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Abstract—The thermodynamics of stressed crystals that can change phase and composition is examined
with particular attention to hypotheses used and approximations made. Bulk and surface conditions are
obtained and for each of them practical expressions are given in terms of experimentally measurable
quantities. The concept of open-system elastic constants leads to the reformulation of internal elasto-
chemical equilibrium problems into purely elastic problems, whose solutions are then used to compute
the composition distribution. The atmosphere around a dislocation in a cubic crystal is one of several
examples that are completely worked out. The effects of vacancies, and their equilibrium within a solid
andnwmrfacummmﬂymminedmdpmousformuluarefoundtobeﬁrstotduappmn
mations. Consequences of the boundary equations that govern phase changes are studied with several
examples. Finally, problems connected with diffusional kinetics and diffusional creep are discussed.

Résumé—Nous étudions, la thermodynamique de cristaux sous contrainte qui peuvent changer de phase
et de composition, en prétant particuliérement attention aux hypothéses utilisées et aux approximations
faites. Nousobunomdeleondmomdmskmuémumuufetensurfaeeetpourchmd entr'elles
nous donnons des expressions pratiques en fonction de quantités mesurables expérimentalement. Le
concept de constantes élastiques d'un systéme ouvert conduit & reformuler les problémes d’équilibre
élastochimique interne en problémes purement éleastiques; on utilise alors leurs solutions pour calculer
la répartition des compositions. L’'atmosphére autour d'une dislocation dans un cristal cubique est I'un
des exemples qui sont entiérement résolus. Nous examinons d’une maniére les effets des lacunes et leur
équilibre critique & l'intérieur d’un solide et au voisinage de la surface et nous montrons que des formules
antérieures sont des approximations du premier ordre. Nous étudions les conséquences des équations aux
limites qui gouvernent les changements de phases, avec plusieurs exemples. Enfin, nous discutons des
problémes liés & Ia cinétique de diffusion et au fluage de diffusion.

Zusammenfassung—Das thermodynamische Verhalten von verspannten Kristallen, bei denen sich Phase
und Zusammensetzung &ndern k3nnen, wurde insbesondere im Hinblick auf die ben(itzten Hypothesen
und Annahmen untersucht. Volumen- und Oberfiichenbedingungen werden ermittelt. Fiir jede Bedingung
werden praktische Ausdriicke mit upenmentell meBbaren Gréﬁenangegeben Das Konzept der elas-
tischen Konstanten offener Systeme filhrt zu einer neuen Formulierung der inneren clastochemischen
Gleichgewichtsporbleme mit rein elastischen Problemen, mit deren Lisungen dann die Verteilung der
Zusammensetzung berechnet wird. Verschiedene Beispicle werden ausfithrlich dargesteilt, darunter die
Wolke um eine Versetzung in einem kubischen Kristall. Der Einfluf der Loerstellen, ihr Gleichgewicht
im Innern eines FestkSrpers und in der Niihe der Oberfliche werden kritisch untersucht, Frither erhaltene
Formeln stellen sich als Niherungen erster Ordnung heraus. Die Folgerungen aus den Gleichungen fiir
die Grenzen, die die Phasenidnderungen beschreiben, werden anhand einiger Beispiele behandelt. Zuletzt
werden Fragen im Zusammenhang mit Diffusionskinetik und -kriechen diskutiert.

1. INTRODUCTION
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The literature of the thermodynamics of solids spans
more than a century and has appeared in many fields.
It has been marked by long controversies, some even
regarding the very existence of equilibrium under
conditions of nonhydrostatic stress. The results have
been used in applications to global equilibrium prob-
lems, and as local equilibrium conditions in non-
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equilibrium problems of diffusion, creep, electro-
chemistry and phase changes. The formulations have
been gradually generalized to include multi-
component anisotropic solids, containing vacancies
and other defects, that are nonhydrostatically and
nonuniformly stressed. Considerable attention has
been given to multi-phase systems and to conditions
of equilibrium at interfaces between phases that are
in mechanical and thermal contact, that can exchange
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matter and under conditions of slip or no slip (inco-
herent and coherent resp.). In view of the importance
of the field, a clarification of the controversies seems
in order. :

Thermodynamics lends itself to many formulations
based on different definitions, conventions and ‘no-
tations. When properly done, all these formulations
should identify the same measurable quantities and
give identical relationships among them. Discrep-
ancies arise when the formulations differ in assimp-
tions that they make about the behaviour of matter.
There are also many simplifications that may not be
valid or necessary. Invalid assumptions have been
made about the laws of thermodynamics and about
the conditions for equilibrium. We will examine the
main formulations for their assumptions to find their
range of validity. Whenever possible we will identify
the most general formulation and show. how the other
formulations follow as special cases, compare predic-
tions, and identify sources of discrepancies. But since
general formulations are often more cumbersome to
apply, we will examine a set of simple applications to
display how one uses the main results in this field.

It may be worthwhile to categorize broadly the
main controversies and to illustrate with one simple
example how they arise. These are: (1) the question
of the existence of equilibrium if diffusion is permit-
ted; (2) the various methods of distinguishing solids
from fluids in a formulation. These involve models of
solids and constraints on the variations that can
occur in solids; (3) the definitions of chemical poten-
tial of species inside solids, since in some formu-
lations one cannot arbitrarily add atoms to the
interior of a crystal without removing other atoms or
destroying vacancies; (4) how one formulates the
conditions for equilibrium when the familiar mini-
mum Gibbs-free energy which works only for con-
stant hydrostatic pressure is inapplicable, and when
so many different chemical potential conventions
have been proposed; and (5) clear distinctions be-
tween the accretions that can occur at surfaces and at
interior defects such as climbing dislocations, and the
addition of atoms to sites inside of crystals.

In addition, there are a variety of simplifications
with obvious limitations on the applicability of the
resuits. Among them is one, homogeneity, which has
lead to major misconceptions. Many situations will
lead to homogeneous systems at equilibrium, but if
one requires in tests for equilibrium that all variations
keep the system homogeneous, one may constrain the
system unnecessarily.

With these controversies in mind, let us examine
the simple example of a solid cylinder containing one
or more components and a straight axial dislocation.
Let us first ignore surface effects and let the cylinder
be infinite in all directions. Let there be no restriction
on diffusion. If the solid is crystalline, an equilibrium
will be reached with the dislocation retained in which
the solid is inhomogeneously and nonhydrostatically
stressed. If the solid is multicomponent, it will also be
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compositionally inhomogeneous. The system can
reach an equilibrium which of course means that all
diffusional flow has ceased, in spite of the shear
stresses and the heterogeneity.,

If the cylinder had been a highly viscous liquid in
which the dislocation had been introduced by a
cutting, displacing and welding procedure, the dis-
location would disappear on annealing. Equilibrium
would not be compatible with shear stress or hetero-
geneity. It is apparent that crystailinity imposes re-
strictions on the variations that lead to a different
type of equilibrium.

Even in a one component solid, there will be a
gradient in the Helmholtz-free energy density at
equilibrium. Any definition of a chemical potential,
that for a one-component system reduces to the local
free energy per atom, cannot subsequently be used by
asserting that such chemical potentials must be con-
stant at equilibriurh or, if not constant, will lead to
diffusional fluxes. Care must be exercised in the
definition of chemical potentials in one or multi-
component systems to ensure that they are useful.

The constraint which crystallinity imposes in this
example is that some of the atoms cannot be moved
at will without a counterflux of 'some other species,
including vacancies, to take their place in the crystal
structure. At the surface and at the core of dis-
locations capable of climbing, this constraint does
not apply and atoms can be inserted or removed at
will

To illustrate the importance of separate equi-
librium conditions at surfaces, let the cylinder in our
example have a finite radius and permit surface
rearrangement. An equilibrium' shape could be
reached where transfer of small amounts of any
species of atoms from one surface location to another
does not change the appropriate free energy. This
would be a thermodynamically stationary state in
which all fluxes would cease, but it would be meta-
stable or possibly unstable equilibrium because mov-
ing the dislocation out of the cylinder would lead to
a lowered cnergy.

2. WHAT IS A SOLID

Formulations of thermodynamics differ consid-
erably in. how the essential aspects of solidity are
represented mathematically. Many authors pur-
porting to deal specifically with solids, reach conclu-
sions that are the same as for very viscous liquids that
may take a long time to reach an equilibrium that
does not support shears.

Various models, composed of springs and dash-
pots, have been proposed to represent the viscoelastic
behavior of matter. Whereas the Maxwell model
creeps continuously under load, the
Meyer-Kelvin-Voigt [1] solid reaches a mechanical
equilibrium when the load is entirely carried by the
spring. The elements of these solids do not dissolve
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or diffuse, and Gibbs [2] devised a model of a solid
that did both.

Gibbs introduced the idea of a solid component
which does not diffuse. Like Meyer-Kelvin—Voigt's
solid, it can deform eclastically but it always retains its
connectivity. In addition Gibbs considered surfaces,
where he did permit the solid to grow by accretion or
to shrink by vaporization, melting or dissolution into
contacting fluids. He also incorporated the concept of
a fluid component which can diffuse and distort the
solid. He fully developed the thermodynamic proper-
ties of such a solid, including its equilibria and
revealed a variety of surprising properties. Since the
solid component was not involved in any chemical
variations except at the surface, there was no need to
define a chemical potential in the solid. When the
solid was equilibrated with a fluid, the chemical
potential of this solid component in the fluid was
readily calculated. One important result was that the
chemical potential in the saturated fluids in contact
with a homogeneously stressed solid depends on the
orientation of the surface. There is thus not only no
need to define a chemical potential of the solid
component, but it does not seem to be-definable. The
fluid component on the other hand has a defined
chemical potential that is constant at equilibrium
throughout all phases even if they are hetero-
geneously stressed. Gibbs' solid is therefore quite
active chemically and yet it is different from a fluid.
The key was the solid component. Even though this
component can dissolve, essential solid properties are
obtained.

Gibbs was strongly influenced by the law of
definite proportions and required his solid com-
ponent to be a single element or a stoichiometric
compound. If it was a compound, the chemical
potential in the saturated fluids is calculated even if
the compound dissociates or reacts with the solvent.
Modern examples of Gibbs solids are polymer fibers
which also can absorb solvent molecules, silicate
glasses in which the silicate network is the solid
component while modifier ions can diffuse about. A
very good example of the kind of equilibrium Gibbs
was able to calculate is the bending of a damp
wooden beam in which the water redistributes at
equilibrium and affects the compliance. Li et al. [3]
pointed out that mobile interstitials in metals at
temperatures where the substitutional atoms did not
move was a valid metallurgical example of a Gibbs
solid with a fluid component. An example of the
equilibria of a dissolving Gibbs solid occurs in

1The term interstitial compound is an unfortunate term in
which the interstitials are merely small atoms fully
occupying a site in the structure [8]. The usual definition
of interstitials, that these are atoms occupying sites that
are mostly empty, has important consequences in ther-
modynamic formulations. An empty substitutional site
is called a vacancy, while empty interstitial sites are
usually ignored, since their concentration or activity in
e.g. the law of mass action hardly differs from unity.
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stressed electrodes. The equations predict the effect of
elastic stress on the electrode potential [4].

Solid state diffusion of every component is counter
to the strict definition of Gibbs® solid component. As
a result most thermodynamic formulations that per-
mit unrestricted diffusion to take place do not ascribe
to the solid any property that differs from a viscous
fluid. As the example in the introduction points out,
unrestricted diffusion consistent with our knowledge
of the solid does permit new kinds of equilibria.

Gibbs’ solid component, because it did not diffuse,
served as network for defining displacement and
hence strain, as well as the local composition of the
fluid component. The local energy and entropy den-
sity were functions of the local strain and com-
position. What was needed was a network which
continued to define unambiguously the same place in
the solid even if all atoms were capable of diffusing.
In crystalline structures, the lattice serves this func-
tion, and a thermodynamics has been developed.
Robin [5] has simply let the lattice itself be the solid
component, and has found that ‘“component
differences” become the exact analogues of Gibbs
fluid components. Instead of modifying Gibbs’ con-
cept we have defined a network solid as one in which
there is an unambiguous method of locating the same
place after diffusion, and where the thermodynamic
properties are functions of the strain and local com-
position defined by this network [6]. Gibbs solid
component is one example of such a network; the
lattice is another example.

Most of our work has been with simple crystal
structures in which there is one type of substitutional
site and one type of interstitial site. Atoms of a given
species are assumed to be either substitutional or
interstitial. The substitutional sites served as a net-
work. Bravais solids where lattice sites are occupied
by substitutional atoms are an example. Recently
attention has focused on species which could occupy
both interstitial or substitutional sites [7], and this has
led to the generalization of structures in which many
different sites are occupied in a unit cell and where a
particular species can occupy several sites. One can
even include the case where no species occupies the
origin in the unit cell which serves as network marker.

In crystal structures, the network imposes what we
have called the network restriction. A site exists,
regardless of the species that occupies it, or even if it
is empty. Atoms exchange among sites

A,+BJ=AJ+Bl (2.1)

where I and J are different types of sites: sites that are
mostly filled are occupied by what are called substi-
tutional atoms, while sites that are mostly vacant are
occupied by what are called intersitial atoms.{

Vacancies are capable of diffusing or reacting with
atoms on other sites. Letting B be a vacancy, equa-
tion (2.1) becomes

VI+AJ=AI+ VJ (2.2)
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where I and J are different sites. If 7 is an interstitial
site, this can also be written

A=A+ V, @3)

One of the main resuits of the network restriction
is that there is no need to define separate chemical
potentials of individual network species. Within the
crystal only their differences are ever needed.

The network is unambiguously defined only as
long as the structure is not severely distorted. The
network can be modified at surfaces and dislocations
and these have led to special equilibrium conditions.
Of particular interest is the fact that there are
differences between solid-fluid interfaces and
solid-solid interfaces equilibrium conditions. Two
types of solid-solid boundaries have been treated
[10]; incoherent interfaces where there are two inde-
pendent networks with no relationship between them
and coherent interfaces where there is an exact corre-
spondence between network sites in the two crystals,
and a connectivity across the interface that survives
the distortions of a phase change that transfers sites
from one crystal to the other. Thus many restrictions
in Gibbs’ solid have been eliminated. Modern under-
standing of solid solutions, crystalline defects and
diffusion have been incorporated. In addition,
solid-solid equilibria, interfaces and phase changes
have been considered.

3. DERIVATIONS OF USABLE EQUILIBRIUM
CONDITIONS

3.1. Thermodynamic formulation

The basic two laws of thermodynamics are quite
general and applicable not only to all equilibrium
conditions but also in specifying what cannot happen
in nonequilibrium conditions. They often are cum-
bersome to use, but from them special conditions
have been derived (such as constant temperature at
equilibrium) that are easier to apply. In addition,
there are certain restrictions or constraints that occur
commonly that permit even simpler specialized but
rigorously applicable procedures to be developed. A
good example is the Gibbs free energy. Under the
special restriction that temperature, presssure, and
the mass of various species be held constant, it can
be shown that the laws of thermodyanimcs reduce to
the simple condition that the Gibbs free energy
monotonically decreases to a minimum. For these
common restrictions, it is no longer necessary to start
from the basic laws. For equilibrium, one begins with
the minimization of Gibbs free energy knowing that
this is fully equivalent to the basic laws. The pro-
cedure is a general one, subject only to the easily
verifiable restrictions on temperature, pressure, and
mass. The restrictions are important. When tem-
perature decreases (as in an endothermic reaction
held adiabatically), pressure increases or mass is
added, the Gibbs free energy can increase and has lost
its usefulness as a simple condition for equilibrium.
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Whenever we encounter new restrictions or con-
straints, it is necessary to return to the two basic laws
to find new conditions for equilibrium that are gen-
eral, subject only to the restrictions or constraints. It
is important that the restrictions or constraints are
verifiable and that they be general enough to include
many important situations, but not so general as to
lead to cumbersome conditions. The procedures for
finding simpler equilibrium conditions subject to new
restrictions or constraints are straightforward and if
done with mathematical rigor, nced only be done
once. Applications then follow from these derived
conditions. The derivation often identifies the useful
free energy. It is dangerous to assert conditions for
equilibrium under new restrictions (some type of free
energy to be minimized or some potential to be
constant) without a derivation that begins with the
basic two laws.

There are various derivations in the literature.
They differ in the model of “what is a solid” ex-
pressed in terms of restrictions on possible variations.
They also differ on whether or not they require
homogeneity. They differ on whether they begin with
the basic two laws, or with some derived law.

It is not difficult to start with the basic laws used
by Gibbs; “For the equilibrium of any isolated
system, it is necessary and sufficient that in all
possible variations in the state of the system which do
not alter its entropy, the variation of its energy shall
either vanish or be positive” [9, p. 56). It is quite
straightforward to permit the system to be hetero-
geneous.

Since the general state of a solid is heterogeneous,
the energy, entropy and mass of its various com-
ponents will be integrals over the volume and the
minimization procedure is done by standard vari-
ational calculus. Such a formulation permits the solid
to change its shape by elastic deformation or by a
process of network modification which we will call
cither accretion, dissolution or phase change.

These methods of variational calculus were used by
Gibbs every time the system under consideration was
not homogeneous; the influence of gravity [9, p. 144],
stressed solids [2], surfaces [9,p.238], multiphase
systems [9, p. 64], etc. A variational statement of the
first and second laws of thermodynamics for the
multicomponent network solid has been carried out
[6]. It very neatly produces all the conditions for
equilibrium; mechanical, thermal and chemical, in the
bulk and at the interfaces. There is usually no need
to assume linearity, ideality, or isotropy. The derived
equations identify and define important functions
and usually can be manipulated to suggest methods
of measurement.

The imposed constraints are incorporated into the
formulation as Lagrange multipliers and this intro-
duces quantities which must be constant throughout
the system at equilibrium. Since sites in a unit cell or
a network exist whether occupied by atoms or not,
vacancies appear as a conserved species within a
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network. We formulated three different rules for the
transfer of material across an interface [10]. Network
sites could be added or subtracted to the solid at
solid-fluid and at incoherent solid—solid interfaces.
At a coherent solid-solid interface, a single network
describes both solids, and during phase changes, sites
are transferred but do not change their relative
location.

3.2. State variables and notations

The procedure outlined can be followed once the
state variables have been identified. With network
solids, a strain can be defined. The energy density is
assumed to be a function of that strain (either the
usual small strain, or the deformation gradient to
include the cases of large strains), of the entropy
density, and of the density of the various atomic or
molecular species.

The choice of the strain or deformation gradient as
a state variable that describes the mechanical state of
the solid by no means exhausts the possible choices.
Continuum mechanicians and others [11-14] have
described much more complex solids, where higher
gradients of displacement or composition come in the
picture. We feel that our choice is sufficient to
describe many metallurgical materials. In any case,
thermodynamics uses as input data the results of
measurements of mechanical and thermal properties,
and inadequate specification of state variables would
become apparent.

Only small strain theory will be explicitly used
here. The relations that are valid without this
approximation have been derived [10, 15}, and effects
that might modify the small strain results will be
mentioned and discussed in the course of this article.

The reference state for strain in the solid is quite
arbitrary. It can be at zero stress, or under hydro-
static pressure, and at any arbitrary constant com-
position. It merely serves to identify the same point
x’ in a solid after composition change and strain. For
many elastic energy equations, a convenient reference
state is zero stress. There are also useful standard
states for thermodynamic quantities. These are often
at hydrostatic stress that is not zero and at definite
compositions. As a result there are advantages to be
flexible about the reference state for strain. We will
try to point out in each application which reference
state we have used.

When the point x’ of a solid is displaced by u, the
small strain is defined byt

tAll vectors and tensors are expressed in terms of com-
ponents with respect to an orthonormal axis system.
Small subscripts like { and j are understood to have value
1, 2 or 3. Repeated indices are understood to be summed
(Einstein convention) and subscripts preceded by a
comma are derivatives, e.g.

Ey=E\,+ Ejp+ Ey
u; ;= Ou,[0x;.

INTERACTIONS OF COMPOSITION AND STRESS IN CRYSTALLINE SOLIDS 335

Ey= Yo, +uy). G.1)

A change of reference state from x’ to x"(x’) where
x" — x’ = pleads in the small strain approximation to
a new strain Ej given by

(3.2)

The density of energy, entropy and component /
are respectively denoted by &, s, p,. Because the
elementary volume of solid is affected by its state of
strain, densities per unit volume in the deformed state
always contain a strain effect. As such they are not
very convenient to use. Much better variables are the
densities per unit volume in the reference state. These
will be noted by primed symbols. The relations
between primed and unprimed densities are

Ej=E;+Yv,,+uv,).

e'fe=s"ls =pilp1=ps/po (3.3)
=V, /Vi=1+E, (3.4)

where p, is the molar density of lattice sites, and its
inverse V, is the molar volume of lattice sites.

All of our chemical densities p, and p; will be
atomic or molar densities (moles/volume). This is
especially preferred to mass densities when we con-
sider vacancies as a species. It is useful to introduce
dimensionless composition variables

cr=pilps=P1lpo-

This is the classical mole fraction for single site
substitutional alloys. For an interstitial alloy with no
vacancies on the substitutional sites, ¢, given above is
the molal composition. The mole fraction ¢, is then

Er=pi/(Po+p)=c;[(1+¢;)
which reduces to ¢, at small concentrations.

3.3. Lagrange multipliers

From the entropy constraint comes the standard
condition that the temperature is everywhere equal to
a Lagrange multiplier, and is therefore constant. It
allows us to define a Helmholtz free energy density by
a Legendre transform

[ =e ~0s (3.5)

which we subsequently use because it is more con-
venient in many practical applications.

From the conservation of mass conditions come
Lagrange multipliers that differ substantially from
standard fluid equilibrium, a direct consequence of
the network constraint. As with fluids, conservation
of N chemical components lead to N Lagrange
multipliers that are constants at equilibrium.
Whereas for fluids they can be identified with N
chemical potentials, for a system consisting of a
network solid containing N substitutional species
only N — 1 quantities can be identified with physical
processes replacing one specie with another on a site.
The quantities thus identified with Lagrange multi-
pliers differences we have called diffusion potentials.
The notation is M, where K is the dependent
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species. Vacancies are considered 2 species that can
be ignored in some applications. Because of their
definition as Lagrange multipliers, the M,,, like the
temperature are constants, and take on a precise local
meaning everywhere within the system

M, = constant everywhere within the system.
=(1/po)@f " ocis, &, (3.6)
Since the ¢, are not independent, we have introdiiced
the differential operator
(a/ aczx) = (a/ 8‘1):; wix (3 '7)

for a unit composition increase of species /, an equal
decrease in species X, holding the composition of all
other substitutional species on that site fixed. For
binaries we drop the subscripts and adopt the con-
vention ¢ = ¢, and (8/dc,y) = (8/dc).

From this definition we have

My"'MJx"l"Mn"o (3.8)
Mu= “Mn; Muﬂo. (3.9)

In the case of equilibrium with a fluid, M, is equal
to the difference in chemical potential of 7 and X in
the fluid

My =pf - pk. (3.109)
If the vacancy is chosen as X, we have
M, =pu} (3.11)

It might seem natural to use the M,,, and keep the
formalism of hydrostatic thermodynamics. This has
been done in a number of formulations (7). However,
it has practical drawbacks (see Section 5.5), and we
have found it preferable to keep the flexibility of
choice for the dependent species K.

The Nth Lagrange multiplier which we will call u,
can not be identified in many problems. It is elimin-
ated from all equilibrium calculations for .internal
equilibrium of a crystal away from surfaces and
dislocations that can climb. It also is climinated from
all equilibrium calculations at coherent boundaries.
Only in fluids, at incoherent boundaries and climb-
able dislocations can we identify y, with the chemical
potential of the K specie.

The chemical potentials of interstitials are constant
and equal to the chemical potentials of the corre-
sponding species in the other phases

M,=pf. (3.1

We shall see in section 5 where multisite solids are
considered, that there is no need to differentiate
between substitutional and interstitial sites. An in-
crease of composition of the interstitial species 7/,
holding the composition of all other interstitial spe-
cies fixed, results in an equivalent decrease of va-
cancies on interstitial sites. But unlike vacancies on
substitutional sites, vacancies on interstitial sites al-
ways have a concentration close to the total number
of possible sites and can be dropped from consid-

eration. In order to standardize and simplify the
notation, we also call these chemical potentials
diffusion potentials, and in order to simplify the
rntation in the various expressions M, is understood
to represent all diffusion potentials.

The restriction in the number of potentials that are
necessary to calculate an equilibrium is a direct
consequence of the crystalline nature of the solid and
therefore should apply to the same solid under hydro-
static stress. It can be shown (Appendix 1) that in this
case, the previous equations together with the bound-
ary conditions to be discussed thereafter, are strictly
equivalent to the standard conditions for equilibrium
between fluids.

3.4. Mechanical equilibrium

The variational calculus gives us [6, 10] the very
standard form of the mechanical equilibrium equa-
tion. It states that the divergence of the stress tensor
is zero

This equation is also true for the large strain case, but
the derivative is with. respect to variables x rather
than x’, a distinction that is not made in the small
strain approximation. Large strain forms involving x’
have been obtained [15].

3.5. Interface conditions

Along each interface, there are conditions for
mechanical equilibrium, and a condition for phase
change equilibrium. They both depend on the nature
of this interface.

3.5.1, Solid—-fluid interfaces. For solid-fluid inter-
faces, the mechanical equations state that the normal
is a principal direction of stress. The principal value
associated with it is equal in magnitude to the
pressure in the liquid .and opposite in sign. The
pressure is here the classical thermodynamic pressure,
which is positive in fluids, and the convention for
stress is such that the stress corresponding to a
tension is positive.

The phase change equation can be written

f—Zpipy=—P (3.14)

where uf are the chemical potentials in the fluid,
while the p, and f pertain to the solid. Because of the
(N — 1) equalities (3.10)
f—= Y Mypy=pkpo=—P. (3.15)
iInk

Because My, = 0 the summation over all species is
the same as the summation over all species but X, We
can therefore drop the restriction and adopt the
notation that ¥ without any qualification means
summation over all species .

To simplify notation it is convenient to define the
 function as

w=f—~ZMyp;— pxpo (3.16)
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where u, is the Lagrange multiplier associated with
the Kth species. At this stage neither @ nor uy have
physical meaning. Once all the equilibrium equations
are written they will have a specific meaning, or are
eliminated. In a fluid o is equal to minus the pressure,
and thus because u, = p% equation (3.15) could be
rewritten

G)"=€0L

G.17

We should emphasize that these equations are
between unprimed quantities, that are usually not
convenient to use for solids. The conversion follows
equations (3.4) and gives

w”= —P(1 + Ey). (3.18)

3.5.2. Incoherent interfaces. Along an incoherent
solid-solid boundary, the equilibrium equations are

Tynf =ow"n} (3.19)
Tint=w’n! (3.20)
0% = G.21)

where n{ (resp. nf) are the components of the normal
to the interface oriented from x to B (resp. f to «).
They all contain @ and hence the Lagrange multiplier
Bx-

Equations (3.19) and (3.20) imply that the normal
is a principal stress axis and that in this case  is the
value of that principal stress. Multiplication of (3.19)
by n¥ and summation over i gives

@® = Tynin;. (3.22)

From (3.20) we can obtain a similar expression for
?. Therefore w* and w” are identified for this
problem.

Using the definition of @ we obtain

ue=VE(f* X Mypl— TQ nf "f)- (3.23)

Substituting this value of u, in (3.21) and (3.19) gives
the equivalent system of equations

tx=Vo(f*—Z My p}— Tyninj)
= V§(f? -~ Z Mup!— Tinin}) (3.24)
Tn = —Thn! = Thninfn;. (3.25)

Equations (3.24) and (3.25) contain only known
quantities and are the usable ones. Equation (3.23)
can be interpreted as a definition for the chemical
potential of the K species and it is constant along the
interface. Along an incoherent interface we can then
calculate a chemical potential for every specie, some-
thing which is not possible at any other location
within the bulk of the a and § phase, Let us note that
each side of equation (3:24) depends on what specie
is chosen for K. Because the expression

L] [
szx(%—:%) =2fo(’»‘7 —cf)
o P

is independent of K, the equation itself is independent
of this choice. A comparison of (3.23) and (3.15)
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shows the similarities between solid—fluid and inco-
herent solid~-solid equilibria.

3.5.3. Coherent solid interfaces. In a coherent
solid—solid equilibrium, the mechanical boundary

conditions
Tinj=—Tin! (3.26)

indicate that the tractions (but not necessarily the
stress tensor) are continuous across the interface, If
the same reference state for strain is chosen for « and
8 the phase change equation (cf. Appendix 2) reads
Vof* = Mpct+ Vo(—~Tynfns + 200 Tyni*ng

= Vafp”' z M[KC;’*“ V{,(—Tﬁn,"n}‘

+ 208 Thn*n}t) (3.27)
where Q, is the small rotation tensor
Q= Huy,~u,). (3.28)

For this type of interface equilibrium, the Lagrange
multiplier u, has disappeared from the equations. In
contrast to the two cases treated before, no definition
of individual chemical potential for each specie arises,
even at the interface. As we will see none are needed
to solve problems. This is a direct consequence of the
restrictions in a fully coherent phase change, where
no network site is created or destroyed.

4. THE DATA BASE

We have identified a number of important thermo-
dynamic quantities that determine the state of a
gystem, and a number of functions of these state
variables that enter into the equations of equilibrium.
We now examine how one might determine these
quantities from the usual quantities that are mea-
sured and available in compilations. They turn out to
be identical to those used in ordinary solution ther-
modynamics and elasticity.

4.1. Geometric variables

The lattice constants are readily determined non-
linear functions of composition, temperature and
stress, From the lattice constants in the reference
state we can compute pg. From a comparison of the
lattice shape in the actual state and the reference
state, we can compute the strain or, if the strain is
large, the deformation gradient. Since the actual state
and the reference state are usually chosen to be at the
same temperature but not necessarily at the same
composition, the strain E, is a sum of a contribution
due to composition change with no change in stress,

4> and one due to stress. The general case when
neither contribution is isotropic has been treated [15].
The tensor Ej is subject to the same crystal symmetry
restrictions as the thermal expansion tensor [17]. For
the present we will concentrate mostly on the iso-
tropic case. Defining k such that

Ey=k3, @1
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and assuming Hooke’s law of linear elasticity we can
write

1+v
E,= (k -= T,.) S+ T (42
The dilatation E,, is given by
Eg=1=21, +3% @.3)

In cubic crystals, Ej is also isotropic, so that formula
(4.1) is still valid.

The constant pg appears repeatedly in various
formulas because elastic energy naturally appears as
energy per unit volume, whereas other energies will
be per mole. p; is the conversion factor that trans-
forms one into the other. Its inverse V3 is the molar
volume of the lattice sites. Combining (3.3), (3.4) and
(4.3) we have for isotropic solids

1-2v
VolVa=polpo=1+ 5 Tu+3k (44

The derivative of Ej with respect to composition in

binary alloys also occurs commonly

ny=dEj/de. 4.5)
For systems with orthogonal axes
1y = (8lna,/dc)(no summation) (4.6)

where the g; are the lattice parameters. When Ej is
isotropic

Ny= (dk/dc)&y = 'l‘sy- @7
In binary isotropic and cubic systems # is also related
to the partial molar volumes

n =(V,— P)/3Vs.

If n is constant

= (c — XV, = D)3V, 4.9)
where ¢, is the composition of the reference state
chosen to measure the strain. It is to be emphasized

that the anisotropic and nonlinear versions of these
equations are readily available (15).

4.8)

4.2. Thermochemical quantities
The two important quantities to be determined are
f* and M,,. There are several convenient paths of
integration from a hydrostatic state, where these
quantities can be determined with standard thermo-
dynamic methods, to the actual stressed state. We
beégin with the differential of f*
df’ =T, dE;—s'd0 + p; T Myxde,.  (4.10)
The function ¢’, defined by a Legendre transform
¢’ =1 —T,E, 4.11)
proves to be useful. Its differential
d¢’ = —E;dT; ~5'd0 + po L M pdc, (4.12)
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permits us to deduce the following Maxwell relation

—po(OM /0 Tu)q = (0Eyf0cix)y,.  (4.13)
Hooke’s law at constant composition is
= Cy(Ey— E5)) 4.19
or
=Ej+ STy 4.15)

where the Cj, are moduli of elasticity, and the S,
compliances. Both are composition and temperature
dependent. From (4.15) we deduce

3E, as,) (as,,,)
-_—1 = +|=—= )Ty 4.16
(aCII:)r., (a‘-’lx denx M “.16)

Chemical potentials are assumed known at a hydro-
static pressure P, and composition ¢, ¢;, . - .
M’K(P,Cl,Cz, .o .) = [ll(P,C",Cz, e .)
- ux(P,eyy63,....). (4.17)

It is customary to define standard chemical potentials
49 and activity coefficients such that

#i(P,c) = pj(P) + RO Iny, (4.18)

where 7, is chosen for convenience, depending on the
problem, that it approaches 1 either for dilute or
concentrated solution. Vacancy potentials also are fit
to this convention. Since u,(P,¢,) = 0, where ¢, is the
equilibrium vacancy concentration at P

uS(P)=—ROIny,s, (4.19)

where 7, is the vacancy activity coefficient. If it is
constant, the chemical potential of vacancies under

pressure P can also be written

w,(P,¢c,)= RO In(c,/c,). (4.20)

The expressions for the chemical potentials are

introduced into equation (4.13) and the resulting

expression integrated along a constant composition
path to the stress T,. For a binary solution

Mya(Ty¢) = p3(P) — L
(Ty.¢) = u3(P) — u3(P)+ RO ln‘)r,(l-c)
V;ds,
- V;,n,,T,,—f—a-‘i' T,Ty
14
+22 VoS pa _ N P @21

2 de

If the solid is isotropic, this expression becomes
M (Ty,c) = pi(P) — u‘z’(P)

+ RO In

— VonT,
=g~ YT

Vo d
+7d_( )( Tu)

Vod (1 +v »
2°dc( = )T”Ty 3VinP

Wed [1-2) ,
R ()R

(4.22)



LARCHE and CAHN:

These expressions contain terms both lincar and
quadratic in stress. They simplify considerably when
the elastic coefficients are not composition de-
pendent. Equation (4.22) for instance becomes

M(Ty,c) = pi(P) — p3(P) + RO In

e
7l ~¢)
~ Ven(Tu+ 3P). (4.23)

To obtain £’ we calculate ¢’ with equation (4.12). It
is first integrated along a path of constant com-
position, from pressure P to stress 7}, Using Hooke’s
law (4.15), this gives

$(Tync) — ¢(Py¢) = =L Spu Ty Tyy— E5y Ty
+5.S'WP’-— P {4.249)
and using (4.11)
FT@pe)=f'(Poc) =1 STy Tu—} S P2,
4.25)

Since under hydrostatic stress, the familiar liquid
thermodynamics is valid, the Helmholtz free energy
J'(P,¢) is known. It may be obtained from the more
commonly tabulated molar Gibbs free energy G,, by
subtracting PV, and dividing by V3. This gives
S(P,c) = psGn— Ppo/pe. 4.26)
Since
Polpo='+Eu=1+E, —SuP (427)

one obtains, after replacement of G, by its value as
a function of composition

S(P,e) = po{clui(P) + RO Inyic]
+ (1 = c)[u3(P) + RO Inp,(1 — )]}
—P(1 + Eg) + Sy P. {4.28)
Combination of (4.25) and (4.28) gives the final result
F(Ty,c) = po{clu}(P) + R Iny,c]
+(1 = ¢)[ud(P)+ RO In (1 — c)}}
- P(1 + E})
+4 STy Tu—1 Spu P2
For an isotropic solid, this relation becomes
J'(Ty.e) = pifeui(P) + R In yc]
+ (1= c)[3(P) + RO In y(1 — )]}

(4.29)

—P( +3k)—%%(7’“)’

l +v 3(1 —2v)
+5E i3
Because it always appears in the boundary condi-
tions, the expression for the quantity Vaf’ — M, is
useful. Combining (4.22) and (4.30) we get, in the
isotropic case

P.  (4.30)
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Vof — Myc = u3(P)+ R8 Iny,(1 —¢)
+ V{,[—P(! +3k)

14v
2E

31

(T,,,,) + =TT,

- 2v)
PZ
2E

+on(Ty +3P)—

( )(m ?

-+
N W erx-— Ni—-'
Q‘Im- &la c"|°‘

@31

o

When the elastic coefficients are not composition
dependent, this becomes

VoS = Myc = p3(P) + R Iny,(1 —¢)
+ V{,[—P(I + 3k)

l+v

_ 3(1 -2v)

2E
+en(Tu +3P)). 4.32)

In a crystal of arbitrary symmetry, this expression is

Vif' —Myc = p§(P)+ RO Iny,(1~c)

P2

+ V{,[—P(l +Eg)

1 1
+'2‘SwT”Tu"“2‘SmPZ + Cﬂ”Ty

cdS,
+3 d”"Tf,Tu-i-cnuP

1 45 o,
=35 P ] 4.33)

Expressions (4.21) to (4.23) apply.to substitutional
binary solutions. For interstitial binary solutions the
integration along a constant composition path fromi
the hydrostatic stress to the stress T, using (4.13)
gives the clastic terms identical to those in (4.21) to
(4.23), Because there is no network constraint or
interstitial concentration we use (3.12) for M, and
obtain for dilute interstitial solutions

M(T;,c)= #3(P)+ RO lny,c ~ Von, T,

1. ,dS,
EET
VodSps 5y
2 dc
Equations for the special cases of isotropy and con-

stant clastic coefficients are like (4.34) except that the
clastic terms take the forms they have in (4.22) and

Ty Tu - Va’h* P

+=2 (4.34)
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(4.23). We will see in section 5.7 that there is no need
to distinguish between interstitial and substitutional
solutions. Had we chosen the vacancy on the inter-
stitial site as component 2 we could have obtained
(4.34) directly from (4.21) by noting that u=0 for
the vacancy.

5. INTERNAL EQUILIBRIUM

The study of internal equilibrium requires the
simultaneous solution of the equations of elasticity
and those of chemical equilibrium. The method we
have found useful recognizes that the strain is a
function of stress and composition. But the com-
position at equilibrium with a given diffusion poten-
tial is determined by the local stress alone. Thus the
strain at a given diffusion potential is a function of
stress alone. If we obtain this stress-strain function,
we can solve these problems as if they were ordinary
elastic problems, without any further regard to
chemical problems whose effects are now implicitly
accounted for.

There are several derivations. The simplest and
most easily generalized for large strains and nonlinear
effects parallels in its first steps the thermodynamic
methods used to derive the relationships between
isentropic (adiabatic) and isothermal elasticity. In the
first section we review the main results and then apply
them to various problems.

5.1. Open-system elastic constants

After a straightforward manipulation of partial
derivatives, the following expression, valid for a
two-component solid is obtained (Appendix 3)

) -{3) ()
Y ={=_) ¢V —_— 5.1
(az;,),,z Ty M\ 5 ) 1)

Making the usual small strain approximations, and
an expansion of the strain around T, =0 produces
the constant chemical-potential form of Hooke’s law

Ey=S3uTy. (5.2)

The coefficients of the stress have been called open-
system compliances, S*, and are related to the con-
stant composition compliances § by

M,
8= Sp+ Vingnu / (—é?‘!)r (5.3)

where (0M,,/0c)r,_ is evaluated at T,,, =0 and where
all the quantities except Vg are functions of ¢. The
second order terms that are neglected in this expan-
sion_have been discussed [15]. Introducing the no-

tation
_ (oM,
Y =ps (—a;—)n_o 54
ie.
poRE diny,
iy = 14— .
Ix 4 ( + alnc) -5

for interstitial solutions, and

Uy p,R@( 61117,)

= c(l—c¢) dnc

for substitutional binary solutions, the open systems
compliances, for isotropic solids are given by

E*=E[(1 + xn°E)
v* = (v — *E)/(1 + xn°E)
(K~Y)* =301 = 2v*)/E* = K~ + 9qn?
G*=G (5.6)

where K is the bulk modulus and G the shear
modulus.

Far away from spinodals and critical points, the
expression (5.3) is not very senmsitive to the com-
position. It is then appropriate to use the values of
the open-system constants, at a composition near the
average composition of the specimen. The elastic
coefficients become constants, and the elastic part of
the problem is now independent of the compositional
part. For a closed system, the obvious choice is the
average composition. For a system that is in contact
with a chemical reservoir, the composition at equi-
librium under zero stress is usually a good choice. In
the case of a very high average stress, the equlibrium
composition at some high pressure may be more
appropriate. With such replacement of the com-
position in (5.3) or (5.4) to (5.6), all the solutions of
ordinary linear elasticity become directly applicable
to elasto-chemical problems.

5.2, Finding the composition field

Finally even though we have eliminated the com-
position to solve the elastochemical problem, the
composition field is easily obtained from the solution.
At constant diffusion potential, composition is
uniquely determined by the local stress. For a binary
for example (4.21) can be solved for the composition

he
7l ~¢)

where

= constant x exp[elastic terms/R0] (5.7)

constant = exp[{M;, — (u} — u)}/RO).  (5.8)

A useful linearized version of equation (5.7) is
obtained by linearizing the clastic terms of that
equation or of (4.21) to (4.23) and differentiating at
constant M,,, P, and 8. Using (5.5) this gives

defy = —n,dT, (5.9)

or

c=co+ Ty (5.10)

where ¢, is a constant of integration and is the
composition that an element of unstressed solid
would have if it were in equilibrium with the system.
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For the isotropic case this becomes

¢ —¢cg=NT. (5.11)

Had we linearized about a hydrostatic pressure P the
result would have been

¢ = c(P) = xn(Ty + 3P). (5.12)

There are several ways of evaluating the constants
in (5.8) or (5.10), but basically they are all methods
of evaluating M,, at equilibrium. If the system is in
contact with a materials reservoir with specified M,
the answer is straightforward. If it is equilibrated with
a fluid phase, equation (3.10) applies. If the com-
position and stress are specified at some point in the
system, equation (4.21) can be used. This occurs in
some problems where almost all of the solid acts as
a reservoir in the sense that most of it is homogeneous
in composition and stress, and that transfer of com-
ponents to small inhomogeneously stressed parts of
the system hardly affects the composition of the
homogeneous part.

For the typical case of a closed heterogeneous
system the overall composition is specified. At equi-
librium the diffusion potentials become a constant
whose value must be determined as part of the
solution. This is a standard procedure in the method
of Lagrange multipliers. Equation (5.7) is a one-
parameter family of composition profiles. For each
assumed value of the parameter M,,, we can deter-
mine the overall composition by integration. The one
that satisfies the specified composition is the solution
and this fixes M,,.

This procedure is simplified if linearization of (5.7)
to give (5.10) is valid, and used to obtain ¢, from
which we can obtain M,,. We use the conservation of
mass for the entire solid of total volume Q' in the
reference state and average composition ¢

.[ cdV' =Q¢ (5.13)
o4
Substituting (5.10) we obtain
o=¢~2M| T,dv (5.14)
@ Jo

which can be substituted into (4.21) to (4.23) to
obtain M,,. Once ¢, is known we have the com-
position profile of the inhomogeneously stressed sys-
tem

1

c—¢ =xny(Ty—EJTUdV'> (5.15)

or
c—C=my(Ty-T,)

where T, is a component of the volume averaged
stress, and x and #, are evaluated at ¢. This is the
linearized equation for composition in a closed sys-
tem.
5.3. Internal equilibrium of vacancies

We consider a single component solid with va-
cancies as the second component. If, as is often
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assumed [18], there is no relaxation around a single
vacancy at any level of applied stress and the elastic
constants do not depend on vacancy concentrations,
the diffusion potential M,,, given by equation (4.23),
is a function of composition only. Therefore a con-
stant diffusion potential would imply a vacancy com-
position field that is constant regardless of the stress
distribution. Even with these assumptions we will
later see (section 6.2) that the local equilibrium
vacancy concentration at the interface does depend
on stress at the interface.

A more realistic model assumes relaxation. Let the
partial molar volume of vacancies differ from the
molar volume of the species. If the elastic constants
do not depend on vacancy concentration, equation
(4.23) yields with P =0

Co

M, =M% +R01n ~(P,= P)Tu/3. (5.16)

l—g¢,

At equilibrium, this is constant, leading to a vacancy
concentration field given by (with ¢, < 1)

¢, = C,exp (KS_;EZ Tu)

where ¢, is the equilibrium concentration of vacancies
at P =0.

(5.17)

5.4. Dislocation atmospheres

5.4.1. Atmosphere around a dislocation in an iso-
tropic solid. Let us consider a substitutional two-
component infinite isotropic solid, with a negligible
concentration of vacancies. A straight edge dis-
location with a Burgers vector of magnitude b is
located in the solid along the z axis.. If the sizes of
components 1 and 2 are different, there will be a
segregation around the dislocation. This problem has
been solved, considering one of the atoms as a defect
[19]. This means that its concentration has to be
relatively small. Indeed in many cases only vacancies
or interstitials are considered. These are unnecessary
restrictions as we shall see.

Far from the dislocation, the solid is at com-
position ¢,, and stress-free. Therefore we can think of
this far-away solid as a chemical reservoir. The solid
with the dislocation and its atmosphere has the same
diffusion potential as the stress-free solid at ¢,. For
convenience, we choose the solid at ¢, as the reference
for strain. Since we have shown that under small
strain approximation, the elastic part of the problem
is equivalent to a constant composition problem with
the open-system elastic coefficients, equation (5.6),
the stress field, with the atmosphere present, is given
by

T = _ —Gbsing
T (I — v
_ Gbceoso
" 2n(1—v¥)r
—Gbv*sin g
Te=—a = (5.18)
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and the composition field is, to a first approximation,

using equations (5.11) and (5.18)

{1+ v*)Gbsing
(1—v*mr

(these equations correct an algebraic error in Ref [6]).

Replacing the open systems constant by their values,
we finally obtain

Ac=—ym {5.19)

T =T = —Gb(1 + n*E)sing
T 2t —v + 2By
T = Gbh(1 + yn*E)cos ¢
" 2l —v 4+ 2*E)
—Gb(v — yn’E)sin ¢
x(l —v + 2x%E)r
—xn(1 +v)Gb sing
a(l —v +2m*E)

where the subscript 0 has been dropped from all the
variables since all of them have to be evaluatéd at
composition ¢, including the Burgers vector mag-
nitude. In our case (substitutional solution), x is given
by equation (5.5) and # by (4.7) and (4.8).

We first note that, since x is positive for a stable
solid solution, the stresses are decreased, by a fraction
of the order of yn?E. This factor tends to zero for
highly dilute solutions. But for a concentrated solu-
tion, it can be significant. Taking an ideal solution,
=05 p;=10moim~%, RO =10*Jmol”’,
E = 10" Nm=-?, and n = 0.1 gives a value of 0.25 for
«n*E. This change in the stress field, which is readily
obtained here, has, to our knowledge, not been
calculated within the framework of the defects model.

At low concentration, the following approximation
holds

T,=

Ac =

(5.20)

X = cVo/RO
and
~ )
"= ""3Re

and we can neglect 2yn*E in comparison to (1 —v)
obtaining thereby the classical point-defect solution

—Co(p; - Vz)(l + V)Gb sin¢

Ac = 3nRO(1 —v)r

But it is to be emphasized that the composition
equation (5.7) can be solved exactly by numerical
methods. Our result is more general in that it includes
in a self-consistent way all the interactions that may
be present, specifically in concentrated solutions,
between the defects themselves and the defects and
the matrix. In particular, it takes into account the
nonideality of the solid solutions in a phenom-
enological way that is model independent. If no
measured value is available for the activity coefficient
function y,, specific statistical mechanical models
[20~22] can of course be used and the result directly
introduced in the value of x.
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5.4.2. Dislocation atmosphere in a cubic crystal.
Analytic expressions are rarely known for the elastic
fields caused by point-forces in a medium of arbitrary
symmetry [23]. Hence the usual integral methods for
calculating atmospheres cannot be used. On the other
hand the introduction of open system compliances is
not restricted to isotropic solids, and formulas have
been developed for the most general elastic solids
[15]. Because the elastic field has been found for
several cases of dislocations in these nonisotropic
single-component crystals, the concept is most valu-
able.

By a simple substitution of the open-system elastic
coefficients, the same elastic calculations are valid for
solid solutions equilibrated to constant diffusion po-
tentials. The composition fields are given to first
order by equation (5.10) or more exactly from the
solution of equation (5.7). We shall treat the case of
a [111] screw dislocation in a cubic crystal. The x; axis
is along the dislocation, the x, axis is along [110] and
x, along [112]. The stress field has been given by
Steeds [24]. Because the equations are rather long, we
shall derive only the composition field. In cubic
crystals, the change in composition with stress is
given to first order by

52D

as for the isotropic case. At constant composition, T},
has the value

Ac =T,

T e Gbdsy sin 3¢
B4 anr(1 — 6 cos* 3)(1 — )28 (35, ~ 25)
(5:22)

with
S =81, = 512~ Suf2
a factor which is zero for isotropic crystals
5= 28?
" 9(s1y + 54 + 55/6)

and the s, are the standard two indices compliances,
referred to the cube axis. For cubic crystals, the open
system compliances are

53 =s;+m* iand j<3 (5.23)
si=s; fand j>3
therefore
§*=S
and

o = _______________2s2 .
s + 5+ 55/6)
Combining (5.21), (5.22), and (5.23), we obtain the
composition field
_ Ganbd *sy, sin 3¢
4. /27r(1 —8* cos? 3¢ )(1 — 5*)'2S(3s% — 285)
(5.24)

Ac
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where all the constants that depend on the material
have to be taken at ¢,, the composition far away from
the dislocation. This result, which is obtained by a
simple algebraic manipulation has, to our knowledge,
never been obtained by other methods.

5.4.3. Dislocation atmospheres: nonlinear effects. At
constant diffusion potentials, when the composition
changes from the unstressed to the stressed state are
small, we have shown that the strain is linearly related
to the stress, as in the usual theory of elasticity. But
this law has a smaller range of applicability than in
the constant composition case. The thermodynamics
of solutions introduce nonlinear terms in the
stress—strain law. When the strain is expanded as a
function of stress, we have identified four second-
order effects [15]: () nonlinear stress—strain laws at
constant composition, due, for instance, to re-
arrangement of interstitial atoms into sites that be-
come nonequivalent under stress; (b) change of com-
pliances with composition; (c) deviation from
Vegard's law; (d) nonlinearity of the solution thermo-
dynamics. The first two effects have been considered
within the framework of defects theories. It does not
seem that the two others have been treated {25]. Since
solution of nonlinear elastic problems have been
found [26], they can be used, with the second-order
open-system compliances, to find second-order effects
on dislocation atmospheres.

3.5, Internal equilibrium of a binary substitutional solid
with vacancies

We have seen in Section 4 that, for a binary
substitutional solid with vacancies, in equilibrium
with a fluid, the following is true

M;,':ﬂ{'
M, = p3

(5.25)
(5.26)

where u¥ and ut are the chemical potentials of species

1 and 2 in the fluid, It seemed therefore rather natural
to use these equations, that have the same form as
those for fluid equilibrium, rather than the math-
ematically equivalent

My =pt—pf (5.27)

(5.28)

From a theoretical point of view, there is no
difference. Although these equations are valid for
nonlinear inhomogeneous and anisotropic solids, we
give as an example expressions for constant elastic
coefficients and isotropy

M!2 = _#%~

v -
M, =M, + RO mz—‘z-‘-m-‘g—ﬁ& Ty (529
A
Mo=My+ROWID T2 T2,
11 n+ ﬂyzcz 3V; Tu. (5.30)

The concentration of vacancies is small compared to
¢, and ¢;. Measurement of c,, 7, and P, are therefore
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subject to potentially large errors. These affect equa-
tions (5.25), (5.26), and (5.28) but not (5.27). For
computational purposes, it is then better to use the
second formulation. Besides, if we are only interested
in the composition ¢, and ¢,, we can neglect the
vacancies and use only equation (5.30) for equi-
librium calculations. By keeping the flexibility of
choice for the dependent substitutional species, we
can eliminate species whose concentration has been
found to have a negligible effect on the chemical
behavior of the solid solutions, including vacancies,
even if they are essential to the mechanisms by which
chemical equilibrium is attained.

5.6. Multisite solids

Up to this point, we have focused our attention to
crystalline solids that are most common in the metal-
lurgical world, where there is only oné substitutional
site, that is highly occupied, and an interstitial site
that is lightly occupied. But in many instances crys-
tals have several nonequivalent sites, occupied by
mixed species of atoms or molecules or vacancies.
The fraction of empty sites can vary for each type of
site from 0 to 1. In the description we can or course
eliminate sites that are and remain empty. They don’t
contribute to the energy or entropy of the system. For
all other sites, we can describe their status by the
densities of the atoms and the densities of vacancies
on each of them. As for the substitutional site with
which we have been dealing in the preceding section,
there will be a constraint condition: the total density
of atoms and vacancies is constant for each site.
Using the method described in section 4, it can be
shown that at equilibrium, the diffusion potentials are
constant, equal on all sites, and equal to the corre-
sponding difference in chemical potentials when
equilibrated with a fluid

(5.31)

where the superscripts label the different sites. There
are cases where there is no species K that is present
on all sites, or where it is not convenient to use the
same K-species for all sites. The formulas can easily
be transformed, using equations (3.8) and (3.9)

MIK+MXJSMH' (5»32)

If a species is not present on one site, it cannot be
used as the dependent species on that site, and its
diffusion potential equation drops from the set of
equations (5.31). The vacancies are to be considered
as a species, since an exchange of an i-site vacancy for
a j-site vacancy produces no change of state, exactly
as the exchange of a K atom on a i-site with a K atom
on a j-site.

Equations (5.31) govern the equilibrium par-
titioning of f atoms on the different sites. If only the
total density is of interest, one can interpret equations
(5.31) differently. They state that along an equi-
librium path, the Helmoltz free energy density is only
a function of the total density of the (N — 1) indepen-

o 2 ] L L
MIK—MIK...=M“=}¢;‘]IK
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dent species.t Calling M, the common value of the
diffusion potential for each site, we have

df’ =5d6 + T M dp;. (5.33)

Equation (5.33) shows that the formulas developed in
the preceding section can also be applied, with the
total density of each species as composition variables
{or the ratio p}/p;, po being a chosen total density,
like the total density of sites, or the density of sites
I, (I =1,...,v) whatever is most useful). _
In the equations used in Section 5, the interstitial
site was sparsely occupied, and we used equation
(4.34) for the diffusion potential of this species. But
rigorously its diffusion potential is M,,, where v are
the vacancies on interstitial sites
My, = M2, — R8 In 2! 4 elastic terms. (5.34)

ylcl
If there are v interstitial sites per substitutional site,
¥,¢, tends to one as ¢, tends to v. Therefore, in dilute
interstitial solutions
M, = ¥+ R8 Iny,c, + elasticterms  (5.35)

which is the expression we have used. In almost all
cases, site occupancy is either high or low. Phase
transformations occur before intermediate occupancy
is reached. But hydrogen in metals is an important
case where the occupancy can span all the possible
composition field without a phase change. In such
cascs, the rigorous diffusion potential has to be used.
Equations for the internal equilibrium between sites
have been given, with the preceding approximation
by Li et al. [27]. It is clear that there is no need to
make the distinction between interstitial and substi-
tutional atoms. A single formalism with multisite
occupation is possible, and avoids confusion that can
arise if a specie occupies both substitutional and
interstitial sites [7]. For most metallurgical examples
species do seem to occupy only one site.

We next turn to phase change equilibrium at
solid-fluid interfaces. The case of a stoichiometric
compound already illustrates the principal features.
Let species 4 completely occupy & equivalent sites o
per unit cefl, species Bb equivalent sites B, etc.
Because there is only one species on each site we
cannot define a diffusion potential. In the liquid each
specics has a well defined chemical potential. The
equation for equilibrium is

S~ @ps+bpf+cpé.. Jpo=~P (5.36)

where p, is the total density of sites in a unit cell. This
is a straightforward expression of chemical equi-
librium for the dissolution of the compound
A,B,C,..., which continues to hold under stress. It

tWhen a function F(x,,x,,...,x,) is such that, for all
values of the x,

OF|dx, = OF [0xy= ... .= 0F|dx,
then F is a function only of the sum (X, -+ x,+...x,).

is Gibbs' equation (393) [9] since he quite clearly
considered solids to be compounds (CP) and defined
a singie chemical potential 4 for them in the fluid
even if they dissociated

(5.37)

In defining 4 there is a rigid adherence to a law of
definite proportions dictated by the numbers of
equivalent sites fully occupied in the crystal structure.

If we now let the o sites be occupied by several
species I, J, K including vacancies we obtain diffusion
potentials. Choosing species X as the counterspecies
the equilibrium equation is

S = PoE Mygci — poapg+bujg.. )= —P. (538)

The term in the parenthesis is the chemical potential
for the stoichiometric compound K, B,C,... There
are obvious advantages to choosing K to be the major
species on site o If site « is a lightly occupied
interstitial site the compound is B,C, . .. and yuy is set
10 zero.

If several sites are each occupied by more than one
species the equations are not changed if a different
species is chosen as counter species for each site, If
the same species is cliosen as counter species of
several sites the terms combine. In particular if the
same counter species K is used f-r all sites we obtain

pF =au,+bug+cpc+...

f’*Po}’:ZMmC?“(""b*'c*'- . YxPo,
) =—P. (539

Summing over all sites we obtain
f""ponGCl—(a'*'b"}'C"}". . .)[lxpo= - P (5-40)

This is identical with equation (3.15) if we redefine p,
in terms of atom site density instead of unit cell
densities.

6. INTERFACE EQUILIBRIA

In this section we illustrate various aspects of
equilibria involving three kinds of interfaces that
stressed solids can have but ignoring capillary effects.
Most of our examples will be uniformly stressed, and
have only as many components as are necessary o
illustrate the points to be made. When the solid is
multicomponent and nonuniformly stressed, the inte-
rior equilibria can be solved by the methods of the
open-system elastic constants of the previous section.
This converts a multicomponent elastic and thermo-
chemical problem into an elastic problem alone,
although possibly a nonlinear one.

6.1. Change of solubility with stress

Our first example is a Gibbs solid—a pure sub-
stance for instance—in equilibrium at pressure P with
a fluid in which it can dissolve along a flat interface.
Forces are applied to the solid so that its state of
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stress is now 7;. To maintain mechanical equi-
librium, one of the principal values of T}, is — P, and
the corresponding principal direction of stress is
normal to the fluid-solid interface. What is the
change in the chemical potential of the fluid necessary
to keep the system in chemical equilibrium? The only
equation, besides mechanical equation, is the bound-
ary conditions, equation (3.18) which becomcs for a
one component linear elastic solid
[ =utpo=—P( +Ey). 6.1
Following Gibbs [9, p. 196, we compare this equi-
librium with that of the same solid phase equilibrated
under hydrostatic stress with the same fluid. Using
bars to indicate the values of the thermodynamic
quantities in this equilibrium we write
J' = itpy= — P(1 + Ey).
Subtracting these two equations, we obtain
S =F + P(Ey— En) = piu — i*)  (6.3)
(f’ —f") is the clastic energy stored in the solid on
going from pressure P to stress state T, and
P(Ey ~ E,) is the work done on the solid by the
liquid. The Lh.s. of equation (6.3) is thus the work
that has to be done to bring a hydrostatically stressed
solid to the nonhydrostatic state while surrounded by
the liquid. It is necessarily positive, and the fluid in
equilibrium with a nonhydrostatically stressed solid is
always supersaturated with respect to precipitating a
hydrostatically stressed solid by the amount given in
(6.3). If we let ¢, and ¢, be the concentration of the
solid component in the fluid in equilibrium with
respect to the nonhydrostatically and hydrostatically
stressed solid, we can use equation (4.30) to obtain

6.2)

po RO ln(?l.‘-'l./fz.‘-'l.) =
1 + v
( -2v) ., 2v
+ 2E P 7 TuP. (64

Let t,, t,, and — P be the principal values of stress.
If the change in solubility is small, and the solution
is dilute or ideal, we get

CL - C,_
& 2p, Ro E
+2(1 —v)(t, + 4+ P)P). 6.5

Because —1 < v < 1/2, the right hand side of equa-
tion (6.5) is positive, except of course when
t) =t = — P, where it is zero. The solubility of the
solid in the liquid is always increased when a stress
is applied to the solid. The solution is supersaturated
with respect to a hydrostatically stressed solid at
pressure P, a classical result that was derived by
Gibbs.

We now turn to the case of a two-component solid
in equilibrium with a melt. We have two conditions
from equilibrium

— [t} 4+ 22y,

S —utpi—pipa=—P(l + Ey) (6.6)

My =pi— 6.7

We compare again to the equilibrium of the solid
with the fluid under pressure P.

I —atpi—azei=—-PU+Ey) (68
My=gi— (6.9)

Subtraction of (6.8) from (6.6) and (6.9) from (6.7)
gives two equations for the change of composition in
the fluid and the solid to maintain equilibrium under
stress.

Assuming for simplicity (i) P =0, (ii) terminal
solutions (i.c. both solid and liquid are dilute solu-
tions), (iii) no change in elastic coefficients with
composition, we get

, 1+v
R01n<1 )+V[ -—(t|+t2)2+"'2?'
x (14 ) +en(t, + t,)]= RO —;‘) (6.10)
— &
c(l -7 .,
RO In ,(1 ") —Van(@, + 1)
e (1-¢,)
= RO In =, 6.11
(l—-c.) ©.11)

As usual, this system of equations can be solved
numerically, or, if the changes are small, we can
linearize the equations, and solve with Cramer’s rule.

6.2. Vacancies equilibrium in a one component solid
Consider a cylinder of isotropic hydrostatically
stressed solid in contact with a fluid in which it
cannot dissolve at pressure P, with an equilibrium
concentration of vacancies ¢,. A load is applied that
produces a stress whose components are T,,,
T, = Ty. We want to calculate the equilibrium con-
centration of vacancies along the surfaces S, and S,.
Since the components of the solid don’t appear in the
fluid, there is no equation like (3.12). But the phase
change equation (3.15) applies, and in this case since
Uy is identified with ul =0, the equation becomes
of —(1 — )M\, = —PVi(1+ Ey) (6.12)

where — P is the normal traction. Let us first adopt
Herring’s simplifying assumptions (a) that there is no
volume relaxation around vacancies, (b) that there is
no change in elastic constants with vacancy concen-

tration, and (c) that the solid obeys the law of dilute
solutions. Using (4.32) we get (i) under pressure P

p(PY+RIIng, =0 (6.13)
(ii) under stress, along S,

W(P)+ RO Inc: + V:,[—P 1y £QT, + Ty
2V)P’]

u)] (6.14)

l+v

(2T2 + T3,)+

=V Tn[
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(iif) under stress, along S,

pe(P)+R0Inc,+ V;[-—P _Ly (2T,,+ T.P
(1 —2v) ,
Zor

-V;T,,[1+l;v 2 ,,)]. (6.15)

It is quite clear that ¢} and ¢} are different, unless
T,, = T,, i.e. when the system is under hydrostatic
stress. Since we have assumed no relaxation around
vacancies, =0, and therefore according to equation
(4.23), M,, is different on S, and S,. As a result, a
vacancy flux will appear. This is further discussed in
section 8.4,

Making the further assumption that P =0, and
neglecting quadratic terms in stress, subtraction of
(6.13) from (6.14) and (6.15) gives

In(c}/é,) = VT, /RO
In(c3/é,) = V,T../RO. (6.16)

This is Herring’s [18, 28] well known formula: to first
order in stress, only the normal pressure affects the
equilibrium vacancy concentration at an interface.
We will get the same results, whether this interface is
a solid-fluid interface or an incoherent solid-solid
interface.

The order of magnitude of the quadratic terms can
be easily obtained by making T,, =0 so that linear
terms disappear in (6.15). We obtain, along S,

In(c;/¢,) = V4T3 |2E R6. 6.17)

Within the small strain approximation, this effect is
less than 19 of the effect on S,. But there are cases
where it might be significant (cf. section 8.4).
Conditions (a), (b) and (c) can casily be removed
through the use of the general formulas developed in
section 4. As an example we treat the case where there
is a volume relaxation around a vacancy. Using
(4.32), assuming P =0, and following the above
procedure, we get, to first order in stress

+-t ery 413+ X2

In(c;/é,) =+

V L4
70 [ w—nelRT, + T,,)] (6.18)

In(e2/&) = 25 (T, = neiCT, + Tk (619
The corrective term, proportional to », contains the
trace of the stress tensor. As such other components
than the normal pressure influence the vacancy con-
centration at a particular interface, if elastic relax-
ation around vacancies are taken into account.

6.3. Using open-system elastic constants for multi-
component phase equilibrium

For the gencral multicomponent phase-equilibrium
under stress, the fact that the M), are constant gives
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(N —1) relationships between stress and com-
position. As shown earlier it is possible to solve these
equations for composition as a function of stress and
obtain the strain Ej that results from composition
changes. The result is a stress-strain relation at
constant M,,. This relationship was used to solve
clastic problems within a single phase as if it were
composed of a single component.

These same relationships apply to each individual
phase in a multiphase equilibrium, but the phase
change boundary conditions of section 3.5 contain a
similar coupling between stress and composition. In
the present section we shall demonstrate that by using
open-system-elastic constants, the compositional part
of these equations can also be eliminated. In fact this
method allows us to treat multicomponent equi-
librium as if each phase were a one-component purely
elastic part of the system, and that for such a solid,
the o function is equal to the elastic energy apart
from a constant [cf. equation (3.16)]. Finally once the
elastic problem has been solved, the composition ficld
is obtained by the methods of section 5.2.

We will use as an example binary isotropic linear
solids, although the proof can be made for a multi-
component anisotropic system. We shall further as-
sume constant elastic coefficients, and that, at zero
stress and potential M,, the composition is ¢. Let Ac
be the change of composition due to a change of
stress. Expanding f” around the unstressed state we
find using (3.6) and (5.4)

L' Tye + Ac) =='f’(0.c) + paM.zAc + (AcYx

ry (Tu)2+ T,T, (6.20)
Let us consider the funchon
S*=f0,c)— (TM)2 + ! + v +— T Ty (6.21)

2E 2E*

where we have added to the free energy of the solid
under zero stress and at potential M,,, an clastic
energy computed with open-system clastic constants
at M,,. Replacing these constants by their values (5.6)
we obtain
l+v
I*=r(, C)+TE—TUTU

s (Tl 45 0TWY. (622

But the change in composition Ac is given by (5.11)
so that (6.22) can be written

[ =l O+ T,
— o= (Tul + (Ac¥2r. (623)

The function {f” — pg(c + Ac)M,,] that appears re-
peatedly in the phase change boundary equations cf.
(3.24) and (3.27), is thus obtained as

S —pole +Ac)Myy =f"* —pocMyy.  (6.24)
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Or, if we replace M, and f7(0,c)

ve
S = pic +Ac)Myy = "E'E;(Tu)z

1+ v* ,
+ —27‘—;— n/ 7‘,7 - poﬂz(o,c ). (6.25)

Thus the various phase change boundary conditions
are expressed in terms of an open-system Helmholtz
free energy for each phase. This free energy has the
same form as a Helmholtz free energy of a one-
component phase. ts elastic constants are the open-
system elastic constants of section (5.1). The reference
state of each phase is the unstressed multicomponent
phase with the same value of M. Its composition is
c in (6.24) and (6.25), its lattice parameter is used to
define strain, and its constant composition elastic
constants are to be used in equation (5.3) or (5.6) to
calculate the open-system constants.

By examination of (6.25), we can see that the use
of these open-system constants allows us to treat, as
far as the stress is concerned, any multicomponent
system just as if it were a one-component system.
Thus elastic solutions developed for one component
inclusions, for instance [23], can now be used for
similar multicomponent inclusions.

After finding the stress field, the results of section
5.2 can be used to obtain the composition field.

An interesting consequence of the preceding results
occurs in a binary system in which both phases have
the same conventional elastic constants. In an infinite
single component system the Bitter-Crum theorem
[16] holds. There is no elastic interaction between
particles. The system is degenerate with respect to
particle shape and dispersion. In a binary system if
the x or n’s differ, the open system elastic constants
would differ even if the conventional elastic constants
do not. As a result there is now elastic interaction
between particles, that is entirely the result of the
compliance due to composition changes.

7. PARTIAL EQUILIBRIUM—LOCAL EQUILIBRIUM

When the general conditions for equilibrium are
not satisfied, the system will tend to equilibrium. The
rates of various processes are usually so different that
in the time scale of an experiment we may often
assume that some processes have reached equilibrium
while others have not occurred at all. In this section
we briefly discuss these partial equilibria. When pro-
cesses are too fast for thermal and chemical relax-
ation, we obtain the results of classical adiabatic
elasticity. The relation between isothermal constant
composition elastic coefficients S%, and adiabatic
elastic coefficients Sy, is a well known thermo-
dynamic result [17]

o8
S?j&g == S’Zy‘; + a,,a,d (‘a—;)r = Srya'i' otgauG;'CT (7.1)
¢

a, is the thermal expansion coefficient, and CT the
heat capacity, both at constant stress.
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When thermal and elastic equilibration occur but
no diffusion or interface motion, we have classical
isothermal elasticity. Comparing equation (5.3) and
(7.1) we note that they are quite similar except that
temperature instead of compositional derivatives are
used. Thus the relationship between adiabatic, iso-
thermal, and open-system elastic constants is one of
increasing equilibration first with thermal and then
with materials reservoirs.

Diffusion of some species, e.g. interstitials, often is
orders of magnitude faster than that of other species.
Such a partial equilibrium, called paraequilibrium
[29], is often reached in phase transformations of
multicomponent alloys. Only hydrostatic cases seem
to have been treated. When stresses are important the
modification from corresponding binary interstitial
alloy problems seems straightforward.

Interface processes, crystal growth or dissolution
and grain growth all involve network modification
processes that may be quite slow. Grain boundary
sliding may not occur. For calculation of such partial
equilibria, the corresponding equilibrium equations
must be suppressed. Polycrystalline averages of the
properties can be used to obtain corresponding aver-
ages for stress and composition fields.

The most common partial equilibrium occurs when
all processes except diffusion have relaxed to equi-
librium. The only suppressed condition is that M,
need be constant, but M,, remains continuous across
all interfaces that have reached equilibrium. This
partial equilibrium is called local equilibrium at
interfaces.

Many experiments are done under conditions
where partial equilibrium is maintained while some
or all of the remaining variables are observed while
they relax to equilibrium. The laws of most of the
relaxation processes have been studied. Interface
relaxation is complicated and often nonlinear. On the
other hand, heat flow in response to thermal gra-
dients is coupled with clasticity and constitutes the
subject of thermoelasticity. Diffusion in response to
nonuniformity of the M,, is also well understood,
regardless of whether the origin of the gradients in
M, are from composition gradients, stress gradients
or interface conditions. The next section examines a
set of problems involving diffusional equilibration
under isothermal conditions with local equilibrium
assumed.

8. DIFFUSIONAL KINETICS AND CREEP

Many problems of diffusion involve stress. In
diffusional creep the applied stress is the motivating
force for the diffusion. Compositional heterogeneity
results in a self-stress that affects diffusion in a way
that is too often ignored in the diffusion calculation.
As we have seen, stress affects the diffusion potential
and interface equilibrium conditions. It has an effect
both on the rate and direction of the diffusional flux
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within each grain and on the boundary conditions to
the diffusion equations at each interface.

Often only some of the effects of stress have been
considered, or approximations have been made that
ignored effects of the same order or larger than the
effects considered. In this section we will examine the
effects of stress on diffusion and creep, inside the
grains and at interfaces, and with both applied
stresses and the sclf-stresses that arise from the
compositional inhomogeneity.

We begin with a formulation for multicomponent
diffusion that is consistent with our thermodynamic
formulation and has the proper invariances with
respect to arbitrary choices of the species X. We then
examine problems of inhomogeneous stress when the
network is unaltered. Much of this was the subject of
a recent overview [30] in which a hierarchy of in-
creasingly difficult problems were discussed. We next
turn our attention to diffusional network alteration
phenomena, such as creep and phase change, both
under applied stress and self-stress. Because of the
importance of vacancies in this problem, interesting
phenomena occur even in one-component systems.
We reformulate and simplify the general equations to
examine a few problems of diffusional creep in a
one-component system with vacancies.

8.1. Multicomponent diffusion in isothermal network
solids

As shown in [31] the invariant formulation of
substitutional multicomponent diffusion flux J, in an
isothermal isotropic or cubic network solidt is given
by

N
_JI= Z B”gl’adM_,K I= l,...N (8.1)
J=1

By, is a mobility, function of composition and stress
at a given temperature. It has been shown that the B,
are independent of the choice of the species K. There
are (N — 1) chemical species plus vacancies. There are
(2N — 1) independent network restrictions on the By,

Y By=0 J=1,...N (8.2)
1

Y. By=0 I=1,...N. (8.3)
7

As a result there are (N — 1)? independent coefficients
which is the expected number of phenomenological
coeflicients for the diffusion of (N — 1) interacting
species without a network constraint. It is also the
number expected for (N — 1) interstitial species. For
a one-component solid with vacancies there is only
one term

J,=—-J,=B, grad M,,. (8.4)

Similarly for the diffusion of a single interstitial
species there is one term

tThe reference geometry for diffusion is usually the un-
stressed state. With the notation we have used, the fluxes
should be noted with a prime. Since there is no confusion
possible, we shall drop it here.

~J, =B, grad M,. (8.5

For a two-component substitutional solution there
are four independent B. With vacancies as the X
species the M,, terms disappear and we have

—J,= B, grad M,, + B grad M,,
—J,= By, grad M), + By, grad M,,
—J, = B, grad M,, + B,, gradM,,.
with the restrictions that
By, + By + B, =0
B+ By + B, =0.

Using species 2 as the K species we have the same
coefficients in different combinations with the
diffusion potential M

—J, = B,, grad M\, + B,, grad M,,
—J, =B, grad M\, + B, grad M,
—J, = B,, grad M,, + B, grad M,,.

The knowledge that B remains the same in various
formulations should permit flexibility both in gather-
ing of data and in formulating and applications.

Stress affects both B and M in the flux equations.
B is affected by the level of stress alone. We expand
about a stress state which can be either zero

BJm = ngy(c, 0) + B}m[(c, O)Tu + ere
or some other convenient state T°

BJXU(C’ 0’ T) = 3m(c, o’ Tﬂ)
+ Blyus(e,0, )Ty —T) (8.9)
The gradient of M depends on the stress and the
stress gradient. From the Maxwell equation (4.13) the

coefficient of the stress gradient is the strain produced
by a unit composition change

M\ _ _ (9B
aT‘, - o aCJx Tkl

which is precisely defined and readily estimated from
lattice parameter-composition data. For cubic or
isotropic cases

oM. .IK/aT(l == V::’I.ur‘sa

(8.6)

(8.8)

(8.10)

8.11)
and

VM,x= RO[(Vc,/c;) — (Vex/ex)]
—VonxV(trT). (8.12)

Strictly this should be at the actual stress, but in most
cases data for unstressed crystals should be adequate,
and leads to a linear formulation. Combining (8.1)
with (8.12) and retaining only terms linear in T we
obtain for cubic or isotropic cases

—Jy=—=A,(VurT)+ps ¥, DyyVe,. (8.13)

TFY
where the factor p; needs to be introduced since the
¢ are defined to be dimensionless rather than molar
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densities and
A=V3Y Byt
F
, [
Du(n= Va ReB” ‘;“*‘;“ .

J X

(8.14)

Because diffusion fluxes and gradients are indepen-
dent of the choice of K, 4, and the B;, can be shown
also to be independent of that choice, but to be
consistent the D, must depend on the choice in the
way shown in (8.14). To avoid large uncertainties in
the D,y it is again clearly advantageous to choose X
to be the major species, rather than vacancies.

8.2. Diffusion without network changes

Conservation of matter is expressed by the equa-

tion
Loc .

Pag, +divy,=0. (8.15)
Compositional heterogeneity produces a long-range
stress field and changing compositions change this
field. Since stress and stress gradients affect B and M,
the stress and diffusion equations have to be solved
simultaneously. It has been common to ignore this
mutual interaction and study either the stress re-
sulting from diffusion or the effect of stress on
diffusion alone. When the ignored effects are smiall,
this is valid, but for most cases it is not.

A straightforward technique for solving the stress
and diffusion equations has been developed [30]. As
in section 5 the relationship between elastic stress and
an arbitrary composition field often remains solvable
and can be used to climinate stress from the diffusion
equation. Plastic stress accommodation would render
this technique invalid.

A hierarchy of increasingly complicated problems
was examined for cases of diffusion in binary alloys
in which there was no applied stress. All stress was
due to compositional heterogenicty alone.

The mutual interaction in most cases is a major
factor. In the case of spinodal decomposition, it can
change the sign of the diffusional flux and is re-
sponsible for the metastability between the chemical
and coherent spinodal [32]. The stress effect is so long
ranged that compositional heterogeneity can affect
diffusion elsewhere. Fick’s law which states that the
flux depends only on local gradients is often not valid.
Because this stress effect is proportional to the local
concentration it can be neglected in dilute solutions.

Interface boundary conditions for diffusion in in-
terstitial solutions have been examined for cases in
which the network is chemically inactive. The bound-
ary condition is a simple continuity of M at a fixed
location in the reference state. It depends on the level
of stress at the boundary. For local equilibrium
equation (5.7) is applicable.

8.3. Diffusion with self-stress and phase-change at the
boundary
In our previous work {30] on the effect of self-stress
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COMPOSITION

DISTANCE

Fig. 1. Compositions in a self-stressed diffusion couple with

an incoherent interface. The compositions far away from the

interface are ¢§ and cf. The self-stress generated by the

composition gradient has shifted the equilibrium com-

position at the boundary to &% ¢&* from their unstressed
phase diagram values of &, 7.

on diffusion the network was conserved at the bound-
ary. There are many metallurgical problems; such as
diffusion controled phase growth, where the network
is not conserved, but where equilibrium prevails at
the interface. This equilibrium is governed by equa-
tion (5.7) and a phase-change equation that depends
on the nature of the boundary.

Self-stress is what we call the stress that is the result
of sample heterogeneity. Generally its value at a point
is a function of the composition distribution every-
where. For special geometries its value becomes a
simple expression involving principally the local com-
position, and the effects of self-stress on the thermo-
dynamic variables can be expressed in terms of the
local composition only reducing self-stress problems
to composition problems.

One such geometry is the semi-infinite solid with
concentration fields that are functions only of the
distance from the surface. We will consider the case
of a semi-infinite couple, with diffusion in « and §,
and an incoherent boundary. Under pressure P, the
equilibrium compositions are & and &%. When
diffusion takes place, the compositions are ¢§ and ¢f
far away from the boundary, and & and &* at the
boundary (Fig. 1). We shall further assume, for
simplicity, that the pressure P is zero, and that the
diffusing sample is under zero external pressure. This
implies that the tractions are zero at the a—f bound-
ary. We also assume no change of elastic constant
with composition for either phase. Under these hy-
potheses, the mechanical equilibrium at the interface,
equation (3.25) is always fulfilled. Equations (5.7)
and (3.24) become, using (4.22) and (4.25)

O __ ,,0x Yi¢ — YA
Uy —ud* + RO ln_‘?;(l—-é") on Th
~6’ ,
=}£?’*}12’+R9 in;%:-é-,-)-— Vaﬁﬂ’rﬁ
(8.16)
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and
u¥ + RO In[73(1 — &)
W 1 L4 _
+ V3 [_EF(W)I'PTIE‘_ TyTi+¢én Tb]
= u¥ + RO In[8(1 ~ &)}

1v 14+v/ .
+ Vé'[—i-;;q(Tﬂ)’*-W T+ C"I’ng]-

8.17

At equilibrium under zero pressure, these equa-
tions become

% pl* 4 RO In—t
By — KB -2
. E’
=u?‘-u3’+R01nﬁ%—f_—:—c,—‘-)- 8.18)

#¥ + RO Inf5(1 — &%)}
= u¥ 4+ RO Inffd(1 ~é*)). (8.19)

We first have to find the stress field. In a half-space
specimen, we have found [30] that its trace depends
only on the local composition

5, = —2Y*n*(6* — cf) (8.20)
Th=—-2Y?@E—cf) 8.2

Where Y = Ef(1 ~v). Introducing these values in
(8.16) and (8.17), and after subtraction of (8.18) from
(8.16) and (8.19) from (8.17), we obtain the system of
equations to solve for &* and é*. As we have seen
before, it can be solved numerically or, if (6*—c§)
and (¢ — cf) are small, it can be linearized, and the
resuiting system of equations solved by Cramer’s
rule.

Under the assumption that there is no normal
stress across the a—f§ interface, a common tangent
construction is possible (sec Appendix 4 for the
demonstration). To the Helmholtz free energy per
mole we have to add the elastic energy per mole,
which is just a function of the local composition. Its
value is

(8.22)

VoE

Jam g niE -y
where ¥, is the molar volume at composition ¢,. The
construction is shown on Fig. 2. This type of con-
struction has been used by Hillert [33] for the case of
massive transformation in which case it is proper to
assume that the phase which is forming is homoge-
neous and by Purdy et al. [34] for diffusion induced
grain boundary migration.

8.4. Effect of vacancies: general formulation

When vacancies, in addition to providing a mech-
anism for diffusion, also interact with the stress, and
provide a means of creating or destroying network at
an interface, new phenomena appear, in particular
diffusional creep. In this section, we consider only
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FREE ENERGY

g eE 88 cf
COMPOSITION
Fig. 2. Common tangent construction that gives the com-
position of Fig. 1. The unstressed free energies (heavy lines)
are shifted by an amount equal to the elastic energy Vi Ey’
(¢ — /(1 —v) to give the light curves. The common
tangent construction gives c* and ¢’

one-component systems, where these effects are not
obscured by the phenomena previously described in
this chapter. We first formulate the creep as a bound-
ary value problem and then turn our attention to
specific creep problems.

The partial differential equation
The flux of vacancies J is given by
—Ji=peBy(M,), 8.23)

where By is a tensor function of the temperature 6, ¢,
(the concentration of vacancies) and the stress. An
expansion around T =0 gives

By=Bj(c,,0) + Blus(c,, )T+ ... (8.24)
The coefficient of order 0 is given by
By =Dyc,(1 —c,)/ROp, (8.25)

where Dy is the self-diffusion matrix. Usually it is not
very much dependent on the vacancy concentration.

The tensors B} and Bj being properties of a
crystalline material follow the rules of crystalline
symmetries. For isotropic materials

BY=B%, (8.26)

and
B%=¢,(1 —¢,)D/RApy. (8.27)

The tensor Bjy, has the same form as an elastic
tensor for an isotropic material

Blw) Tu -= ﬂTu 6§ + 'YTg (8.28)

where B and y are two constants. This equation
reveals that if the tensor By is stress dependent, it
introduces a stress-coupled anisotropy in an other-
wise isotropic diffusion coefficient.

Neglecting second order effects in stress in M,,,
that is, assuming that the elastic coefficients do not
depend on vacancy concentration, the gradient of the
vacancies diffusion potential can be written

RO dlny
2 —VonuTu,-
C,(l — C,)[l + alﬂC,J (Cv)aj oMt 4 1
{8.29)

(M, )q =
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If dilute solution laws apply, this equation simplifies
into

RO
M)y = - (Cody— Vot Ty (8.30)
which, for isotropic material becomes
VM, =(R8/c,)Vc,~ VenV(erT).  (8.31)

The conservation equation is expressed as usual

PR ®32)
The source and sink terms, which is the number of
vacancies created per unit volume, come, for in-
stance, from the vacancy source at a moving dis-
location. The complete diffusion equation for va-
cancies is obtained by combining (8.23) with (8.32)

de,
Po ‘Et' =pos + [By(M,O,,],,. (8.33)

In an isotropic solution, one gets

DVin
haLg, . 20 -V
o s+ DV, 70 Ve, VT,
v
_aP 9""vzru (8.34)

where we have neglected the stress dependence of B.
When the relaxation of the lattice around a va-

cancy can be neglected, the last two terms of the r.h.s.

disappear, and one obtains the simple equation

] =5+ DV,

5 (8.35)

Initial conditions

The initial conditions consist in a given vacancy
concentration field. For steady state, these conditions
are not needed. They are unimportant at long times,
as long as a steady state can be reached.

Boundary conditions

The boundary conditions depends of course on the
problem that is treated. The most useful scems to be
given by an equilibrium condition along all surfaces
of the solid. Written for an isotropic solid, constant
elastic coefficients, a reference pressure P =0 (with
an equilibrium vacancy concentration ¢, ), dilute sol-
ution behavior, and a reference composition ¢, =0
for strain, this reads (equations 3.18 and 4.31)

wO@+RfInc,=

1-2
-—PV:,(l e T+ 3c,rp,)

E
| Y
-2

- (1 - cv)nn Tkk]

1+v

(8.36)
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or
R8 In{c /C,) =
-2
—PV{,(H‘I . "Tﬂ+3e,';,,)
J 1v 1+v
—Vo['“"iE(Tu)z =5 T

- —=c)n, TH.]- (8.37

Since ¢, < 1, these equations can be simplified into
u2A0)+ RO Inc, =

1—2v
=n)

- V’[ (Tuf 2E TeTg "kak:}'
(8.38)

Because it is the dominant term linear in stress, the
r.hs. is usually — PV, Only this term was taken into
account in Herring's theory of diffusional creep. We
shall see in the next section cases where the quadratic
terms are important for new effects.

Network modification along the surfaces due to the
vacancy flux is simply given by

on
(a'+VoJ,)=0

where the x| are the coordinates of a point of the
interface. This equation tells us that the shape of the
specimen changes as diffusion takes place, due to the
vacancy creation and annihilation at the surfaces.

—PV{,(I +

(8.39)

Stress equilibrium

Up to now we have been concerned with the
diffusion equation. Stress equilibrium in this quasi-
static model obeys the partial differential equation
(3.13)

T, =0 (8.40)
with proper boundary conditions. In most problems
they will be given in terms of tractions along the
surface, It is important to note that, because of the
network modifications there, they are specified on a
changing (and usually unknown) surface.

To specify the problem fully in term of stress, we
need the Beltrami-Mitchell equations [11, 30]. For
isotropic materials, the expression is

(1 + V)Tg# -+ Tgk‘g

1
+ E" [-l—.‘———: 6#(‘:0)’& + (co))y] =0 (8'41)

8.5. Some creep problems

8.5.1. Herring’s classical problems: diffusional vis-
cosity of a polycrystalline solid. Let us first show that
with Herring’s assumptions and approximations [18]
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the equations presented in section 8.4 become identi-
cal to his starting equations. Only steady state is
considered. There is no volume change associated
with a vacancy (i.e. the average volume of a vacancy
is equal to the atomic volume). This implies = 0;
therefore the interactions between stress and com-
position appear only in the boundary condition per-
taining to network modification. Furthermore all
terms nonlinear in stress are neglected, and the
reference pressure is zero. The solution of atoms and
vacancies is ideal (i.e. there is no interactions with
vacancies and their concentration is very small).
Finally, there is no source term within a grain.

With these approximations, the diffusion equation
(8.33) becomes

VM, =0.
The expression for the diffusion potential is
My, = p3(0) — u3(0) + RO Inf(1 —c,)/c,] (8.43)
and the boundary condition (8.29) becomes
u20) + RiInc, = — PV;. (8.44)

Subtracting (8.44) from (8.43), and neglecting
In(1 —c,), one gets

(8.42)

M, =ul+ PV, (8.45)

This is the boundary condition used by Herring [his
cquation (2)] for the partial differential equation
(8.42) since our P equals his —P_. The stress equi-
librium equation is the same, and he implicitly used
condition (8.37) to get the rate of displacement of the
interface {e.g. to go from (3) to (4) in his paper]. Thus
within the assumptions explicitly spelled out at the
beginning of this section, we recover Herring's equa-
tions and boundary conditions.

His solutions combined a mean field (the average
of the stress tensor within a grain is equal to the
applied stress) and a perturbation analysis (the shape
of the grain does not change as diffusion proceeds).

The formulation of the problem with fewer as-
sumptions is possible using the equations of the
previous section which contains important additional
terms in the diffusion equation (8.33) and boundary
conditions (8.29). We next explore a few problems
chosen to illustrate the physical consequences of these
additional terms.

8.5.2. Quadratic effects. Usually the linear term of
the r.h.s. of (8.36) is the dominant one, but, whenever
the specimen surfaces are all immersed in a fluid of
constant pressure, this term is constant and at steady
state does not contribute any gradients. Under these
conditions the higher order terms are the only ones
present. We consider two examples in which we
approximate conditions for which P is constant over
the surfaces of interest.

The first treated by Roitburd {35} is a pore in a
specimen under uniaxial stress in which he examined
the shape change by vacancy fluxes that redistributed

material around the pore. Other vacancy sinks and
sources were assumed so far away that fluxes between
them and pores could be neglected. Because P in the
pore is constant, the effects depend entirely on the
quadratic terms. The result of the calculation is that
a spherical pore will distort to an oblate spheroid
with the minor axis along the stress axis. Because this
conclusion arises from quadratic terms the same
result is obtained regardless of whether the specimen
is under tension or compression.

A closely related problem is a long single crystal
rod of nonuniform cross section under a uniaxial load
applied at the ends. If the characteristic length of the
nonuniformities is short compared to the specimen
length, we may examine the redistribution of material
along the lateral surfaces by vacancy flux and ignore
the fluxes between these surfaces and the specimen
ends. Along the surface P is again constant. If we
assume 7, = 0 and that the elastic constant are inde-
pendent of ¢, (8.36) becomes

B0+ Rbne,=

v 14v
~Vo| 2= TuP+—==T;T,|. (8.46)
2E 2E

The r.h.s. is minus elastic energy of the solid. Let us
note that the rod is unstable to necking. A small
indentation (or any change in cross section) will
produce a higher stress at its root (or at the minimum
cross section). Vacancy flux will remove material
from the root (or at minimum cross section) and
deposit it nearby at a place of lowered elastic energy.
The rod is unstable to necking by diffusion creep
regardless of whether it is under tension or com-
pression. This is the same result as Roitburd’s pore,
which can be considered an internal notch.

This counterintuitive result is consistent with ther-
modynamics. Consider the work done by the loading
system, applied force times distance moved. The
compliance of a rod with nonuniform cross section
increases if the rod necks down, and thus the load
system does work on the specimen. Conversely if the
rod were to become more uniform under load, its
compliance would decrease and it would have to do
work on the load system. This would be in violation
of thermodynamic principles.

Another interesting result of equation (8.46) is
the case of a uniform rod, in which we again can
ignore the ends as vacancy sources or sinks. The
equation states that for 5, =0 and elastic constants
independent of ¢, the equilibrium vacancy concen-
tration is a maximum at zero stress, and is lowered
equally by tensile and compressive stresses. This
result is again understood if we realize that the
cross-section will be reduced if vacancies leave the
system, increasing the specimen’s compliance. The
result will be modified if we assume that the elastic
constants are a function of ¢, and if we let 9, differ
from zero, but for small changes it will not affect the

sign.
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Fig. 3. Radial vacancy fluxes that remove layers from the
inner surfaces and deposit them on the outer surface of a 2
wedge disclination do not enlarge the disclination and
therefore no work is done by any pressure difference. To see
this, consider the cross section (¢) of 2r wedge disclination
made by elastically bending the perfect crystal (a) into a
circular cylindrical shell and joining the ends. The 2n wedge
disclination after radial diffusion is unchanged because it
can be made from (b) which is identical to (8) except for
transiation of bottom layers to top. It will therefore reach
the same equilibrium geometry in the presence of the
pressure differences.

8.5.3. Balancing quadratic and linear effects. The
2n wedge disclingtion. Linear effects do not auto-
matically dominate quadratic effects. An interesting
example where both are present and cancel identically
is a hollow tube composed of a 2x wedge disclination
in which there is a pressure difference between the
inside and outside of the tube.

To form the 2n wedge disclination we take a
rectangular sheet of a perfect single crystal, bend it
into a tube and weld the seam to insure perfect
matching of lattice planes (Fig. 3).

At this stage there are tangential compressive
stresses at the inner surface and tensile stresses at the
outer surfaces. M,, at the two surfaces is the same
because the stresses at the two surfaces have the same
magnitude. Because of this the system reaches a
vacancy equilibrium in this heterogeneously stressed
system, -in which vacancy gradients and stress gra-
dients combine to give a constant M, throughout.

Now apply a pressure difference between the inside
and outside and permit vacancy flow. It is readily
shown that in spite of the pressure difference the
value of M, at the inner surface equals that at the
outer surface. In the presence of the higher pressure
at the inside there is a change in ela-tic free energy
density, a reduction at the inner surface and an
increase at the outer surface, and vice versa if the sign
of the pressure difference is changed. The elastic
energy is quadratic in the stress, but the change in
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stress due to the imposed pressure difference is linear
in AP. The result is that the linear terms in P in M,,
cancel identically the changes in the quadratic terms
in the tangential stresses. The linear and quadratic
terms balance identically to give the same M,, at the
two surfaces, Again an equilibrium is reached in
which M, is constant throughout and vacancy con-
centration gradients compensate for stress gradients,

This surprising result that the 22 wedge dis-
clination will not creep by vacancy flow even when
there is a pressure difference can also be understood
by considering the consequence of the transfer of an
entire plane of atoms from the inside to the outside.
If we start with either of the flat single crystal plates
and create the disclination we see that the tube is the
same whether the atom layer is transferred or not

(Fig. 3).

9. SUMMARY AND CONCLUSIONS

We have reviewed and applied the thermodynamics
that has been developed for multicomponent multi-
phase stressed crystalline solids. We have found
equilibria in which the solids were neither homogen-
eous in stress nor composition. We have considered
equilibria for three types of multiphase contact,
solid-fluid, incoherent and coherent solid-solid. We
have also examined simple nonequilibrium cases
where potential gradients determine diffusion.
Diffusional creep in particular was used to illustrate
the importance of a full thermodynamic treatment.

Crystalline solids differ fundamentally from liquids
in that they possess long range three-dimensional
translational order. This implies that we can define a
lattice and site occupancy. The number density and
type of sites is known, and a local change in com-
position can only be made by redistributing atoms
and vacancies among these sites. This fundamental
restriction in the interior of a crystalline solid intro-
duces important differences in the thermodynamics of
solids compared to that of liquids. Because these
restrictions apply at coherent boundaries but not at
other boundaries, we find different equilibrium condi-
tions at the various boundaries.

The equations that result from the thermo-
dynamics constitute a set of coupled partial
differential, algebraic equations and boundary condi-
tions for stress and composition. For the kinetics, the
diffusion equations are added. Although full non-
linear and large strain formulations exist, we have
concentrated on examples where the essential features
were displayed with small-strain approximations and
linearized thermodynamics.

The thermodynamics has resulted in identifying
and precisely definining the important phenom-
enological quantities needed for predictive calcu-
lation. The definitions in particular are important and
much of the controversy in the literature is judged to
be the result of inadequate definitions of quantities.
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Furthermore the necessary data needed for evalu-
ating the equations turn out to be computable from
classically measured quantities, such as free energies
of hydrostatically stressed solid solutions, elastic
cocfficients and lattice parameters.

One important method to solve the equilibrium
equations uses the notion of open-system elasticity.
This method eliminates the composition variable
from the system of equations, and leaves a purely
clastic problem to be solved. Central to the method
are the open-system eclastic constants, and in this
paper we show that the same technique applies to
multiphase solid equilibria. With this technique a
large number of elastochemical problems are now
solved, because they become identical to solved prob-
lems of chemically homogeneous elastic solids. Once
the stress field is known, only algebraic equations
have to be solved to obtain the composition in the
solid. As an example of the use of this concept, we
have solved the dislocation atmosphere (stress field
and composition field) in an isotropic and a cubic
solid, automatically taking into account, in a self-
consistent way the thermodynamics of the solid solu-
tions, Another example is the inclusion problem,
although we have not found in the literature the
shapes that satisfy the phase equilibrium boundary
condition other than sphere, circular rod and plate.

The question of the need for definining separate
chemical potentials for each chemical species inside
the solid has been a subject of controversy ever since
Gibbs. We hope that we have shown that problems
of equilibria can be solved without defining or using
them. Gibbs’ famous example of a homogeneously
stressed solid which gave three different chemical
potential when equilibrated with three fluids each at
a pressure equal to minus a principal stress should
alert everyone to the danger of attempting a
definition. Of course our 3, could be construed to
be a chemical potential of the Ith specie, but we
prefer for clarity to retain the vacancy as the counter
specie.

Questions of species that occupy more than one site
needed to be addressed. As our section 5.6 shows, the
classical notion of chemical reactions among species
on different sites very nicely resolves any confusion.
Treating interstitials as atoms occupying sites that are
mostly empty resulted in a unified treatment and
clearly demonstrated the principle that make it poss-
ible to develop a treatment in which interstitial seem
to require a different treatment.

We have supplemented an earlier overview on the
effect of self-stress on diffusion by adding boundary
conditions that permit phases to grow or shrink at the
interface.

Diffusional creep is an important field in which the
linearized and simplified treatment of Herring was an
important first step. However Herring’s definitions
were not precise and this has led to much later
confusion. We have presented a detailed derivation of
a fuller treatment in which each term is fully defined
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and related to the data base. To emphasize the
importance of the nonlinear terms, which Herring
alluded to, but discarded, we gave two examples each
of which seems counterintuitive but thermo-
dynamically correct, a long rod which in compression
is unstable to necking by diffusional creep and a tube
composed of a perfect 2r wedge disclindtion which
does not bulge by radial vacancy flux even when there
is a pressure difference between the interior and
exterior. The former is a case where Herring’s linear
term is zero and we must resort to the quadratic
terms, and the latter is a case where the linear term
identically cancels changes in the quadratic terms.
The fuller equation contains several other terms
usually ignored in creep theories that also can become
important.

Capillary effects (surface strain and surface free
energy) are not included. A formulation exists for
some type of interfaces or specific geometries [36, 37].
Theories of equilibrium of stressed solids with capil-
larity effects for the three type of interfaces con-
sidered here are being developed [38].

Although the elastic energy is usually small com-
pared to the free energy change resulting from a
composition change, there are domains where the
interactions of composition and stresses are likely to
be important. Self-stresses resulting from the pres-
ence of defects or heterogeneity of the material can
have sizable consequences. The depression of the
consolute critical point and the spinodal is a well
known example. In systems without critical points
coherent equilibrium is also strongly affected. Coher-
ent phase diagram features have recently been found
[39, 40] that differ markedly from incoherent phase
diagrams. The equations that could be used to calcu-
late these phase diagrams have been obtained in
sections 3 and 4.

Interesting consequences originate from the long
range nature of the elastic forces. For instance this
introduces nonlocal effects in the diffusion equation.
Under hydrostatic pressure, a multi-phase incoherent
dispersion at equilibrium is degenerate with respect to
the shape of the phases, i.e. the equilibrium is inde-
pendent of the shape of the precipitates. Under a
more general state of stress (coherent precipitates, for
instance), this simple result is no longer valid. The
equilibrium equations have to be solved on an un-
known boundary and the equilibrium shape is to be
determined as part of the solution (a so-called free
boundary-problem). With the use of the open-system
elastic constants such problems can be expressed as
a purely clastic problem. The phase equilibrium
boundary conditions is the one that makes the prob-
lem different from classical elastic inclusion problems
for which a shape is imposed. The solutions of the
elastic equations of general shape will not be consist-
ent with the phase equilibrium boundary condition.
The catalog of the shapes that produce an elastic field
that in turn satisfies this condition has not yet been
found. The introduction of capillarity would modify
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this condition. Work has been done on the subject
[41].
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APPENDIX 1

Solid-liquid equilibrium under hydrostatic stress

We consider the case of a substitutional binary solid. In
equilibrium with a fluid under hydrostatic stress (for in-
stance if it is entirely surrounded by the fluid), the mechan-
ical equilibrium equations (3.13) and (3.14) implies that the
stress is equal to

T,= —P5, (ALD)

where 2 is the pressure in the fluid. The stress being uniform,
the constancy of the diffusion potential implies that the
composition is uniform. Therefore the solid is uniform. The
boundary condition

f=utpi—pzp=~P (A12)

can be combined with the equation for the diffusion poten-
tial

My =yt —pf (Al3)

to give
pi=(f+P+p,Mp)V, (AlL4)
ui=(f+P —pMp)V,. (Al4)

Because the solid is uniform, these expressions are valid
everywhere. The quantitics on the right hand side of (A1.4)
and (A1.5) depend only on the value of the state variables.
Let us call them uf and pj

w=(+P+pMpV, (AL.6)

pis(f+ P —p My, (ALT)
Elimination of M,, between these two equations give

S=—P+pui+pps

and, because of the uniformity, we can multiply by ¥, to get
the total Helmholtz free energy

F=—PVy+ Nipi + Nopj

where N, and N, arc the total number of moles of com-
ponents 1 and 2 respectively. The differential of f* is

df* = T,dE, + M,dp;

M, is replaced by its value obtained from (A1.6) and (A1.7).
Using the definition of p{, and after multiplication by ¥,
one obtains

dF = — PdV,+ uidN, + pidN,

(a)
aNI V.N2

s __(BF>
= aNz v.m

We have recovered all the classical formula for fluid-fluid
equilibrium. Despite network constraints, a solid under
hydrostatic stress behaves as if it were a fluid.

Therefore

ui
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APPENDIX 2
The boundary conditions for coherent phase change: Small
strain approximation
The full large strain boundary condition for coherent phase
change is [15]

@ =@ -0 (FT—=P7)-(3f*oF)n* =0 (A2.1)
where the same reference state is chosen for both phases.
The superscript T stands for transpose and F is the defor-
mation gradient. (3f/2F) is the first Piola—Kirchhoff tensor
T, It is related to the Cauchy stress tensor T by

Ty=JT-F-1) {A22)
where J is the determinant of F. In the small strain
approximation, the displacement tensor is given, to first
order in the derivatives u,;, by [11]

Fuel+E+Q+0ul) {A2.3)
where E is the small strain tensor, {equation (3.1)], Q the
small rotation tensor, and 7 the unit tensor. To the same
approximation, its inverse is given by
Flul-E—-O+0ul)
Using these equations we get
o (FVTe)w
aw-(+E-Q) T-Q-E+ Q)0 +0u}). (A2.5)

Dropping teims of order u};, and since, for an arbitrary
3 x 3 tensor

(A24)

oA =n ATy
we finally obtain
2 F Ty n=0Tn-20QT0. (A26)

Since the same reference state has been chosen for « and §,
the following equalities hold

Prr=pic} pl=pict
Jo=piipt 7= pilpt. 427

Using (A2.7), (A2.6) and (A2.1) we finally obtain
Vof'* —E Mych + Vi —Tyni*n* + AN Tin*n
a V[P~ Mych+ Vil=Thnn? + 208 ThnPn ).
(A2.8)
The various terms are seen to be energies per mole of lattice
sites. It is then easy to make a change of reference volume
(like the stress free state for each phase). To the level of

approximation used in linear elasticity this won't affect the
Vaf' terms. But it does affect the terms linear in T),.

APPENDIX 3

Derivation of the open-system elastic stiffness and compliance
tensor

All the calculations are done at constant temperature, so
that all the partial derivatives are understood to be at
constant temperature, We first treat the case of a binary
solid, then generalize to a multicomponent solid.

A3.1. Binary solid
To simplify the notation we take p° to be pi. The
differential of the stress can be written

T, aT,
a7, = (as") dE,+ (apf)g dp’

aT, aT,
T.o=l -4 i3 . .
" ("Ekt)u.xdEk'+("Mn)z.,dMu 432

(A1)

or
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The differential of the diffusion potential is

oM oM
aM,, = 12 do’ + 12 X
N (ap' )a g (aﬁa) e A3

Replacing dp’ from (A3.3) into {A3.1) yield
aT, a7, oM, a_MB
m-((G), ). Geo). ) Je
Ty My
(&) /(5), Jos 0

and the coefficient of the term dE,, is the (ijk/) component
of the open-system stiffness tensor.
Using the stress—strain relationship (4.14) and the Max-

well relation
(a ") (a ")
ap' e BE, »

= CoiMs +

(A3.5)

one gets

oM,
(E) (Eu Ef). (Ad6)

The value of M, as a function ot’ E, rather than T, is
obtained from (4.14) by using

St Crime = Oy Oy
Neglecting strain dependent terms, we finally get

(A3.7)

1
Because of the linearity, we have

where S%, arc the open-system compliances. Combining
(A3.8) and (A3.9) gives

Shi= Sy + oty
where 7, are defined by (4.4).

(A3.10)

A3.2. Multicomponen: solids

We follow the same derivation as above. The differential
of the stess tensor is

oT, a7,
a7, = .«-l) dE;, + ( "’)d A3.11
' (aEM # " r?x op; o ¢ )
The differential of the potentials are
5M:x) (asz)
dM;y = —= }dp;+ dE, All12
" Jg:x(aﬁlx & 9E, v ¢ )

dp) can be obtained from this sytem of linear equation by
Kramer's rule

dp)= { Y [dM,.x - (—-——a;:,") dE,] ,4,,} / D
lek Y /9

where D is the determinant

(A3.13)

8pix
and Ay is the minor of the (oM x/dp)x) term of D.
Replacing dp by its value in (A3.11) and using the Maxwell

relation
(é"f‘g) __(aM,,)
1)k OF, s,
we get

().~ ()
aEki Mix aEkf Fo]

1 oT, 67},)
-— — — | A, (A3.135).
D fg:nz:x(al’;)s,. (BP} Epy u )

Using (A3.9), Hooke’s law, and neglecting strain dependent

D=

(A3.14)
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terms we finally get

OE})\ (0E}
S%=Sum+- A
w w ugx( dc, )( dc ) o

where x is the determinant

(A3.16)

oM,
e,

X =00

and A,, the minor of the (IJ) term of x/p;.

APPENDIX 4

A common_ tangent construction

Let £* be three unit vectors normal to each other, such that
&3 is the normal to the interface, with components . The
vectors A* are defined by

=E\¢} (A4.1)

Since the determinant I{“l has the value 1 the system of
equations (A4.1) constltute a valid linear change of variable.
Using the chain rule, we obtain, considering the &* as fixed

¥\ (¥
(). = (8).#

After multiplication by ¢f and summation on j one gets

a ’
vaf = (‘é‘)&

(A4.2)

(A4.3)
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Let us define the free energy {’ by

o
[ - }.3 .
U=r (az’) (Ad.9)
=f"—TymExn, (A4.5)
and it is easy to show that
af’ o
My =<L,) ( L ) (Ad.6)

ik ik AL Tymy

The conditions for equilibrium at an incoherent interface
[equation (3.24)] can be written

7+-zi(ZL) - riningi

Py c;(%) _TintntVE (A4T)

where quantities such as f are just f*V;, i.c. quantities for
one mole of lattice sites.

If the normal pressure is zero, so that Tyn, = 0 it becomes
equivalent to

c-30(8), 0-54(9),, o

which together with
Mi=M ’x

which can then be written
(6( ‘) (a(
aC, a4 ac, #43

show that c,, can be obtained by a tangent construction to
{, which, in this case is just equal to fm

(A4.9)



