence of temperature dependent factors or 
terms other than a simple exp( - Q/RT). 

It is important to establish whether the temperature 
dependence of the data in Fig. 5 are consistent with 
equations (1) or (19). The behavior of Q near the criti- 
cal temperature is known to vary as [(T, - T)/T,I’: 
where y is approximatefy 1.3 [34]. The other domi- 
nant temperatue dependence in M or 1-1 will be due 
to the activation energy of atomic motion and will 
be of the form exp( -Q/RT). Functions of the form 
[(T, - T)/T,l’exp(-Q/R?“). when plotted on Fig. 5, 
will at low temperatures asymptotically approach 
the slope of -Q/R but with 7 > 0 will reach a maxi- 
mum and change siope at approximately 
(T, - Tl/T, = $TC/Q. Near T, the slope will tend to 
X. If the exponent y were negative there would be 
no maximum and the slope would tend to -co, with 
the marked deviation from the Arrhenius plot begin- 
ning at (T, - T)jl; = -yRTJQ. 

The principal temperature dependence of M or p 
should mirror that of diffusion within the APB, which 
is a region of varying degrees of order. Even diffusion 
in homogeneously ordered alloys has an apparently 
variable activation energy due to temperature de- 
pendences of thermodynamic factors and correlation 
factors [35.36-J. In addition it is known that the factor 
K in ICI should have a weak divergence close to 
T proportional to [(T, - 7’+)/7J-“.o’ where the 
exponent is equal to the product of the exponents 
for the pair correlation function and the correlation 
length [37]. Current best theoretical estimates from 
a three-dimensional fsing model are 0.031 and 0.63, 
respectively [38]. 

In addition. if p is inversely proportional to the 
thickness of the APB as has been suggested for some 
kinds of surfaces [2], an additional factor of [(7;. - 
T)/T]“.63 would appear in equation (1) raising the 
temperature exponent to almost 2. 

We now turn to the individual systems for which 
we have listed domain coarsening data in Table 1. 

Domain gro~r~ in Fe-247&I with FeAl order. 
These data span the temperature interval between 990 
and 871 K. The domain structure produced at 990 K 
is indicative of ordering during the quench; thus the 
critical temperature for our 24% alloy is bracketed 
between 987 and 990 K. This alloy is two-phase below 
about 860K (see Fig. 3). The semi-logarithmic plot 
of the data in Fig. 5 shows that to an excellent 
approximation (Sit)-* is an Arrhenius function of 
temperature. 

A regression analysis of these data was performed 
to determine 90% confidence intervals for the appar- 

. 

Fe-Co- 2~. 82 
Ref. 17 

\ 
A 

10-f’; ’ t ’ 1 I 1 I I 
I.10 1.20 t.30 1.40 I.50 

l/T~l03,K-~ 

Fig. 5. Graph of experimental data for antiphase domain 
growth in Fe-Al and Fe-Co-2V alloys. S, is the APB sur- 
face area per unit volume, t is the ordering time and T 

is the ordering temperature. 
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ent sctiv-ation energy Q for the process. The resulting 
interval was 

XO.GOO J mol I Q I 270,OGO f mol. 

Ii :$I: -r was proportional to G multiplied by an 
Arrhenius function having an activation energy of 

235.WO J!mol. then the plot of the data in Fig. 5 
would go through a maximum at about 45 K below 
the critical temperature. Clearly, then. the data do 

not display the temperature dependence of o. 
Domain growrh in Fe-23U$l with FeAl ordrr. 

These data span the temperature range from 908 to 

884 K. The critical temperature for this alloy is found 

experimentally to lie between 904 and 908 K. Below 
about 890 K, electron micrographs show the micro- 

structure to be two-phase. The APBs in these tv.o- 
phase specimens are coated with a distinct layer of 
the disordered phase which is of the order of IOnm 
in thickness. 

Antiphase domain growth in Fe.4 ordered 
Fe-23”&1 is of interest because this composition is 
close to the tricritical point in the phase diagram. 

where the line of higher-order transitions for the 
x -+ FeAl reaction intersects rhe two-phase 3 + Fe.4 
region. At the tricritical point, ?‘fWi&? vanishes in 
the ordered phase [?I]. where c is the composition. 
Therefore. fluctuations in composition in FeAI- 

ordered specimens will be large in the vicinity of the 
tricritical point. Adsorption of excess iron atoms on 
APBs is also likely to occur near the tricritical point 
in the FeAl region of the phase diagram [39]. Since 
our theory only accounts for variations in long-range 
order parameter. it is of interest to see how domain 
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growth in the IZ”i; A! ahoy compares vvith that in 

the 24’0 alloy at the same temperature. The 22, alloy 
is 80 K further from its critical temperature. It is more 

highly ordered and its value of D is at least an order 

of magnitude greater. In Fig 5 it is seen that in the 
temperature range between 895 and 9gJK. domain 
growth occurs nearly as rapidly in the 23°0.M alloy 
as in the Z?q;\l alloy. Electron micrographs of the 
domain structures in the Fe-23”.,;.41 alloy reveal 
quenched-in fluctuations in degree of long-range 
order that are absent in Fe-21?iAI alloys heat treated 
at similar temperatures. as shown in Fig. 6. In addi- 
tion. the APBs themselves are very ragged in the 

former alloy, and smoothly curved in the latter. It 
is interesting that even with these different structures 

and 0-s domain growth in these two alloys occurs 
with comparable speeds. as would be expected from 
equation (19). 

Domain growth in Fe-23931 specimens which are 
two-phase 2 + FeAl is slowed considerably relative 
to single-phase FeAl specimens. Since the z phase 
coats the APBs and differs in composition from the 
ordered phase, this is not surprising. The apparent 
activation energy for domain coarsening in the two- 
phase specimens. as indicated by the slope of the 
curve for the 13”0Al alloy in Fig. 5. is much greater 
than for the single-phase Fe-X”/; allov. 

Donmin growrh in Fe-24P;AI ,vitil Fe,AI order. 

These data span the temperature range between 768 
and 720 K. Only at the lowest temperature is ths 
specimen clearly single-phase Fe,Al. At the other 
temperatures studied. contrast in dark-field electron 
micrographs indicates that there is a layer of disor- 

Fig. 6. Dark-field electron micrographs showing APB structures in (a) Fe-23”,Al and (b) Fs-2l”,,.Al 
after identical ordering treatments at 904K for 1200s. The 2300 alloy is within 4K of its critical 

temperature and shows quenched-in critical fluctuations. 



dered phase at APBs At 755 and 768 K this layer 
is several nm thick. The data point at 770 K lies 
roughly along the extrapolation of the curve for FeAI- 
ordered Fe-24431 alloys in Fig. 5. The value of 
:S:r: - ’ achieved in the two-phase x + Fe,Al speck- 
mens arrears to be relatively insensitive to the heat 
treatment temperature. 

Domain growth near T, in Fe-26.5?& with Fe,Al 
or&. In a unique experiment, Swann et at. [JO] stud- 
ied a specimen held for 28 h in a temperature gradient 
which included T, for their 26.5!& Al alloy. From an 
estimate of the domain size in their pub~shed micro- 
graphs. the data point in Table 1 was determined. 
Their micrographs cover a temperature range of 7 K, 
over which tr should k varied by more than a factor 
of twenty. Even to within a fraction of I K of the 
critical temperature, there was no noticeable trend in 
domain size with temperature. 

Domain growth in Fe-Co-2V wirh FeAl order, The 
temperature dependence of English’s data for Fe- 
Co-2V is evident from Fig. 5. The data display the 
Arrhenius behavior found in the Fe-2-1:; Al alloy 
with FeAl order. The reported activation energy [f7] 
in Fe-Co-2V, 290,ooO J/mol, is somewhat higher than 
that for the Fe-Al afloy. The curve for Fe-Co-2V 
lies approximately two orders of magnitude below the 
curve for Fe-24”/,AI. 

On the basis of these individual experimental 
results we conclude that APB velocity is not governed 
by equation (1). Whether it is quantitativ~iy governed 
by equation (19) must await an experimentat measure- 
ment of the geometrical factor (b and the kinetic 
factor x which, as defined in equation (1 I), is a 
phenomenological parameter which can be measured 
in diffusion or ordering experiments that are com- 
pletely independent of any domain wall problems. 

9. CRITIQUE 

As our new theory now stands, its applicability to 
antiphase domain coarsening in real systems is 
limited primarily by three constraints. First, the new 
theory is strictly valid only for phases in which the 
orderdisorder reaction is higher than first-order. We 
note that Chan [lo] considered interfacia1 motion in 
systems which did not have symmetric (about r~ = 0) 
free energy functions, but the application of Chart’s 
results to APB motion in such systems has not.been 
made. Second, the new theory makes use of diffuse- 
interface theory in a way that makes the results valid 
only for systems in which the APB energy is isotropic. 
Third, when more than one kind of APB is possible, 
as in Cu,Au where both ‘conservative’ and non-con- 
servative types can exist, equation (23) implies that 
the proportion of each type be constant during 
domain coarsening. In Au,Cu there is evidence that 
this latter constraint is not true [41]. 

The phenomenological statement in equation (1) 
linearly relates interfacial velocity to driving force. 
Non-linear relations have also been proposed [3,42]. 

As the beginning point for our theoreti&& treatment 
of the motion of a curved APB. we have chosen a 
different phenomenological expression-a linear r&a- 
tion between the rate or order change and the driving 
force for ordering. equation (11 j. Our resuiting equa- 
tion for interfasial velocity. equation 119). is not a 
relationship of velocity to driving force. since driving 
force must include (r. Nonetheless, it is gratifying to 
note that the diffusional dissipation of free energy of 
an APB obeying equation (19) is exactly equal to the 
available driving force. 

This paper concludes that equation (I) is not uni- 
versally valid. There are, however. clearly cases where 
it is valid. In the case of a curved soap film. the pres- 
sure difference in the gases leads to gas transpiration 
rates proportional to the driving force and, inciden- 
tally, like Turnbull’s theory [2] inversely proportional 
to the thickness. The soap film theory, like the theor? 
of Li for the motion of a cylindrical tilt boundary [41] 
and the theory of the present paper, is derived from 
more basic phenomenological theories which in turn 
can each be tested in independent experiments. In Li‘s 
case, he is invoking the force-velocity relation on the 
individual dislocations; in our case we invoke ordsr- 
ing kinetics in a region that has not achieved equihb- 
rium order. At present we seem to have theories that 
are linearly and non-linearly dependent in curvature, 
that are independent. linearly dependent and non- 
linearly dependent on o, and that are independent 
or linearly dependent on the reciprocal of the thick- 
ness. If there is a universal law relating velocity to 
curvature, it does not seem apparent at this time. 
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APPENDIX 

Dicergence of a Gradient Vrcror in 
Orrhoyonal Currilinear Coordinates 

A general expression for the divergence of a gradient 
vector to a scalar field t~(q,, qz. qJ) in orthogonal curvi- 
linear coordinates is given [43]. Consider the t7 field to 
be comprised of constant r~ surfaces. An orthogonal curvi- 
linear coordinate system may be defined such that one 
coordinate 4, is everywhere normal to the iso7 surfaces. 
,At any point the other two axes q2 and qJ are necessarily 
tangent to an iso-rl surface. Then we have 

v’q = (A-1) 

where (h,, h2, h,) is the metric which relates differential 
distances in the coordinate system to differential incre- 
ments of the coordinate axes. In particular, if the distance 
along the axis 4, is measured by a parameter 9. then 

dy = h, dq, 

and equation (A-l) can be expressed 

(A-2) 

(A-3) 

Expanding equation (A-3) and making use of (A-2) gives 
the result 

In the same notation the divergence of a unit normal g to 
an iso-q surface is given by [43] 

1 v.g = - 
[ 1 $h,h,) . 

hi&h, 24, 
(A-5) 

Equation (15) thus follows from equations (A-4) and (A-5). 


