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Abstrac-The thetmod~ of stressed crystals that can change phase and composition is examined 
with particular attention to hypotheses used and approximations made. Bulk and surface conditions are 
obtained and for each of them pm&al expmssions are given iu terms of experimentally measurable 
quantities. The concept of open-system elastic constants leads to the reformulation of internal elasto- 
chemical equilibrium problems into purely elastic problems, whose solutions are then used to eompute 
the composition distribution The atmosphere around a dislocation in a cubic crystal is one of several 
examples that am wmpletdy worked out. The elTeets of wan&s, and their equillbriutn within a solid 
ondnerr~~uccritiallyaumlaedmd~o~form~uefoundtobefintordarppimri- 
mations. Consequeneu of the boundary equations that govern phase changes am studied wltb saveral 
examples. l%ally, problems eomreeted with dilfusional kinetics and diffusional creep am discussed. 

R(rmncNour &udions, la thermodynamique de crlstaux sous contra& qui peuvent changer de phase 
et de composition, en p&ant particrrUtrement attention aux hypotb&es &is&s et aux appmxhnations 
faites. Nous obtanons des amditions darts le mat&iau massif et en surface et pour &acune d’entr’ella 
nous donnons da expressions pmtiqttes en fonction de qumtitba maurda exp&hmtdancat. Lc 
eoneept de amstanta &astiqttes d’un syst&me ouvert conduit & mfommkr la pmbl&ua d%quiliire 
&stoebimique Mama en pmbRmes pumment &astiquesl on utilise al013 leum solutions pour eakukr 
la &partition da aunposltions. L’atmosph&a autour d’une dislocation dam uu c&al cubique at l’uu 
da cxanpla qui sent anti&ement tilm. Nous examinons d’uue maui&e ks effets des lacunes et leur 
@ilibre aitique I l%&ieur d’un solide et au voidnage de la surface et now montrons que des fotmules 
aut&ieuru sont des l pproxhnations du premier o&e. Nous &udions les eons6quences da &rations l ux 
limites qui gouvument lea Nts de phases, avee plusieurs exemples. Rnlin, nom diseutons da 
probl&mes liQ Q la einttique de diltkion et au fluage de diffusion. 

Zanmmmfamung-Das them~odynamlsche Verhalten von verspannten Kristallen, bsi denen sich Phase 
turd Z-g &tdem k&man, wurde insbesondere im Hinbliek auf die bmtltxtea Hyp&esen 
und An&men untusucht. Volumen- und Ob&wK!nbedhlgungenwerdenelmittel~FurjedeRedh@mg 
werden p&is&e Ausdr&ke mit expeGmntdlmellbamn&6Benang@en.DasKcmmptdqalas- 
tischeu Konstaatcn olkm System f0lu-t zu eincr ncuen Formuliemng der inneren dutocbanuehea 
Gleiehgewlchtsporblane mit reht ala&s&n Probkxnen, mlt deren L6sungeu datm die Vertell~ der 

emetaamg bem&net whd. Versebiedene Beispiele wenleu 8uslRbrlieb dargesMb danmter die 
~~dneV~gindnem~~~Krirull.DaBinlluS~Lssntrdlsn,ihr~t 
im Iunem einu Fe&k&gem und in der N&e der ObwIRche we&en kritisch untersucbt. Frllbsr uhaltene 
Formeln stallen slch als NlUwmgen erster Ordmmg heraus. Die Folgenmgen aus den Clbiohrmlpa fllr 
die&uuen,diedla phueniadarunssn besduelkcn, we&n anhand einiger Msplele behandelt. Zulekt 
we&u Fmgen im Zummmeubang mit Diffusionskinetik und -k&hen diskutiert. 

1. INTRODUCITON 

The literature of the thumodyMmics of solids spans 
more than a century and has appoarcd in many fields. 
It has been marked by long controversies, SOMC even 

regarding the very existence of equilibrium under 
conditions of nonhydrostatic stress. The rcsnlts have 
been used in applications to global equilibrium prob- 
lems, and as local equilibrium conditions in non- 

equihbtinm problems of difInsion, crap, elcctro- 
chemistry and phase changes. The formnlations have 
been gradually gcncrahxcd to indude mnlti- 
component anisotropic solids, containing vacancies 
and other defects. that am nonhydrostatically and 
nonuniformly stressed. Considerable attention has 
been given to multi-phase systems and to conditions 
of eqnihbtinm at intufaw between phases that are 
in mechanical and thermal contact, that can exchange 
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matter and under conditions of slip or no slip (inco- 
herent and coherent rcsp.). In view of the importance 
of the fie& a clarification of the controversies seems 
in order. 

Thermodynamics lends itself to many formulations 
based on different definitions, conventions and no- 
tations. When properly done, all these formulations 
should identify the same measurable quantities and 
give identical relationships among them. Discrep- 
ancies arise when the formulations differ in assbmp- 
tions that they make about the behaviour of matter. 
There are also many simplifications that may not be 
valid or necessary. Invalid assumptions have been 
made about the laws of thermodynamics and about 
the unction for q~b~~~. We will examine the 
main formulations for their assumptions to find their 
range of validity. Whenever possible we will identify 
the most general formulation and show. how the other 
formulations follow as special cases, compare predic- 
tions, and identify sources of discrepancies. But since 
general fo~~tio~ areoften more cumbersome to 
apply, we will ex8mine a set of simple applications to 
display how one uses the main results in this field. 

It may be worthwhile to categorixe broadly the 
main controversies and to illustrate with one simple 
example how they arise. These are: (1) the question 
of the existence of quip if diffusion is permit- 
tMt, (2) the various methods of distinguishing solids 
from fluids in a formulation. These involve models of 
solids and constraints on the variations that can 
occur in solids, (3) the definitions of chemical poten- 
tial of species inside solids, since in some formu- 
lations one cannot arbitrarily add atoms to the 
interior of a crystal without removing other atoms or 
destroying vacancies; (4) how one formulates the 
conditions for equilibrium when the familiar mini- 
mum Gibbs-free energy which works only for con- 
stant hydrostatic pressure is inapplicable, and when 
so many different chemical potential conventions 
have been proposed, and (5) clear distinctions be- 
tween the accretions that can occur at surfaces and at 
interior defects such as climbing dislocations, and the 
addition of atoms to sites inside of crystals. 

In addition, there are a variety of simplifications 
with obvious ti~~tio~ on the applicability of the 
results. Among them is one, homogeneity, which has 
lead to major misconaptions. Many situations will 
lead to homogeneous systems at equilibrium, but if 
one requires in tests for equilibrium that all variations 
keep the system homogeneous, one may constrain the 
system unnecessariiy. 

With these controversies in mind, let us examine 
the simple example of a solid cylinder containing one 
or more components and a straight axial dislocation. 
Let us first ignore surface effects and let the cylinder 
be inflnite in all directions. Let there be no restriction 
on diffusion. If the solid is crystalline, an equilibrium 
will be reached with the dislocation retained in which 
the solid is inhomogeneously and nonhydrostatically 
stressed. If the solid is multicomponent, it will also be 

compositionally inhomogeneous. The system can 
reach an q~lib~um which of course means that all 
diffusional flow has ceased, in spite of the shear 
stresses and the heterogeneity. 

If the cylinder had been a highly viscous liquid in 
which the dislocation had been introduced by a 
cutting, displacing and weiding procedure, the dis- 
location would disappear on annealing. Equilibrium 
would not be ~mpatible with shear stress or hetero- 
geneity. It is apparent that crystallinity imposes re- 
strictions on the variations that lead to a different 
type of equilibrium. 

Even in a one component solid, there will be a 
gradient in the Helmholk-free energy density at 
q~~~~. Any de&&ion of a chemical potential, 
that for a one-component system reduces to the local 
free energy per atom, cannot subsequently be used by 
aasertmg that such chemical potentials must be con- 
stant at quillbrim& or, if not constant, will lead to 
di&sional fluxes; Care must be exercised in the 
definition of chemical potentials in one or multi- 
component systems to ensure that they are useful. 

The constraint which crystallinity imposes in this 
example is that some of the atoms cannot be moved 
at will without a counterflux of some other species, 
including vacancies, to take their place in the crystal 
strt&ure. At the surface and at the core of dis- 
locations capable of climbing, this constraint does 
not ,apply and atoms can be mserted or removed at 
will. 

To illustrate the importance of separate qui- 
lib&m conditions at surfaces, let the cylinder in our 
example have a finite radius and. permit surface 
rearrangement. An quilibrium shape could be 
reached where transfer of small amounts of any 
species of atoms from one surfaa location to another 
does not change the appropriate free energy. This 
would be a thermodynamically stationary state in 
which all fluxes would cease, but it would be meta- 
stable or possibly unstable equilibrium because mov- 
ing the dislocation out of the cylinder would lead to 
a lowered energy. 

Formulations of thermodynamics differ consid- 
erably in. how the essential aspects of solidity are 
represented mathematically. Many authors pur- 
porting to deal specifically with solids, reach conclu- 
sions that are the same as for very viscous liquids that 
may take a long time to reach an q~lib~um that 
does not support shears. 

Various models, composed of springs and dash- 
pots, have been proposed to represent the viscoelastie 
behavior of matter. Whereas the Maxwell mode1 
=Ps continuously under load, the 
Meyer-KeI~~Voi~ [I] solid reaches a mechanical 
equilibrium when the load is entirety carried by the 
spring. The elements of these solids do not dissolve 
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or diffuse, and Gibbs [2] devised a model of a solid 
that did both. 

Gibbs introduced the idea of a solid component 
which does not diffuse. Like Meyer-Kelvin-Voigt’s 
solid, it can deform elastically but it always retains its 
connectivity. In addition Gibbs considered surfaces, 
where he did permit the solid to grow by accretion or 
to shrink by vaporization, melting or dissolution into 
contacting fluids. He also incorporated the concept of 
a fluid component which can diffuse and distort the 
solid. He fully developed the thermodynamic proper- 
ties of such a solid, including its equilibria and 
revealed a variety of surprising properties. Since the 
solid component was not involved in any chemical 
variations except at the surface, there was no need to 
define a chemical potential in the solid. When the 
solid was equilibrated with a fluid, the chemical 
potential, of this solid component in the fluid was 
readily calculated. One important result was that the 
chemical potential in the saturated fluids in contact 
with a homogeneously stressed solid depends on the 
orientation of the surface. There is thus not only no 
need to define a chemical potential of the solid 
component, but it does not seem to be definable. The 
fluid component on the other hand has a defmed 
chemical potential that is constant at equilibrium 
throughout all phases even if they are hetero- 
geneously stressed. Gibbs’ solid is therefore quite 
active chemically and yet it is different from a fluid. 
The key was the solid component. Even though this 
component can dissolve, essential solid properties are 
obtained. 

Gibbs was strongly influenced by the law of 
definite proportions and required his solid com- 
ponent to be a single element or a stoichiometric 
compound. If it was a compound, the chemical 
potential in the saMted fluids is cahdated even if 
the compound dissociates or reacts with the solvent. 
Modem examples of Gibbs solids are polymer fibers 
which also can absorb solvent molecules, silicate 
glasses in which the silicate network is the solid 
component while m&er ions can di&e about. A 
very good example of the kind of equilibrium Gibbs 
was able to calculate is the bending of a damp 
wooden beam in which the water redistributes at 
equilibrium and affects the compliance. Li et al. [3] 
pointed out that mobile interstitiaki in metals at 
temperatures where the substitutional atoms did not 
move was a valid metallurgical example of a Gibbs 
solid with a fluid component. An example of the 
equilibria of a dissolving Gibbs solid occurs in 

tThe term interstitial compound is an unfortunate term in 
which the intemtitials are merely small atoms fully 
oaxtpying a site in the structure [81. The u&l ddhition 

of interstitial~ that thede are atoms oceupyklg Site8 tit 
are mostly empty, h8s important coqueneu in thcr- 
modynamic formulationa An empty s&titutio~rl Site 
is called a vacancy, while empty interstitial ata Bzc 
usually ignorsd, sina their e4xteentmtion or activity in 
e.g. the law of mass action hardly differs from unity. 

stressed electrodes. The equations predict the effect of 
elastic stress on the electrode potential [4]. 

Solid state diffusion of every component is counter 
to the strict definition of Gibbs’ solid component. As 
a result most thermodynamic formulations that per- 
mit unrestricted diffusion to take place do not ascribe 
to the solid any property that differs from a viscous 
fluid. As the example in the introduction points out, 
unrestricted diffusion consistent with our knowledge 
of the solid does permit new kinds of equilibria. 

Gibbs’ solid component, because it did not diffuse, 
served as network for ddining displacement and 
hence strain, as well as the local composition of the 
fluid component. The local energy and entropy den- 
sity were functions of the local strain and com- 
position. What was needed was a network which 
continued to define unambiguously the same place in 
the solid even if all atoms were capable of diffusing. 
In crystalline structures, the lattice serves this ftmc- 
tion, and a thermodynamics has been developed. 
Robin [!5j has simply let the lattice itself be the solid 
component, and has found that “component 
differences” become the exact analogues of Gibbs 
fluid components. Instead of.modifying Gibbs’ con- 
cept we have defined a network solid as one in which 
there is an unambiguous method of locating the same 
place after diffusion, and where the thermodynamic 
properties are functions of the strain and local com- 
position defined by this network [a]. Gibbs solid 
component is one exampk of such a network; the 
lattice is another example. 

Most of our work has been with simple crystal 
structures in which there is oue type of substitutional 
site and one type of interstitial site. Atoms of a given 
species are assumed to be either substitutional or 
interstitial. The substitutional sites served as a net- 
work. Bravais solids where lattice sites are occupied 
by substitutional atoms are an example. Recently 
attention has focused on species which could occupy 
both interstitial or substitutional sites Tt], and this has 
led to the gencralixation of stnmtmes in which many 
different sites are occupied in a unit cell and where a 
particular species can occupy several sites. One can 
even include the case where no species occupies the 
origin in the unit cell which serves as network marker. 

In crystal structures, the network imposes what we 
have called the network restriction. A site exists, 
regardless of the species that occupies it, or even if it 
is empty. Atoms exchange among sites 

A,+B,=A,+B, (2.1) 

where I and J are different types of sites: sites that are 
mostly Slkd are occupied by what are called substi- 
tutional atoms, while sited that are mostly vacant are 
occupied by what are caBed intersitial atoms.7 

Vacancies are capable of dXusing or reacting with 
atoms on other sites. Letting B be a -y, equ- 
tion (2.1) becomes 

V,+ A,==A,+ v, (2.2) 
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where I and J are different sites. If I is an interstitial 
site, this can also be written 

R,=A,+ V, (2.3) 

One of the main results of the network restriction 
is that there is no need to &line separate chemical 
potentials of individual network species. Within the 
crystal only their dilferenccs are ever needed. 

The network is unambiguously de&d only as 
long as the structure is not severely distorted, The 
network can be modified at surfaces and dislocations 
and these have led to special equilibrium donditions. 
Of particular interest is the fact that there are 
differences between solid-fluid interfaces and 
solid-solid interfaces equilibrium conditions. Two 
types of solid-solid boundaries have been treated 
[IO]; incoherent interfaces where there are two inde- 
pendent networks with no relationship between them 
and coherent interfaces where there is an exact corn- 
spondence between network sites in the two crystals, 
and a connectivity across the interface that sun&s 
the distortions of a phase change that transfers sites 
from one crystal to the other. Thus many restrictions 
in Gibbs’ solid have been eliminated. Modern under- 
standing of solid solutions, crystalline defects and 
difftion have been incorporated. In addition, 
solid-sol&i equilibria, interfaces and phase changes 
have bean cons&red. 

3. DERIVATIONS OF USABLE EQUILIBRIUM 
CONDITIONS 

3.1. Thermodynamic formulation 

The basic two laws of thermodynamics are quite 
general and applicable not only to all equilibrium 
conditions but also in speci@ing what cannot happen 
in nonequilibrium conditions. They often are cum- 
bersome to use, but from them special conditions 
have +en derived (such as constant temperature at 
equilibrium) that are easier to apply. In addition, 
there are certain restrictions or constraints that occur 
commonly that permit even simpler specialized but 
rigorously applicable procedures to be developed. A 
good example is the Gibbs free energy. Under the 
special restriction that temperature, presssure, and 
the mass of various species be held constant, it can 
be shown that the laws of thermodyanimcs reduce to 
the simple condition that the Gibbs free energy 
monotonically decreases to a minimum. For these 
common restrictions, it is no longer necessary to start 
from the basic laws. For equilibrium, one begins with 
the minimization of Gibbs free energy knowing that 
this is fully equivalent to the basic laws. The pro- 
cedure is a general one, subject only to the easily 
verifiable restrictions on temperature, pressure, and 
mass. The restrictions are important. When tem- 
perature decreases (as in an endothermic reaction 
held adiabatically), pressure increases or mass is 
added, the Gibbs free energy can increase and has lost 
its usefulness as a simple condition for equilibrium. 

Whenever we encounter new restrictions or con- 
straints, it is necessary to return to the two basic laws 
to 6nd new conditions for equilibrium that are gen- 
eral, subject only to the restrictions or constraints. It 
is important that the restrictions or constraints are 
verifiable and that they be general enough to include 
many important situations, but not so general as to 
lead to cumbersome conditions. The procedures for 
linding simpler equilibrium conditions subject to new 
restrictions or constraints are straightforward and if 
done with mathematical rigor, need only be done 
once. Applications then follow from these derived 
conditions. The derivation often identifies the useful 
fret energy. It is dangerous to assert conditions for 
equilibrium under new restrictions (some type of free 
energy to be minimized or some potential to be 
constant) without a derivation that begins wlth the 
basic two laws. 

There are various derivations in the literature. 
They differ in the model of “what is a solid” ex- 
pressed in terms of restrictions on possible variations. 
They also differ on whether or not they require 
homogeneity. Th9 differ on whether th9 begin with 
the basic two laws, or with some derived law. 

It is not di&ult to start with the basic laws used 
by Gibbs; “For the equilibrium of any isolated 
system, it is ncctss8Iy and sul&ient that in all 
possible variations in the state of the system which do 
not alter its entropy, the variation of its energy shall 
either vanish or be positive** [9, p. 56). It is qtite 
straightforward to permit the system to be hetero- 
geneous. 

Since the general state of a solid is heterogeneous, 
the energy, entropy and mass of its various com- 
ponents will be integrals over the volume and the 
minimization procedure is done by standard vari- 
ational calculus. Such a formulation permits the solid 
to change its shape by elastic deformation or by a 
process of network modification which we will call 
either accretion, dissolution or phase change. 

These methods of variational calculus were used by 
Gibbs every time the system under consideration was 
not homogeneous; the influence of gravity [9, p. 1441, 
stressed solids [2], surfaces [9,p. 2381, multiphase 
systems [9, p. 641, etc. A variational statement of the 
first and second laws of thermodynamics for the 
multicomponent network solid has been carried out 
(4. It very neatly produces all the conditions for 
equilibrium; mechanical, thermal and chemical, in the 
bulk and at the interfaces. There is usually no need 
to assume linearity, ideality, or isotropy. The derived 
equations identify and define important functions 
and usually can be manipulated to suggest methods 
of measurement. 

The imposed constraints are incorporated into the 
formulation as Lagrange multipliers and this intro- 
duces quantities which must be constant throughout 
the system at equilibrium. Since sites in a unit cell or 
a network exist whether occupied by atoms or not, 
vacancies appear as a conserved species within a 
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network. We formulated three different rulatt for the 
transfer of material across an interface [lo]. Network 
sites could be added or subtracted to the solid at 
solid-fluid and at incoherent solid-solid interfaces. 
At a coherent solid-solid interface, a single network 
describes both solids, and during phase changes, sites 
are transferred but do not change their relative 
location. 

3.2. State variables and notations 

The procedure outlined can be followed once the 
state variables have been identified. With network 
solids, a strain can be defined. The energy density is 
assumed to be a function of that strain (either the 
usual small strain, or the deformation gradient to 
include the cases of large strains), of the entropy 
density, and of the density of the various atomic or 
molecular species. 

The choice of the strain or deformation gradient as 
a state variable that describes the mechanical state of 
the solid by no means exhausts the possible choices. 
Continuum mechanicians and others [11-141 have 
described much more complex solids, where higher 
gradients of displacement or composition come in the 
picture. We feel that our choice is sticient to 
describe many metallurgical materials. In any case, 
thermodynamics uses as input data the results of 
measurements of mechanical and thermal properties, 
and inadequate specification of state variables would 
become apparent. 

Only small strain theory will be explicitly used 
here. The relations that are valid without this 
approximation have been derived [lo, 15), and effects 
that might modify the small strain results will be 
mentioned and discussed in the course of this article. 

The reference state for strain in the solid is quite 
arbitrary. It can be at xero stress, or under hydro- 
static pressure, and at any arbitrary constant com- 
position. It merely serves to identify the same point 
x’ in a solid after composition change and strain. For 
many elastic energy equations, a convenient reference 
state is zero stress. There are also useful standard 
states for thermodynamic quantities. These are often 
at hydrostatic stress that is not zero and at definite 
compositions. As a result there are advantages to be 
flexible about the reference state for strain. We will 
try to point out in each application which reference 
state we have used. 

When the point x’ of a solid is displaced by u, the 
small strain is defined byt 

tAll vectors and tensors are expressed in terms of com- 
ponents with ~~pcct to an orthon~rmal axis system. 
Small subscripts like i and/ are understood to have value 
1,2 or 3. Repeated indices are understood to be summad 
(Einstein convention) and subscripts preceded by a 
comma are derivatives, e.g. 

fi# - bfJ + u,,). (3.1) 

A change of reference state from x’ to x”(x’) where 
x* - x’ = v leads in the small strain approximation to 
a new strain E; given by 

E; = E, + & + v,,). (3.2) 

The density of energy, entropy and component I 
are respectively denoted by E, s, p,. Because the 
elementary volume of solid is affected by its state of 
strain, densities per unit volume in the deformed state 
always contain a strain effect. As such they are not 
very convenient to use. Much better variables are the 
densities per unit volume in the reference state. These 
will be noted by primed symbols. The relations 
between primed and unprimed densities are 

El/& = s’/s = p;/pt= p;/po (3.3) 

= &/Vi= 1 +E, (3.4) 

where pO is the molar density of lattice sites, and its 
inverse V, is the molar volume of lattice sites. 

All of our chemical densities p, and p; will be 
atomic or molar densities (molea/vohrme). This is 
especially preferred to mass densities when we con- 
sider vacancies as a species. It is useful to introduce 
dimensionless composition variables 

This is the classical mole fraction for single site 
substitutional alloys. For an interstitial ahoy with no 
vacancies on the substitutional sites, c, given above is 
the molal composition. The mole fraction Z, is then 

G = P&l + P,) - q/U + c,) 

which reduces to c, at small concentrations. 

3.3. tagrange multipliers 

From the entropy constraint comes the standard 
condition that the temperature is everywhere equal to 
a Lagrange multiplier, and is therefore constant. It 
allows us to &fine a Helmholtx free energy density by 
a Legendre transform 

fr=e’-0s’ (3.5) 

which we subsequently use because it is more con- 
venient in many pm&al applications. 

From the conservation of mass conditions come 
Lagrange multipliers that differ substantially from 
standard fluid quihbrium, a direct consequence of 
the network constraint. As with fluids, conservation 
of N chemical components lead to N Lagrange 
muhiphem that are constants at quilibrium. 
Whereas for fluids they can be identified with N 
chemical potentials, for a system consisting of a 
network solid containing N substitutional species 
only N - 1 quantities can be identified with physical 
processes replacing one specie with another on a site. 
The quantities thus identified with Lagrange multi- 
pliers differences we have called diffusion potentials. 
The notation is M,K, where K is the dependent 
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sp&css. Vacancies are considered a species that can 
be ignored in some applications. Because of their 
definition as Lagrange multipliers, the M,r, like the 
temperature are constants, and take on a precise local 
meaning everywhere within the system 

M,,-constant everywhere within the system. 

= (llPWW%K)~,,. (3.6) 

Since the cl arc not independent, WC have introduced 
the dilTercntial operator 

(~/~C~) - (Wc&, *,*I (3.7) 

for a unit composition incmasc of species I, an qual 
decrease in species K, holding the composition of all 
other substitutional species on that site fixed. For 
binaries we drop the subscripts and adopt the con- 
vention c = c, and (a/&,,) = (a/&). 

From this definition we have 

M,,+M,r+Ji&=O (3.8) 

M,- -M&M&=0. (3.9) 

In the case of quilibrium with a fhtid, M,r is qual 
to~e~~~~~~~ti~of~~~in 
the fluid 

WP+Ct. (3.10) 

1fthevacancyischosenasK;wehave 

M*=P: (3.11) 

It might seem natural to use the it&, and keep the 
formalism of hydrostatic thermodynamics. This has 
been done m a number of formulations (7). However, 
it has practical drawbacks (see Section X5), and we 
have found it preferable to keep the flexibility of 
choice for the dependent species 1y. 

The Nth Lagrange multiplier which we will call px 
can not be identiiicd in many problems. It is climin- 
atcd from all quilibrium c&ulations for internal 
equilibrium of a crystal away from stirfac& and 
dislocations that can climb. It also is eliminated from 
all equilibrium calculations at cohcrcnt boundaries. 
Only in fluids, at incoherent boundaries and climb- 
able dislocations can we identify px with the chemical 
potential of the X specie. 

M,=&. (3.12) 

WC shall see in section 5 where multisite solids are 
considered, that, there is no need to differentiate 
between substitutional and intarstitial sites. An in- 
crease of composition of the interstitial species I, 
holding the composition of all other interstitial spc- 
tics fixed, results in an equivalent decrease of va- 
cancies on interstitial sites. But unlike vacancies on 
substitutional sites, vacancies on interstitial sites al- 
ways have a concentration close to the total number 
of possible sites and can bc dropped from consid- 

eration. In order to standardize and simplify the 
notation, we also call these chemical potentials 
diffusion potentials, and in order to simplify the 
tr~tation in the various expressions MIX is understood 
to rcprascnt all diffusion potentials. 

The restriction in the number of potentials that are 
ncccsmry to calculate an equilibrium is a direct 
consqucnce of the crystalline nature of the solid and 
therefore should apply to the same solid under hydro- 
static stress. It can be shown (Appendix 1) that in this 
case+ .the previous equations together with the bound- 
ary conditions to be d&cuss& themafter, ,arc strictly 
quivalent to the standard conditions for equilibrium 
between fluids. 

3.4. Mechanical equilibrium 

The variational calculw gives us [6, lo] the very 
standard form of the mechanical quilibrium qua- 
tion. It states that the divergence of the stress tensor 
is zero 

T,, = 0. (3.13) 

This q&ion is also true for the large strain case, but 
the derivative is with. rospcct to variables x rather 
than x’, a distinction that is not made in the small 
strain approximation. Large strain forms involving x’ 
have been obtained [Is]. 

3.5. Interface conditions 

Along each interface, there are conditions for 
mechanical equilibrium, and a condition for phase 
change quilibrium. They both depend on the nature 
of this interface. 

3.5.1. So&i--z&i interfaces. For solid-fluid inter- 
faces, the mechanical equations state that the normal 
is a principal direction of stress. The principal value 
associated with it is equal in magnitude to the 
pressure in the liquid .and opposite in sign. The 
pressure is here the classical thermodynamic pressure, 
which is positive in fluids, and the convention for 
stress is such that the stress cormsponding to a 
tension is positive. 

The phaw? change equation can be written 

f -~c4tP --p (3.14) 

where & arc the chemical potentials in the fluid, 
while the p, andfpcrtain to the solid. Because of the 
(N - I) equalities (3.10) 

f -_&MxPP&FQ= -P. (3.15) 

BccauscM H = 0 the summation over all species is 
the same as the summation over all species but K. We 
can therefore drop the restriction and adopt the 
notation that Z without any qualification means 
summation over all species I. 

To simplify notation it is convenient to$define the 
w function as 

UJ =f --M,KPI-PA, (3.16) 
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where prr is the Lagrange multiplier associated with 
the Kth species. At this stage neither a, nor flK have 
physical meaning. Once all the equilibrium equations 
are written they will have a specific meaning, or are 
eliminated. In a fluid or is equal to minus the pressure, 
and thus because P, = pi equation (3.15) could be 
rewritten 

@“Z& (3.17) 

We should emphasize that these equations are 
between unprimed quantities, that are usually not 
convenient to use for solids. The conversion follows 
equations (3.4) and gives 

w ‘I= -f(l +E&&). (3.18) 

3.5.2. Incoherent interfaces. Along au incoherent 
solid-solid boundary, the equilibrium equations are 

T”,n; = cu”n; (3.19) 

T{nj=dnf (3.20) 

&=#P (3.21) 

where n; (reap. nf) are the components of the normal 
to the interface oriented from a to /? (reap. /3 to a). 
They all contain Q) and hence the Lagrange multiplier 
PK. 

Equations (3.19) and (3.20) imply that the normal 
is a principal stress axis and that in this case or is the 
value of that principal stress. Multiplication of (3.19) 
by nr and summation over i gives 

w4 = T@;n/“. (3.22) 

From (3.20) we can obtain a similar expression for 
04 Therefore we and wc are identified for this 
probIem. 

Using the definition of w we obtain 

p,r = V{ up - Z M,,tp f - 2’1 n$ nf ). (3.23) 

Substituting thii value of pK in (3.21) and (3.19) gives 
the equivalent system of equations 

pK= V:d/“-I:iU,Kp;- T;n;n$ 

= vgcfc - I: II&p,” - T~?l~?ly) (3.24) 

Y,n; = - T$nj’ = Funin~n:. (3.25) 

Equations (3.24) and (3.25) contain only known 
quantities and are the usable ones. Equation (3.23) 
can be interpreted as a definition for the chemical 
potential of the K species and it is constant along the 
interface. Along an incoherent interface we can then 
calculate a chemical potential for every specie, some- 
thing which is not possible at any other location 
within the bulk of the a and b phase. Let us note that 
each side of equation (3.24) depends on what specie 
is chosen for K. Because the expression 

is independent of K, the equation itself is ind~dent 
of this choice. A comparison of (3.23) and (3.15) 

shows the similarities between solid-fluid and inco- 
herent solid-solid equilibria. 

3.5.3. Coherent solid interfaces. In a coherent 
solid-solid equilibrium, the mechanical boundary 
conditions 

qjn; = - T&J (3.26) 

indicate that the tractions (but not necessarily the 
stress tensor) are continuous across the interface. If 
the same reference state for strain is chosen for a and 
/I the phase change equation (cf. Appendix 2) reads 

Vif - X MrxcO, i- V;(- P”nj%,” + Ur, P,nynT) 

= VAf p - X Ml&-t- VA( - Tln;Fn;E 

+ 2$Tjn;“niP) (3.27) 

where Qr, is the small rotation tensor 

iz, = &Q - l$). (3.28) 

For this type of interface equilibrium, the Lagrange 
multiplier pr has disappeared from the equations. In 
contrast to the two cases treated before, no definition 
of individual chemical potential for each specie arises, 
even at the interface. As we will see none are needed 
to solve problems. This is a direct consequence of the 
restrictions in a fully coherent phase change, where 
no network.site is created or destroyed. 

4. THJ2 DATA BABE 

We have identified a number of important thermo- 
dynamic quantities that determine the state of a 
system, and a number of ~~0~ of these state 
variables that enter into the equations of equilibrium. 
We now examine how one mi&t dctcmb these 
quantities from the usual quantities that are mea- 
sured and available in compilations. They turn out to 
be identical to those used in ordinary solution ther- 
modynamics and elasticity. 

4.1. Geometric variables 

The lattice constants are readily determined non- 
linear functions of composition, temperature and 
stress. From the lattice constants in the reface 
state we can compute ph. From a comparison of the 
lattice shape in the actual state and the reference 
state, we can compute the strain or, if the strain is 
huge, the deformation gradient. Since the actual state 
and the reference state are usually chosen to be at the 
same temperature but not necessan ‘ly at the same 
composition, the strain E, is a sum of a contribution 
due to composition change with no change in stress, 
f?;., and one due to stress. The general case when 
neither contribution is isotropic has been treated [Is]. 
The tensor E; is subject to the same crystal symmetry 
restrictions as the thermal expansion tensor [lq. For 
the present we will concentrate mostly on the iso- 
tropic case. Defining k such that 
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and assuming Hooke’s law of linear elasticity we can 
write 

(4.2) 

The dilatation EM is given by 

1-2v 
E,,=---- E T,+3k (4.3) 

In cubic cry&&, E; is also isotropic, so that formula 
(4.1) is still valid. 

The constant p; appears repeatedly’in various 
formulas because elastic energy naturally appears as 
energy per unit volume, whereas other energies will 
be per mole. p; is the conversion factor that trans- 
forms one into the other. Its inverse V& is the molar 
volume of the lattice sites. Combining (3.3), (3.4) and 
(4.3) we have for isotropic solids 

1-2v 
v,/v; = p;/po = 1 + E 7-u + 3k. (4.4) 

The derivative of E’, with respect to composition in 
binary alloys also oanrrs commonly 

q,, = dE’,/dc. (4.5) 

For systems with orthogonal axes 

qN = (&a,/&)(no summation) (4.6) 

where the a, are the lattice parameters. When E; is 
isotropic 

‘I# = Wldc)by = w%. (4.7) 

In binary isotropic and cubic systems g is also related 
to the partial molar volumes 

rt = (P, - P,)I3G* (4-g) 

If tl is constant 

k = (c - q,)(P, - P,)/3 V; (4.9) 

where 6 is the composition of the reference state 
chosento measure the strain. It is to be emphasized 
that the anisotropic and nonlinear versions of these 
equations are readily available (15). 

4.2. Tliennochemical qwmtities 

The two important quantities to be determined are 
f’ and M,r. There are several convenient paths of 
integration from a hydrostatic state, where these 
quantities can be determined with standard thermo- 
dynamic methods, to the actual stressed state. We 
begin with the differential off 

df’= TvdEu - s’dtI + p; Z M,Kdc,. (4.10) 

The function 4’. defined by a Legendre transform 

+‘=f’-TuEu (4.11) 

proves to be useful. Its differential 

d4’= -EUdTti-s’d0 + p;Z M,dc, (4.12) 

permits us to deduce the following Maxwell relation 

- ~;@h/~T,)c, = (~E&K),,~ (4:13) 

Hooke’s law at constant composition is 

T, = C&‘G/ - 5) (4.14) 

or 

Ev=E;+SwT, (4.15) 

where the C, are moduli of elasticity, and the S, 
compliances. Both are composition and temperature 
dependent. From (4.15) we deduce 

(~)ru=(~)+(@i,- (4-W 

Chemical potentials are assumed known at a hydro- 
static pressure P, and composition c,, q, . . . 

M,Ktp,c,,c,, . *a .) =C(,v,w*, * * * .) 

- c(K(P.W2 , . . . .). (4.17) 

It is customary to define standard chemical potentials 
& and activity coe5cients such that 

~,(p,c) = P;(R) + Re m YF/ (4.18) 

where y, is chosen for convenience, depending on the 
problem, that it approaches 1 either for dilute or 
concentrated solution. Vacancy potentials also are fit 
to this convention., Since p,(P,C;) = 0, where 15, is the 
quilibrium vacancy concentration at P 

d(P) = -RB lny,& (4.19) 

where y. is the vacancy activity coefhcient. If it is 
constant, the chemical potential of vacancies under 
pressure P can also be written 

P#‘,c,) = R~I hr (G/G). (4.20) 

The expressions for the chemical potentials are 
introduced into equation (4.13) and the resulting 
expression integrated along a constant composition 
path to the stress T,. For a binary solution 

M,,(T,,c)=&(P)-p;(P)+ RB lnA 
Yz(1 -c) 

Vid$kl 
- V;QT~--~~~TUTM 

Ve! p’ - V&P. 
+T dc 

(4.21) 

If the solid is isotropic, this expression becomes 

M,,tTU,e) = P:(P) - P!(P) 
YIC +RBln-- 

yJ1 - c) lGrlTti 

+ yddc (;)(Tu)’ -- 
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These expressions contain terms both linear and 
quadratic in stress. They simplify considerably when 
the elastic coelE&nts arc not composition de- 
pendent. Equation (4.22) for instance becomes 

YIC Mu(Tu,c) = p!(P) - p!(P) + RB In - 
Yz(1 -cl 

- V&(T*k + 3P). (4.23) 

To obtain f’ we calculate d ‘ with equation (4.12). It 
is first integrated along a path of constant com- 
position, from prcssurc P to stress T,. Using Hooke’s 
law (4.15), this gives 

#~(T~,+#~P,c)= -$car~u~u-E~,~k, 

+fS’Pz- ELP (4.24) 

and using (4.11) 

f’(TU,c)-f’(P,c)=&+,T~T,-$#P? 

(4.25) 

Since under hydrostatic stress, the familiar liquid 
thcnnodynamics is valid, the Hchnholtx free energy 
f’(P,c) is known. It may be obtained from the more 
commonly tabulated molar Gibbs free energy G,,, by 
subtracting PV, and dividing by V;. This gives 

f’V’,c) = P;G, - PP;/PP (4.26) 

Since 

p&,=L+EM=l+E&-S#P (4.27) 

one obtains, alter replacement of G,,, by its value as 
a function of composition 

f’(p,c) = ~;Icih?(P) + Re ln WI 

+ (1 -cm:(p) + 80 h.I YZU - cl11 
- P(1 f E&) + s, P’. (4.28) 

ambition of (4.25) and (4.28) gives the iinal result 

Y(T& = p;{c[iut(P) + Re h WI 

+ (1 - c)[uf(P)+Re In yr(1 - cl]} 

- P(1.t EL) 

+fSortrTuTu-#‘P’s (4.29) 

For an isotropic solid, tbis relation becomes 

f’(W) - ~;{cbt(P) + Re $ WI 

+ (1 - m&P) + Re ln Y20 - cll) 

-P(l +3k)-;;(Tay 

+l+vTT W-Wp2 
2E u u-- 2E 

. (4.30) 

Rcaysc it always appears in the boundary condi- 
tion&, the expression for the quantity vr - M,$ is 
useful. Combining (4.22) and (4.30) we get, in the 
isotropic case 

V&f - &c = p:(P) + Re In y2(l - c) 

+ v; 
[ 

-P(I +3k) 

+ MT, + 3Q - 2~ 
3(1 --VIP2 

When the elastic coefficients arc not composition 
dependent, this becomes 

V;f - &c = p:(P) -t Re In y2(1 - c) 

I- VG[--P(I + 3k) 

3(1- 2v) p’ 
---z- 

+ MT, + 3P)I. (4.32) 

In a crystal of arbitrary symmetry, thii expression is 

Vhf’ - M,,c = /Ii(P) + Re In yr(1 - c) 

f v; -P(l + EL) 

1 
++JuG, -;SwP2 f oy,T, 

c d&u 
‘2 de 

--TT,T&q~P 

(4.33) 

Expressions (4.21) to (4.23) apply. to substitutional 
binary solutions. For interstitial binary solutions the 
integration along a constant composition path from 
the heretic stress to the stress Tr using (4.13) 
glvu the elastic terms identical to those in (4.21) to 
(4.23). Because there is no network constraint or 
interstitial concentration we use (3.12) for M, and 
obtain for dilute interstitial solutions 

M(T~,c) = &(p) + Re ln ytc - V&&, 

1 ,dS,, -- 2Vo dc TJ’u- Vhd 

(4.34) 

Equations for the special cases of isotropy and con- 
stant elastic coefficients arc like (4.34) except that the 
elastic terms take the forms they have in (4.22) and 
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(4.23). We will see in section 5.7 that there is no need 
to ~stin~~ between in~titial and substitutional 
solutions. Had we chosen the vacancy on the inter- 
stitial site as component 2 we could have obtained 
(4.34) directly from (4.21) by noting that & = 0 for 
the vacancy. 

5. INTERNAL EQUILIBRIUM 

The study of internal equilibrium requires the 
simultaneous solution of the equations of elasticity 
and those of chemical equilibrium. The method we 
have found useful rccognixes that the strain is a 
function of stress and composition. But the com- 
position at equilibrium with a given diffusion potcn- 
tial is determined by the local stress alone. Thus the 
strain at a given diflitsion potential is a function of 
stress alone. If we obtain this stress-strain function, 
we can solve these problems as if they were ordinary 
elastic problems, without any further regard to 
chemical problems whose effects are now implicitly 
accounted for. 

There arc several derivations. The simplest and 
most easily genera&d for large strains and nonlinear 
&cts parallels in its first steps the thermodynamic 
methods used to derive the relationships between 
isentropic (adiabatic) and isothermal elasticity. In the 
first section we review the main msults and then apply 
them to various problems. 

s. I. open-system elastic cimstants 

After a straightforward manipulation of partial 
derivatives, the foIlowing expression, valid for a 
two-component solid is obtained (Appendix 3) 

Making the usual small strain approximations, and 
au expansion of the strain around T, = 0 produces 
the uu&ant cbcmical-potential form of Hook& law 

E, = S&T,. (5.2) 

The codilcicnts of the stress have been called open- 
system compliiances, S*, and am related to the con- 
stant composition complianccs S by 

S& = s,+ mI(@ikf 
aMI2 I( > k (5.3) 

% 
where (aM,,/&), is evaluated at T, - 0 and where 
all the quantities except Vi arc functions of c. The 
second order terms that are neglected in this expan- 
sion have been discussed [15]. Introducing the no- 
tation 

i.C. 

for interstitial solutions, and 

for substitutional binary solutions, the open systems 
compliances, for isotropic solids are given by 

E* = E/(1 + xq2E) 

P=(v-Xlf%)/(l+Xfl%) 

(K-‘)*=3(1--2v*)/E*=K-‘+9~2 

G*=G (5.6) 

where K is the bulk modulus and G the shear 
modulus. 

Far away from spinodals and critical points, the 
expression (5.3) is not very sensitive to the com- 
position. It is then appropriate to use the values of 
the open-system constants, at a ~rn~~on near the 
average composition of the specimen. The elastic 
coclBcients become constants, and the elastic part of 
the problem is now independent of the compositional 
part. For a closed system, the obvious choice is tlte 
average composition. For a system that is in contact 
with a chemical reservoir, the composition at cqui- 
lib&m under zero stress is usually a good choict, In 
the case of a very high average stress, the cqulibrium 
composition at some high pressure may be mom 
appropriate. With such mplaccmcnt of the com- 
position in (5.3) or (5.4) to (5.6), all the solutions of 
ordinary linear elasticity become directly applicable 
to elasto-chemical problems. 

5.2. Finding the composition jield 

Finally even though wc have eliminated the com- 
position to solve the clastocbcmical Rroblcm, the 
composition field is easily obtained from the solution. 
At constant di&rsion potential, composition is 
uniquely determined by the local stress. For a binary 
for example (4.21) can be solved for the ~rn~~tion 

$$j = constant x exp[e1astictcrms/l6] (5.7) 

where 

constant = exp@fr2 - 011- Ir!))lRQ (5-g) 

A useful linearized version of equation (5.7) is 
obtained by linearizing the elastic terms of that 
equation or of (4.21) to (4.23) and differentiating at 
constant M,2r P, and 0. Using (5.5) this gives 

de/X = - ‘ludT* (5.9) 

or 

c=co+x~~~T, (5.10) 

where c, is a constant of integration and is the 
composition that an element of unstressed solid 
would have if it were in equilibrium with the system. 
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For the isotropic case this becomes 

c -cO=xqTk,. (5.11) 

Had we linearized about a hydrostatic pressure P the 
result would have been 

c -c(P) = xq(T, + 3P). (5.12) 

There are several ways of evaluating the constants 
in (5.8) or (5.10), but basically they are all methods 
of evaluating M,, at equilibrium. If the system is in 
contact with a materials reservoir with specified M,, 
the answer is straightforward. If it is equilibrated with 
a fluid phase, equation (3.10) applies. If the com- 
position and stress are specified at some point in the 
system, equation (4.21) can be used. This occurs in 
some problems where almost all of the solid acts as 
a reservoir in the sense that most of it is homogeneous 
in composition and stress, and that transfer of com- 
ponents to small inhomogeneously stressed parts of 
the system hardly affects the composition of the 
homogeneous part. 

For the typical case of a closed heterogeneous 
system the overall composition is specified. At equi- 
librium the diffusion potentials become a constant 
whose value must be determined as part of the 
solution. This is a standard procedure in the method 
of Lagrange multipliers. Equation (5.7) is a one- 
parameter family of composition profiles. For each 
assumed value of the parameter Mu, we can deter- 
mine the overall composition by integration. The one 
that satisfies the specified composition is the solution 
and this fixes M,,. 

This procedure is simplified if linearization of (5.7) 
to give (5.10) is valid, and used to obtain c, from 
which we can obtain Mu. We use the conservation of 
mass for the entire solid of total volume Q’ in the 
reference state and average composition Z 

1 
cdV’=R’E (5.13) 

rr 
Substituting (5.10) we obtain 

TUdV (5.14) 

which can be substituted into (4.21) to (4.23) to 
obtain iUMlz. Once c, is known we have the com- 
position profile of the inhomogeneously stressed sys- 
tem 

c -E=Xqu(Tu-$jTylV’) (5.15) 

or 

c -E = xlfu(Tu - T,) 
where T,, is a component of the volume averaged 
stress, and x and Q are evaluated at c. This is the 
linearized equation for composition in a closed sys- 
tem. 

5.3. Internal equilibrium of vacancies 

We consider a single component solid with va- 
cancies as the second component. If, as is often 

assumed [ 181, there is no relaxation around a single 
vacancy at any level of applied stress and the eIastic 
constants do not depend on vacancy concentrations, 
the diffusion potential M,, , given by equation (4.23), 
is a function of composition only. Therefore a con- 
stant diffusion potential would imply a vacancy com- 
position field that is constant regardless of the stress 
distribution. Even with these assumptions we will 
later see (section 6.2) that the local equilibrium 
vacancy concentration at the interface does depend 
on stress at the interface. 

A more realistic model assumes relaxation. Let the 
partial molar volume of vacancies differ from the 
molar volume of the species. If the elastic constants 
do not depend on vacancy concentration, equation 
(4.23) yields with P = 0 

M.,=M~,+RBln~-(~~-v,)T~/3. (5.16) 
0 

At equilibrium, this is constant, leading to a vacancy 
concentration field given by (with c, 6 1) 

cV=E.exp(gTU) (5.17) 

where 5 is the equilibrium concentration of vacancies 
at P = 0. 

5.4. Dislocation atmospheres 

5.4.1. Atmosphere around a dislocation in an ho- 
tropic solid. Let us consider a substitutional two- 
component infinite isotropic solid, with a negligible 
concentration of vacancies. A straight edge dis- 
location with a Burgers vector of magnitude b is 
located in the solid along the z axis.. If the sixes of 
components 1 and 2 are different, there will be a 
segregation around the dislocation. This problem has 
been solved, considering one of the atoms as a defect 
[19]. This means that its concentration has to be 
relatively small. Indeed in many cases only vacancies 
or interstitials are considered. These are unnecessary 
restrictions as we shall see. 

Far from the dislocation, the solid is at com- 
position co, and stress-free. Therefore we can think of 
this far-away solid as a chemical reservoir. The solid 
with the dislocation and its atmosphere has the same 
diffusion potential as the stress-free solid at q. For 
convenience, we choose the solid at c, as the reference 
for strain. Since we have shown that under small 
strain approximation, the elastic part of the problem 
is equivalent to a constant composition problem with 
the open-system elastic co&cienta, equation (5.6), 
the stress field, with the atmosphere present, is given 
by 

T,= Tw= 
-Gb sinrp 
27r(l - v+)r 

T = Gbmscp 
v 2n(l - v*)r 

T 
I* 

= -Gbv+sincp 
s(l - v*)f 

(5.18) 
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and the composition field is, to a first approximation, 5.4.2. Dislocation atmosphere k a cubic crystal. 
using equations (5.11) and (5.18) Analytic expressions arc rarely known for the elastic 

(I + v*)Gb sin rp fields caused by point-forces in a medium of arbitrary 
AC=-_.M 

(1 - v*)nr 
(5.19) symmetry [23]. Hence the usual integrai methods for 

calculating atmospheres cannot be used. On the other 
(these equations correct an algebraic error in Ref [6]), hand the introduction of open system compliances is 
Replacing the open systems constant by their values, not restricted to isotropic solids, and formulas have 
we finally obtain been developed for the most general elastic solids 

114. Because the elastic field has been found for 
T_== T,= 

-Gb(l +lirt’E)sinQ 
2X(1 -v +2&E)r 

several cases of dislocations in these nonisotropic 
single-component crystals, the fzoncept is most valu- 

T,= 
Gb(1 + XI’E) cos Q able. 
2n(l -v + 2&E)r By a simple substitution of the open-system elastic 

coefficients, the same elastic calculations are valid for 
Ta== 

-Gb(v -&E)sinQ 

n(1 - v + Z&E)r 
solid solutions ~~b~~ to constant diffusion po- 
tentials. The composition fields are given to hint 

AC = 
-xq(l + v)Gb sin Q 

(5.20) order by equation (5.10) or more exactly from the 
n(1 - v + 2Xq’E)r solution of equation (5.7). We shall treat the case of 

where the subscript 0 has been dropped from all the a [ 1 I I] screw dislocation in a cubic crystal. The x3 axis 

variables since all of them have to be evaluated at is along the dislocation, the x2 axis is along [ 1 IO] and 

~m~sition Co, including the Burgers vector mag- x, along [112]. The stress field has been given by 

nitude. In our case (substitutional solution), x is given Steeds [24]. Because the equations are rather long, we 

by equation (5.5) and rl by (4.7) and (4.8). shall derive only the composition field. In cubic 

We first note that, since x is positive for a stable crystals, the change in composition with stress is 

solid solution, the stresses are decreased, by a fraction given to 6rst order by 

of the order of ;crt2E. This factor tends to zero for AC = xr& (5.21) 
highly dilute solutions. But for a concentrated solu- 
tion, it can be significant. Taking an ideal solution, as for the isotropic case. At constant composition, Tu 

c, = 0.5, p; = 10s mol m-‘, RB rp IO’J mol-‘, ha8 the value 

E P 10” Nme2, and tl= 0.1 gives a value of 0.25 for 
TM= 

Gb&s, sin 3~ 
xq2E. This change in the stress field, which is readily 
obtained here, has, to our knowledge, not been 

4,/2nr( I- 8 cos3 3Q)(1- 6)‘ps(3su - 2s) 

calculated within the framework of the defects model. 
(5.22) 

At low concentration, the following approximation with 
holds S =+Sil -Su- $4412 

x = coV;jRd a factor which is zero for isotropic crystals 
and 

e&? - p2, 
s 

2s 

m 2 
= 9(si, + S, + 5S/6) 

3R8 and the sY are the standard two indices compliance& 
and we can neglect 2m’E in comparison to (I- v) referred to the cube axis. For cubic crystals, the open 
obtaining thereby the classical point-defect solution system compliances are 

-c&P, - l’a(l + v)Gb sinp S$‘S#+& iandj<3 (5.23) 
AC N 

3nRB(l - v)r * s;=sg iand j>3 

But it is to be emphasized that the composition therefore 
equation (5.7) can be solved exactly by numerical Sf=S 
methods. Our result is more general in that it includes 
in a self-consistent way all the interactions that may and 
be present, specifically in concentrated solutions, 2s 
between the defacts themselves and the defects and a*= 

the matrix. In particular, it takes into account the 9(s :I + s,, + 5S/6) ’ 

nonideality of the solid solutions in a phenom- Combining (5.21), (5.22). and (5.23), we obtain the 
enological way that is model independent. If no composition field 
measured value is available for the activity coefficient 
function y,, specific statistical mechanical models AC= 

9xqbb l se sin 3~ 

[20-221 can of course be used and the result directly 4~2~(l-~*cos23Q)(l-~*)~~~(3s~-2~) 

introduced in the value of x. (5.24) 
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where all the constants that depend on the material 
have to be taken at t+, the composition far away from 
the dislocation. This result, which is obtained by a 
simple algebraic manipulation has, to our knowledge, 
never been obtained by other methods. 

J.4._% ~~io~~~~on at~os~~~e~: non&tear eflecrs. At 
constant diffusion potentiats, when the composition 
changes from the unstressed to the stressed state are 
small, we have shown that the strain is linearly related 
to the stress, as in the usual theory of elasticity. But 
this law has a smaller range of applicability than in 
the constant composition case. The thermodynamics 
of solutions introduce nonlinear terms in the 
stress-strain law. When the strain is expanded as a 
function of stress, we have identified four second- 
order effects [ 151: (a) nonlinear stress-strain laws at 
constant composition, due, for instance, to re- 
arrangement of interstitial atoms into sites that be- 
come nonequivalent under stress; (b) change of com- 
pliances with composition; (c) deviation from 
Vegard’s law; (d) nonlinearity of the solution thermo- 
dynamics The first two effects have been considered 
within the framework of defqts theories. It does not 
seem that the two others have been treated [25]. Since 
solution of nonlinear elastic problems have been 
found [26], they can be used, with the secondorder 
open-system compliance% to find second-order effects 
on dislocation atmospheres. 

We have seen in Section 4 that, for a binary 
substitutional solid with vacancies, in equilibrium 
with a fluid, the following is true 

h!f,,=Ir: (5.25) 

M b’P2L (5.26) 

where af and &are the chemical potentials of species 
1 and 2 in the fluid, It seemed therefore rather natural 
to use these equations, that have the same form as 
those for fluid equilibrium, rather than the math- 
ematically quivalent 

&=/G-Pcf (5.27) 

& = -&. (5.28) 

From a theoretical point of view, there is no 
difference. Although these equations are valid for 
nonlinear inhomogeneous and anisotropic solids, we 
give as an example expressions for constant elastic 
coe&ients and isotropy 

The concentration of vacancies is small compared to 
c, and q. Measurement of c,, y. and V, are therefore 

subjqt to potentially large errors. These affect qua- 
tions (5.25). (5.26), and (5.28) but not (5.27). For 
computational purposes, it is then better to use the 
second formulation. Besides, if we are only interested 
in the composition e, and cl, we can neglect the 
vacancies and use only equation (5.30) for qui- 
lib&m calculations. By keeping the flexibility of 
choice for the dependent substitutional species, we 
can eliminate species whose concentration has been 
found to have a negligible effect on the chemical 
behavior of the solid solutions, including vacancies, 
even if they are essential to the mechanisms by which 
chemical equilibrium is attained. 

Up to this point, we have focused our attention to 
crystalline solids that are most common in the metal- 
lurgical world, where there is only one substitutional 
site, that is highly occupied, and an interstitial site 
that is lightly occupied. But in many instances crys- 
tals have several nonequivalent sites, occupied by 
mixed species of atoms or molecules or vacancies. 
The fraction of empty sites can vary for each type of 
site from 0 to 1. In the description we can or course 
eliminate sites that are and remain empty. They don’t 
contribute to the energy or entropy of the system. For 
all other sites, we can describe their status by the 
densities of the atoms and the densities of vacancies 
on each of them. As for the substitutional site with 
which we have been dealing in the prccding section, 
there will be a constraint condition: the total density 
of atoms and vacancia is constant for each site. 
Using the method described in section 4, it can be 
shown that at quilibrium, the diffusion potentials are 
constant, qua1 on all sites, and qual to the corm- 
sponding difference in chemical potentials when 
quilibrated with a fluid 

~~x=~~~.*.=~~=~~-~~ (5.31) 

where the superscripts Iabel the different sites. There 
are cases where there is no species K that is present 
on all sites, or where it is not convenient to use the 
same K-species for all sites. The formulas can easily 
be transformed, using equations (3.8) and (3.9) 

M,-E M&=&. (5.32) 

If a species is not present on one site, it cannot be 
used as the dependent species on that site, and its 
diffusion potential quation drops from the set of 
equations (5.31). The vacancies are to be considered 
as a species, since an exchange of an i-site vacancy for 
a j-site vacancy produces no change of state, exactly 
as the exchange of a K atom on a i-site with a K atom 
on a i-site. 

EZquations (5.31) govern the q~~b~~ par- 
titioning of I atoms on the different sites. If only the 
total density is of interest, one can interpret quations 
(5.31) differently. They state that along an qui- 
librium path, the Helmoltz free energy density is only 
a function of the total density of the (N - 1) indepen- 
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dent specie&t Calling M,# the common value of the 
diffusion potential for each site, we have 

df’=s’dO+CM,xdp;. (5.33) 

Equation (5.33) shows that the formulas developed in 
the preceding section can also be applied, with the 
total density of each species as composition variables 
(or the ratio pi/p;, pi being a chosen total density, 
like the total density of sites, or the density of sites 
1, (IPI,..., v) whatever is most useful). 

In the quations used in Section 3, the interstitial 
site was sparsely occupied, and we used equation 
(4.34) for the diffusion potential of this species. But 
rigorousiy its ~ffu~on potential is M,,, where u are 
the vacancies on interstitial sites 

M,, = Mf - R8 In E + elastic terms. (5.34) 
, , 

If there are v interstitial sites per substitutional site, 
y,c. tends to one as c, tends to v. Therefore, in dilute 
interstitial solutions 

A& Y &f R8 In y1 c; c elastic terms (5.35) 

which is the expression we have used. In almost all 
cases, site occupancy is either high or low. Phase 
transformations occur before intermediate occupancy 
is mached. But hydrogen in metals is an important 
case where the occupancy can span all the possible 
composition field without a phase change. In such 
cases, the rigorous di&sion potential has to be used. 
Equations for the internal quilibrium between sites 
have been given, with the preceding approximation 
by Li et al. (271. It is clear that there is no need to 
make the distinction between interstitial and substi- 
tutional atoms. A single formalism with multisite 
occupation is possible, and avoids confusion that can 
arise if a specie occupies both substitutional and 
~~~ti~ sites [7]. For most metalhugical examples 
species do seem to occupy only one site. 

We next turn to phase change equilibrium at 
solid&id interfaces. The case of a stoichiometric 
compound already illustrates the principal features. 
Let species A completely occupy a quivalent sites a 
per unit cell, species Bb quivalent sites B, etc. 
Because there is only one species on each site we 
cannot dehne a diffusion potential. In the liquid each 
species has a well defined chemical potential. The 
equation for quilibrium is 

f-(apt;+bp;+c&...)po= -P (5.36) 

where po is the total density of sites in a unit cell. This 
is a straightforward expression of chemical qui- 
lib&m for the dissolution of the compound 
UbC,..., which continues to hold under stress. It 

- 
tWhea a function F(x,,.Q,. . . ,x,) is such that, for ail 

valwa of the x, 

aF~ax,EaFIaX?=....i:aFIaX, 
then F is a function only of the sum (.q +x2+. . .x.). 

is Gibbs’ equation (393) [9] since he quite clearly 
considered solids to be compounds (CP) and defined 
a single chemical potential ~1” for them in the fluid 
even if they dissociated 

P” =a,u,++blrs+ccrc+... (5.37) 

In de&ring pep there is a rigid adherence to a law of 
definite proportions dictated by the numbers of 
quivalent sites fuhy occupied in the crystal structure. 

If we now let the a sites be occupied by several 
species 1, J, K including vacancies we obtain diffusion 
potentials. Choosing species K as the counterspecies 
the equilibrium equation is 

f - POI: Ml& -p&&+b&..)= -P. (5.38) 

The term in the parenthesis is the chemical potential 
for the stoichiometric compound K&C,. . . There 
are obvious advantages to choosing K to be the major 
species on site a. If site a is a lightly occupied 
interstitial site the compound is B,C, . . . and j~x is set 
to xero. 

If several sites are each occupied by more than one 
species the equations are not ,$angai if a different 
species is chosen as counter species for each site. If 
the same species is chosen as counter species of 
several sites the terms combine. In particular if the 
same counter species K is used f-r all sites we obtain 

= -P. (5.39) 

Summing over all sites we obtain 

f -h~~IKcI- (a+b+c-t-...)pd,,= -P. (5.40) 

This is identical with equation (3.15) if we redefine p. 
in terms of atom site- density instead of 
densities. 

6. INTERFACE EQUILIBRIA 

unit cell 

In this section we illustrate various aspects of 
equilibria involving three kinds of interfaces that 
stressed solids can have but ignoring capillary effects. 
Most of our examples will be uniformly stressed, and 
have only as many components as are necessary to 
illustrate the points to be ma&. When the solid is 
multicomponent and nonuniformly stressed, the inte- 
rior quilibria can be solved by the methods of the 
open-system elastic constants of the previous section. 
This converts a multicomponent elastic and thermo- 
chemical problem into an elastic problem alone, 
although possibly a nonlinear one. 

6.1. Change of ~olu~i~~ty witk stress 

Our first example is a Gibbs solid-a pure sub- 
stance for instance-in quilibrium at pressure P with 
a fluid in which it can dissolve along a flat interface. 
Forces are applied to the solid so that its state of 
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stress is now T,. To maintain mechanical equi- 
librium, one of the principal values of qj is -P, and 
the corresponding principal direction of stress is 
normal to the fluid-solid interface. What is the 
change in the chemical potential of the fluid necessary 
to keep the system in chemical equilibrium? The only 
equation, besides mechanical equation, is the bound- 
ary conditions, equation (3.18) which becomes for a 
one component linear elastic solid 

f’--pLp’p;r: -P(l +I&). (6.1) 
Following Gibbs [9, p. 1961, we compare this equi- 

librium with that of the same solid phase equilibrated 
under hydrostatic stress with the same fluid. Using 
bars to indicate the values of the thermodynamic 
quantities in this equilibrium we write 

F_fi”p;= - P(1 + E,). (6.2) 
Subtracting these two equations, we obtain 

f’-f’+P(EU-&u)-p;OCL-~L) (6.3) 

(f’ -f’) is the elastic energy stored in the solid on 
going from pressure P to stress state T, and 
P(E, -EM) is the work done on the solid by the 
liquid. The 1.h.s. of equation (6.3) is thus the work 
that has to be done to bring a hydrostatically stressed 
solid to the nonhydrostatic state while surrounded by 
the liquid. It is necessarily positive, and the fluid in 
equilibrium with a nonhydrostatically stressed solid is 
always supersaturated with respect to precipitating a 
hydrostatically stressed solid by the amount given in 
(6.3). If we let cL and Et be the concentration of the 
solid component in the fluid in equilibrium with 
respect to the nonhydrostatically and hydrostatically 
stressed solid, we can use equation (4.30) to obtain 

P; Re Wm/f&) = 

+3(1-2v)P,+1-2v 
2E 

E TM P. (6.4) 

Let r,, rr, and -P be the principal values of stress. 
If the change in solubility is small, and the solution 
is dilute or ideal, we get 

CL - CL 
ti=&E[f:+l:-Zvr,t, 

CL 

+ 2(1 - v)(r, + 12 + P)P]. (6.5) 

3ecause - 1 < v < l/2, the right hand side of equa- 
tion (6.5) is positive, except of, course when 
I, = t,= -P, where it is zero. The solubility of the 
solid in the liquid is always increased when a stress 
is applied to the solid. The solution is supersaturated 
with respect to a hydrostatically stremed solid at 
pressure P, a classical result that was derived by 
Gibbs. 

We now turn to the case of a two-component solid 
in equilibrium with a melt. We have two conditions 
from equilibrium 

f’-PfPi -&P’2= -PC1 +w (6.6) 

M 12=C(t-Pt. (6.7) 

We compare again to the equilibrium of the solid 
with the fluid under pressure P. 

F-fi:a;--k:p;= -P(l +I?,,) (6.8) 

A?,2=ji:_-ji; (6.9) 

Subtraction of (6.8) from (6.6) and (6.9) from (6.7) 
gives two equations for the change of composition in 
the fluid and the solid to maintain equilibrium under 
stress. 

Assuming for simplicity (i) P = 0, (ii) terminal 
solutions (i.e. both solid and liquid are dilute solu- 
tions), (iii) no change in elastic codficients with 
composition, we get 

RBln(-&)+ V;[-$(t,+tJ’+!-$ 

x(t;+t:)c~(t,+tJ]=B8ln(~)(6.10) 

R0 In 4 -F) 
- - FM, + f2) e(1 -c) 

=Reln CLQ - ZL) 

&(I - CL) - 
(6.11) 

As usual, this system of equations can be solved 
numerically, or, if the changes are small, we can 
linearize the equations, and solve with Cramer’s rule. 

6.2. Vacancies equilibrium in a one component solid 

Consider a cylinder of isotropic hydrostatically 
stressed solid in contact with a fluid in which it 
cannot dissolve at pressure P, with an equilibrium 
concentration of vacancies Z,. A load is applied that 
produces a stress whose components are T,, 
T, = T@. We want to calculate the equilibrium con- 
centration of vacancies along the surfaces S, and S,. 
Since the components of the solid don’t appear in the 
fluid, there is no equation like (3.12). But the phase 
change equation (3.15) applies, and in this case since 
cc, is identified with Pt = 0, the equation becomes 

v;y - (1 - c&V,, = -P&(1 + EM) (6.12) 

where -P is the normal traction. Let us first adopt 
Herring’s simplifying assumptions (a) that there is no 
volume relaxation around vacancies, (b) that there is 
no change in elastic constants with vacancy concen- 
tration, and (c) that the solid obeys the law of dilute 
solutions. Using (4.32) we get (i) under ptessure p 

j&P)+ RB ln?#==O (6.13) 

(ii) under stress, along S, 

p;(P) + RB In c: + V; 
E 

-P -ii,,+ T,r 

+G (2Tf,+ T:)+wpr 1 
7 (2T, + T=)] (6.14) 
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(iii) under stress, along S, 

&P)+R0lnc;+ Vi 
[ 

-P -;;,,+ T-)2 

+lCv 
3 (2T2,+ T;)+vP 1 ==vp-” 1+- 

[ 
’ ;2’(2T”+ T,) 1 . 

It is quite clear that c: and c: are different, UnlesS 

(6.15) 

T, - T,, i.e. when the system is under hydrostatic 
stress. since we have assumed no relaxation around 
vacanci~ rj = 0, and therefore according to equation 
(4.23), M,, is di!kcnt on S, and S,. As a result, a 
vacancy flux will appear. This is further discussed in 
section 8.4. 

Making the further assumption that P = 0, and 
neglecting quadratic terms in stress, subtraction of 
(6.13) from (6.14) and (6.15) gives 

ln(c:/Z,) PI V&T,,/RB 

ln(c:/C,) = ViT,/R& (6.16) 

This is Herring’s [ 18,281 well known formula: to first 
order in stress, only the normal pressure affects the 
equilibrium vacancy concentration at an interface. 
We will get the same results, whether this interface is 
a solid&id interface or an incoherent solid-solid 
interface. 

The order of magnitude of the quadratic terms can 
be easily obtained by making T, - 0 so that linear 
terms disappear in (6.15). We obtain, along S, 

ln(c;/Z,) - l’;TfJZE RB. (6.17) 

Within the small strain approximation, this effect is 
less than 1% of the effect on S,. But there arc cases 
where it might be sign&ant (cf. section 8.4). 

Conditions (a), (b) and (c) can easily be removed 
through the use of the general formulas developed in 
section 4. As an example we treat the case where there 
is a volume relaxation around a vacancy. Using 
(4.32), assuming P = 0, and following the above 
procedure, we get, to first order in stress 

T, - qc;(2T, + T,) 1 (6.18) 

ln(c:/fV) = 2 [T, - qc:(2T, + T,)]. (6.19) 

The corrective term, proportional to 9, contains the 
trace of the stress tensor. As such other components 
than the normal pressure influence the vacancy con- 
centration at a particular interface, if elastic rclax- 
ation around vacancies are taken into account. 

6.3. Using open-system elastic constants for multi- 
component phase equilibrium 

For the general multicomponent phase-equilibrium 
under stress, the fact that the Mix are constant gives 

(N - 1) relationships bctwctn stress and com- 
position. As shown earlier it is possible to solve these 
equations for composition as a function of stress and 
obtain the strain S; that results from composition 
changes. The result is a stress-strain relation at 
constant M,x. This ~rclationship was used to solve 
elastic problems within a single phase as if it were 
composed of a single component. 

These same relationships apply to each individual 
phase in a multiphase equilibrium, but the phase 
change boundary conditions of section 3.5 contain a 
similar coupling between stress and composition. In 
the present section we shall demonstrate that by using 
open-system&stic constant the compositional part 
of these equations can also be eliminated. In fact this 
method allows us to treaf multicomponent cqui- 
librium as if each phase were a onacomponcnt purely 
elastic part of the system, and that for such a solid, 
the cu function is equal to the elastic energy apart 
from a constant [cf. equation (3.16)]. Finally once the 
elastic problem has been solved, the composition field 
is obtained by the methods of section 5.2. 

We will use as an example binary isotropic linear 
solids, although the proof can be made for a multi- 
component anisotropic system. We shall further as- 
sume constant elastic codhcients, and that, at zero 
stress and potential M,r, the composition is c. Let AC 
be the change of composition due to a change of 
stress. Expanding f’ around the unstressed state we 
8nd using (3.6) and (5.4) 

f’(Tu,c + AC) =f(O,c) + P;&& + <h>‘/x 

-&(T~+~T,T,. (6.20) 

Let us consider the function 

I’+ =/‘(O,c) - & (TUY + s TUT,, (6.21) 

where we have added to the free energy of the solid 
under zero stress and at potential M,r, an elastic 
energy computed with open-system elastic constants 
at M,,. Replacing these constants by their values (5.6) 
we obtain 

I’* =f’(O,c) + s TUTU 

- & (T,)z + ;m2(T&? (6.22) 

But the change in composition AC is given by (5.11) 
so that (6.22) can be written 

f’* =f’(O,c) + g Tw T,, 

- f (Td + (Ad% (6.23 

The function If’ - p;(c + Ac)M,,) that appears re7 
pcatcdly in the phase change boundary equations cf. 
(3.24) and (3.27), is thus obtained as 

f’ - p;(c + Ac)M,* =f’+ - ~;cM,~. (6.24) 
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Or, if we replace Mu andJ’(O,c) 

.f’ - p;(c + Ac)M,, = -&(T,f’ 

1 +v* 
+ 2F+ T,,Ti, - ~M0.c). (6.25) 

2 

Thus the various phase change boundary conditions 
are expressed in terms of an open-system Helmholtz 
free energy for each phase. This free energy has the 
same form as a Helmholtz free energy of a one- 
domponent phase. Its elastic constants are the open- 
system elastic constants of section (5. I). The reference 
state of each phase is the unstressed multicomponent 
phase with the same value of M: Its composition is 
c in (6.24) and (6.25), its lattice parameter is used to 
define strain, and its constant composition elastic 
constants are to be used in equation (5.3) or (5.6) to 
calculate the open-system constants. 

By examination of (6.25), we can see that the use 
of these own-s~tem constants allows us to treat, as 
far as the stress is concerned, any multicomponent 
system just as if it were a one-component system. 
Thus elastic solutions developed for one component 
inclusions, for instance 1231, can now be used for 
similar multicomponent inclusions. 

After finding the stress field, the results of section 
5.2 can be used to obtain the composition field. 

An interesting consequence of the preceding results 
occurs in a binary system in which both phases have 
the same conventional elastic constants. In an infinite 
single component system the Bitter-Gum theorem 
[I4 holds. There is no elastic interaction between 
particles. The system is degenerate with respect to 
particle shape and dispersion. In a binary system if 
the x or Q’S differ, the open system elastic constants 
would differ even if the conventional elastic constants 
do not. As a result there is now elastic interaction 
between particles, that is entirely the result of the 
compliance due to composition changes. 

7. PARTLU EQUILIBRIUM-LOCAL EQUILIBRIUM 

When the general conditions for equihbrium are 
not satisfied, the system will tend to cqilibrium. The 
rates of various processes are usually so different that 
in the time scale of an experiment we may often 
assume that some processes have reached equilibrium 
while others have not occurred at all. In this section 
we briefly discuss these partial equilibria. When pro- 
cesses are too fast for thermal and chemical nlax- 
ation, we obtain the results of classical adiabatic 
elasticity. The relation between isothermal constant 
com~sition elastic coefficients S& and adiabatic 
elastic coefficients S$, is a well known thermo- 
dynamic result [17] 

ai/ is the thermal expansion coefficient, and CT the 
heat capacity, both at constant stress. 

When thermal and elastic equilibration occur but 
no diffusion or interface motion, we have classical 
isothermal elasticity. Comparing equation (5.3) and 
(7.1) we note that they are quite similar except that 
temperature instead of compositional derivatives are 
used. Thus the relationship between adiabatic, iso- 
thermal, and open-system elastic constants is one of 
increasing ~uiiib~tion first with thermal and then 
with materials reservoirs. 

Diffusion of some species, e.g. interstitials, often is 
orders of magnitude faster than that of other species. 
Such a partial equilib~um, called ~~~uilib~urn 
[29], is often reached in phase transformations of 
multicomponent alloys. Only hydrostatic cases seem 
to have been treated. When stresses are important the 
rn~i~~tion from cor~~nding binary interstitial 
alloy problems seems straightforward. 

Interface processes, crystal growth or dissolution 
and grain growth all involve network modification 
processes that may be quite slow. Grain boundary 
sliding may not occur. For calculation of such partial 
equilibria, the corresponding equilibrium equations 
must be suppressed. Polycrystalline averages of the 
properties can be used to obtain corresponding aver- 
ages for stress and composition fields. 

The most common partial equilibrium occurs when 
all processes except diffusion have relaxed to equi- 
librium. The only suppressed condition is that M,, 
need be constant, but M, remains continuous across 
all interfaces that have reached equilibrium. This 
partial equilibrium is called local equilibrium at 
interfaces. 

Many experiments are done under conditions 
where partial equilibrium is maintained while some 
or all of the remaining variables are observed while 
they relax to equilibrium. The laws of most of the 
relaxation processes have been studied. Interface 
relaxation is complicated and often nonlinear. On the 
other hand, heat flow in response to thermal gra- 
dients is coupled with elasticity and constitutes the 
subject of ~e~~l~ti~ty. DifIbsion in response to 
nonuniformity of the JUIK is also well understood, 
regardless of whether the origin of the gradients in 
iUlx are from composition gradients, stress gradients 
or interface conditions. The next section examines a 
set of problems involving diffusional equilibration 
under isothermal conditions with local equilibrium 
assumed. 

8. DIFFUSIONAL KINETICS AND CREEP 

Many problems of diffusion involve stress. In 
diffusional creep the applied strtss is the motivating 
force for the diffusion. Compositional heterogeneity 
results in a self-stress that affects diffusion in a way 
that is too often ignored in the diffusion calculation. 
As we have seen, stress ai%cts the diffusion potential 
and interface equilibrium conditions. It has an effect 
both on the rate and direction of the diffusional flux 
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within each grain and on the boundary conditions to 
the diffusion equations at each interface. 

Often only some of the eliects of stress have been 
considered, or approximations have been made that 
ignored effects of the same order or larger than the 
effects considered. In this section we will examine the 
effects of stress on diffusion and creep, inside the 
grains and at interfaces, and with both applied 
stresses and the self-stresses that arise from the 
compositional inhomogeneity. 

We begin with a formulation for multicomponent 
diffusion that is consistent with our thermodynamic 
formulation and has the proper invariances with 
respect to arbitrary choices of the species K. We then 
examine problems of inhomogeneous stress when the 
network is unaltered. Much of this was the subject of 
a recent overview [30] in which a hierarchy of in- 
creasingly difIicult problems were discussed. We next 
turn our attention to diffusional network alteration 
phenomena, such as creep and phase change, both 
under applied stress and self-stress. Because of the 
importance of vacancies in this problem, interesting 
phenomena occur even in one-component systems. 
We reformulate and simplify the general equations to 
examine a few problems of diffusional creep in a 
one-component system with vacancies. 

8.1. Multicomponent dijbsion in hothermal network 
solids 

As shown in [31] the invariant formulation of 
substitutional multicomponent diffusion flu J, in an 
isothermal isotropic or cubic network solid? is given 
by 

-J,- i B,,gradM,, I=1 ,... N (8.1) 
J-I 

Bu is a mobility, function of composition and stress 
at a given temperature. It ‘has been shown that the Bu 
are independent of the choice of the species K. There 
are (N - 1) chemical species plus vacancies. There are 
(2N - 1) independent network restrictions on the B,, 

cB,,=O J=l,...N (8.2) 
I 

cBu==O I=l,...N. (8.3) 
J 

As a result there are (N - 1)’ independent coefficients 
which is the expected number of phenomenological 
coefficients for the diffusion of (N - 1) interacting 
species without a network constraint. It is also the 
number expected for (N - 1) interstitial species. For 
a one-component solid with vacancies there is only 
one term 

J,, = -J, = B,, grad M,, . (8.4) 

Similarly for the diffusion of a single interstitial 
species there is one term 

-- 
tThe reference geometry for diffusion is usually the un- 

stressed state. With the notation we have used, the fluxes 
should be noted with a prime. Since there is no confusion 
possible, we shall drop it here. 

-J,=B,gradM,. (8.5) 

For a two-component substitutional solution there 
are four independent B. With vacancies as the K 

species the M, terms disappear and we have 

-J,=B,,gradM,,+Bt,gradM, 

- J2 = B21 Brad MI, + & grad & 

-J, = B,, grad MI, + B,2 gradM,. (8.6) 

with the restrictions that 

B,, + B,, + B,, = 0 

812 + Bn + 812 = 0. 

Using species 2 as the K species we have the same 
coefficients in different combinations with the 
diffusion potential M 

- JI = Bll Brad Ml2 + 4, Brad M,z 

- J2=B2,gri3dM,,+&gradK2 

- J.=B,,grad M2+4.tiM,2. 

The knowledge that B remains the same in various 
formulations should permit flexibility both in gather- 
ing of data and in formulating and applications. 

Stress affects both B and M in the flux equations. 
B is a&ted by the level of stress alone. We expand 
about a stress state which can be either zero 

B JW = B:&c, 0) + BIW(c, Q)Tu + . . . (8.8) 

or some other convenient state P 

BJK& 8, T) = Bk&. 4 To) 

+ %&,4 7’%Tu - To,) W’) 

The gradient of M depends on the stress and the 
stress gradient. From the Maxwell equation (4.13) the 
coeEcient of the stress gradient is the strain produced 
by a unit composition change 

&)= -v(z)Tu (8.10) 

which is precisely defined and readily estimated from 
lattice parameter-composition data. For cubic or 
isotropic cases 

8MJKIaTV = - vi~JK6# (8.11) 

and 

VMJx = RWVCJ/CJ) - O’~&xll 
- V;qJKV(rrT). (8.12) 

Strictly this should be at the actual stress, but in most 
cases data for unstressed crystals should be adequate, 
and leads to a linear formulation. Combining (8.1) 
with (8.12) and retaining only terms linear in T we 
obtain for cubic or isotropic cases 

-J,= --A,(VrrT)+p; 1 D,4,VcJ. (8.13) 
JZK 

where the factor p; needs to be introduced since the 
c are defined to be dimensionless rather than molar 
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densities and 

D U&-j = v; R8 hJ (8.14) 

Because diffusion fluxes and gradients are indepen- 
dent of the choice of K, A, and the B/J can be shown 
also to be independent of that choice, but to be 
consistent the D, must depend on the choice in the 
way shown in (8.14). To avoid large uncertainties in 
the D,f10 it is again clearly advantageous to choose K 
to be the major species, rather than vacancies. 

8.2. Difiiion without network changes 

Conservation of matter is expressed by the qua- 
fion 

, h pox +divJ,=O. 

Compositional heterogeneity produces a long-range 
stress field and changing compositions change this 
field. Since stress and stress gradients affect B and M, 
the stress and diffusion quations have to be sob& 
~rnultan~~ly. It has been common to ignore this 
mutual interaction and study either the stress re- 
sulting from diffusion or the effect of stress on 
diffusion alone. When the ignored effects are small, 
this is valid, but for most cases it is not. 

A straightforward technique for solving the stress 
and dif%sion quations haa been developed [30]. As 
in section 5 the ~~tions~p between elastic stress and 
an arbitrary composition field often remains solvable 
and can be used to eliminate stress from the diEusion 
equation. Plastic stress accommodation would render 
this technique invalid. 

A hierarchy of increasingly complicated problems 
was examined for cases of diffusion in binary alloys 
inw~~~c~~~a~~~~.~~~ 
due to compositional beterognniety alone. 

The mutual interaotion in most cases is a nmjor 
factor. In the case of spinodal decomposition, it can 
change the sign of the diffusional flux and is m- 
sponsible for the metastability between the chemical 
and coherent spin&al [32]. The stress e&et is so long 
ranged that ~rn~ition~ heterogeneity can affect 
diffusion elsewhere. Fick’s law which states that the 
flux depends only on local gradients is often not valid. 
Because this stress effect is proportional to the local 
concentration it can be neglected in dilute solutions. 

Interface boundary conditions for diil&ion in in- 
terstitial solutions have been examined for cases in 
which the network is chemically inactive. The bound- 
ary condition is a simple continuity of M at a fixed 
location in the reference state. It depends on the level 
of stress at the boundary. For local equilibrium 
equation (5.7) is applicable. 

8.3. DifFsion with self-stress ~p~e~h~ge at the 
popery 

In our previous work [30] on the effect of self-stress 

Fig. 1. Compositions in a self-stressed diffusion couple with 
an incoherent interface. The compositions far away from the 
interface are c; and ct. The sclf-stmss generated by the 
composition gradient has shikd the equilibrium com- 
position at the boundary to 2, d from their unstressed 

phase diagram vatucs of C*, zfi. 

on diffusion the network was conserved at the bound- 
ary. There arc many metallurgical problems, such as 
dif%sion controled phase growth, where the network 
is not conserved, but where q~~~~ prevails at 
the interface. This quilibrium is governed by qua- 
tion (5.7) and a phasechange quation that depends 
on the nature of the boundary. 

Self-stress is what we call the stress that is the result 
of sample h&erogeneity. Generally its value at a point 
is a fuaction of the composition distribution every- 
where. For special geometries its value becomes a 
simple expression involving principally the local com- 
position, and the effects of self-stress on the thermo- 
dynamic variables can be expmssed in tetms of the 
local composition only reducing self-stress problems 
to composition problems. 

One such Beometry is the semiGn6nite solid with 
concentration fields that are functions only of the 
distance from the surface. We will consider the case 
of a semi-infinite couple, with di&rsion in a and /l, 
and an incoherent boundary. Under pressure P, the 
quilibrium compositions arc P and Zfi. When 
diffusion takes place, the compositions are c; and cg 
far away from the boundary, and c” and C’P at the 
boundary (Fig. I). We shall further assume, for 
simplicity, that the pressure P is zero, and that the 
diffusing sample is under zero external pressure. This 
implies that the tractions are zero at the a-8 bound- 
ary. We also assume no change of elastic constant 
with composition for either phase. Under these hy- 
potheses, the mechanical quilibriurn at the interface, 
equation (3.25) is always fulfhled. Equations (5.7) 
and (3.24) become, using (4.22) and (4.25) 
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and 

c(y + R8 In[$(l - E”)] 

At equilibrium under xcro pressure, these cqua- 
tions become 

pp-pp+Re In ,‘;=$ 
j$(l -F) 

p? + R8 ln[E( 1 - P)] 

= ,p + R8 hilf{(l- ?)]. (8.19) 

We first have to find the stress field. In a half-space 
specimen, we have found [30] that its trace depends 
only on the local comp0sition 

r,= -2Y5f*(P- c;) (8.20) 

YL=J - 2 YPnP(ZF - cl) (8.21) 

where Y = E/(1 - v). Introducing these values in 
(8.16) and (8.17), and after subtraction of (8.18) from 
(8.16) and (8.19) from (8.17), we obtain the system of 
equations to solve for E’ and EC. As we have seen 
before, it can be solved numerically or, if (P - c;) 
and (P -c() am small, it can be linearixcd, and the 
resulting system of equations solved by Cramer’s 
rule. 

Under the assumption that thcrc is no normal 
stress across the a-@ interface, 8 common tangent 
construction is possible (see Appendix 4 for the 
d~o~~tion). To the Hclmboltx free energy per 
mole we have to add the elastic energy per mole, 
which is just a fwtion of the local composition. Its 
value is 

A (8.22) 

where Vi is the molar volume at composition co. The 
cons~~ion is shown on Fig. 2. This type of con- 
struction has been used by Hillert 1331 for the case of 
massive transformation in which case it is proper to 
assume that the phase which is forming is homoge- 
neous and by Purdy et 01. [34] for diffusion induced 
grain boundary migration. 

8.4. Efleet of vacancies: general fo~mu~uti~ 

When vacancies, in addition to providing a mech- 
anism for diffusion, also interact with the stress, and 
provide a means of creating or destroying network at 
an interface, new phenomena appear, in particular 
diffusional creep. In this section, we consider only 

one-component systems, where these effects are not 
obscured by the phenomena previously described in 
this chapter. We first fotmulate the creep as a bound- 
ary vahtc problem and then turn our attention to 
specific creep problems. 

The partial dl@erential equation 

The flux of vacancies J is given by 

-J, = ~~~~(~,~)~ (8.23) 

where B, is a tensor function of the temperature 8, c, 
(the concentration of vacancies) and the stress. An 
expansion around T = 0 gives 

B, = B&d) + B~(c,,B)T~, -t . . . (8.24) 

The co&?icient of order 0 is given by 

4 = I)lic,(l - c,)iR~p~ (8.25) 

where D, is the seJf-di&sion matrix. Usually it is not 
very much dependent on the vacancy concentration. 

The tensors B$ and Bi being properties of a 
crystalline material follow the rules of crystalline 
symmetries. For isotropic materials 

Bo, = B%, (8.26) 

B” = c,(l - c,)D/RBp;. (8.27) 

The tensor BfEv has the same form as an elastic 
tensor for an isotropic material 

&I &I = Pkh 4 + YY# (8.28) 

where /3 and y are two constants. This equation 
reveals that if the tensor B, is stress dependent, it 
introduces a stmss-couplcd anisotropy in an other- 
wise isotropic diffusion coefficient. 

Neglecting second order ctlbcts in stress in Ma,, 
that is, assuming that the elastic coefficients do not 
depend on vacancy concentration. the gradient of the 
vacancies diffusion potential can be written 

[ 1 

1 + W, 
alnc (d., - v;qkl Tk!Je 

e 

(8.29) 
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If dilute solution laws apply, this equation simplifies 
into 

which, for isotropic material hecomes 

VM”, = (R6/cJVc, - QV(rrT). (8.31) 

The conservation equation is expressed as usual 

ac, 
Pi,, +J@=& (8.32) 

The source and sink terms, which is the number of 
vacancies created per unit volume, come, for in- 
stance, from the vacancy source at a moving dis- 
location. The complete diffusion equation for va- 
cancies is obtained by combining (8.23) with (8.32) 

P; 2 = &Is + r~&f(KJl,l,r. (8.33) 

In an isotropic solution, one gets 

cJ’V& - R8 V2T,. (8.34) 

where we have neglected the stress dependence of Bv. 
When the relaxation of the lattice around a va- 

cancy can be neglected, the last two terms of the r.h.s. 
disappear, and one obtains the simple equation 

ac, 
at 

-s + DV2c,. (8.35) 

Initial conditions 

The initial conditions consist in a given vacancy 
~on~n~ation field. For steady state, these conditions 
are not needed. They are unimportant at long times, 
as long as a steady state can be reached. 

Boundary conditions 

The boundary conditions depends of course on the 
problem that is treated. The mvst us&l seems to be 
given by an equilibrium condition along all surfaces 
of the solid. Written for an isotropic solid, constant 
elastic coefficients, a nzferenee pressure P = 0 (with 
an equilibrium vacancy concentration c,), dilute sol- 
ution behavior, and a reference composition c, = 0 
for strain, this reads (equations 3.18 and 4.31) 

@z(O) + R6 In c, = 

-0 - Gkt!TM 1 (8.36) 

-PV;, 
( 

1 +7Tkk+3c4 

- vl; 

- 0 --.~)rtrT~ 
1 

. (8.37) 

Since c, e 1, these equations can be simplified into 

p:(O) + RB In c,, = 

-PV;(I + y ,) 

(8.38) 

Because it is the dominant term linear in stress, the 
r.h.s. is usually - PV& Only this term was taken into 
account in Herring’s theory of diffusional creep. We 
shall see in the next section cases where the quadratic 
terms are important for new effects. 

Network modification along the surfaces due to the 
vacancy flux is simply given by 

.:(Z+ v&)-o 
where the x; are the coordinates of a point of the 
interface. This equation tells us that the shape of the 
specimen changes as diffusion takes place, due to the 
vacancy creation and annihilation at the surfaces. 

Stress equilibrium 

Up to now we have been concerned with the 
~ff~ion equation. Stress equilibrium in this quasi- 
static model obeys the partial differential equation 
(3.13) 

Tu4=0 (8.40) 

with proper boundary conditions. In most problems 
they will be given in terms of tractions along the 
surface. It is important to note that; because of the 
network modifications there* they are specified on a 
changing (and usually unknown) surface. 

To specify the problem fully in term of stress, we 
need the Beltrami-Mitchell equations [I 1,301. For 
isotropic materials, the expression is 

(I+ v,T& + TM~ 

+EV 
1+v L i--$(G).bt + (c,),, 1 = 0 (8.41) 

8.5. Some creep proMems 

8.5.1. Herring’s classical problems: d@ksional vis- 
cosiky of 4 ~Iy~ys~~I~ s&i. Let us ikst show that 
with Herring’s assumptions and approximations [18] 
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the equations presented in section 8.4 become idcnti- 
cal to his starting equations. Only steady state is 
considered. There is no volume change associated 
with a vacancy (i.e. the average volume of a vacancy 
is equal to the atomic volume). This implies 9 = 0; 
therefore the interactions between stress and com- 
position appear only in the boundary condition per- 
taining to network modification. Furthermore all 
terms nonlinear in stress are neglected, and the 
reference pressure is zero. The solution of atoms and 
vacancies is ideal (i.e. there is no interactions with 
vacancies and their concentration is very small). 
Finally, there is no source term within a grain. 

With these approximations, the diffusion equation 
(8.33) becomes 

VM,, =O. (8.42) 

The expression for the diffusion potential is 

M,, - P!(O) - It:(O) + j@ lnM1 - %)/<a1 (8.43) 

and the boundary condition (GB) becomes 

p:(O)+ R@hq= -PG. (8.W 

Subtracting (8.44) from (8.43), and neglecting 
In(l - c,), one gets 

M,, = /of + PVo (8.45) 

This is the boundary condition used by Herring [his 
equation (2)J for the partial differential equation 
(8.42)since our Pqals his -P,.The.stms cqui- 
librim equation is the same, and he implicitly used 
condition (8.37) to get the rate of displacement of the 
interface [e.g. to go from (3) to (4) in his paper]. Thus 
within the assumptions explicitly spelled out at the 
beginning of this section, we recover Herring’s equa- 
tions and boundary conditions. 

His solutions combined a mean field (the average 
of the stress tensor within a grain ls equal to the 
applied stress) and a perturbation analysis (the shape 
of the grain does not change as diffusion proceeds). 

The formulation of the problem with fewer as- 
sumptions is possible using the equations of the 
previous section which contains important additional 
terms in the diffusion equation (8.33) and boundary 
conditions (8.29). We next explore a few problems 
chosen to illustrate the physical consequences of these 
additional terms. 

8.5.2. Qua&ctic eficrr. Usually the linear term of 
the r.h.s. of (8.36) is the dominant one, but, whenever 
the specimen surfaces are all immersed in a fluid of 
constant pressure, this term is constant and at steady 
state does not contribute any gradients. Under these 
conditions the higher order terms are the only ones 
present. We consider two examples in which we 
approximate conditions for which P is constant over 
the surfaces of interest. 

The first treated by Roitb~d 1351 is a pore in a 
specimen under uniaxial stress in which he examined 
the shape change by vacancy tluxes that redistributed 

material around the pore. Other vacancy sinks and 
sources were assumed so far away that fluxes between 
them and pores could be neglected. Because P in the 
pore is constant, the effects depend entirely on the 
quadratic terms. The result of the calculation is that 
a spherical pore will distort to an oblate spheroid 
with the minor axis along the stress axis. Because this 
conclusion arises from quadratic terms the same 
result is obtained regardless of whether the specimen 
is under tension or compression. 

A closely related problem is a long single crystal 
rod of nonuniform cross section under a uniaxial load 
applied at the ends. If the characteristic length of the 
nonuniformities is short compared to the specimen 
length, we may examine the redistribution of material 
along the lateral surfaces by vacancy flux and ignore 
the fluxes between these surfaces and the specimen 
en&. Along the surface P is again constant. If we 
assume rl. = 0 and that the elastic constant are inde- 
pendent of c, (8.36) becomes 

~~(0) + R8 In c, = 

-6 E 1 . (8.46) 

The r.h.s. is minus elastic energy of the solid. Let us 
note that the rod is unstable to necking. A small 
indentation (or any change in cross section) will 
produce a higher stress at its root (or at the minimum 
cross section). Vacancy flux will remove material 
from the root (or at minimum cross section) and 
deposit it nearby at a place of lowered elastic energy. 
The rod is unstable to necking by axon creep 
regardless of whether it is under tension or com- 
pression. This is the same result as Roitburd’s pore, 
which can be considered an internal notch. 

This counterintuitivc result is consistent with ther- 
modynamics. Consider the work done by the loading 
system, applied force times distance moved. The 
compliance of a rod with nonuniform cross section 
increases if the rod necks down, and thus the load 
system does work on the specimen. Conversely if the 
rod were to become more uniform under load, its 
compliance would &crease and it would have to do 
work on the load system. This would be in violation 
of ~~~~~C principk?s. 

Another interesting result of equation (8.46) is 
the case of a uniform rod, in which we again can 
ignore the ends as vacancy sources or sinks. The 
equation states that for rlr - 0 and elastic constants 
independent of c, the equilibrium vacancy concen- 
tration is a maximum at ZMO stress, and is lowered 
equally by tensile and compressive stresses. This 
result is again understood if we realize that the 
cross-section will be reduced if vacancies leave the 
system, increasing the specimen’s compliance. The 
result will be modified if we assume that the elastic 
constants are a function of cc and if we let rt. differ 
from xcro, but for small changes it will not affect the 
sign. 
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a 
stress due to the imposed pressure difference is linear 
in AP. The result is that the linear terms in P in M,, 
cancel identically the changes in the quadratic terms 
in the tangential stresses. The linear and quadratic 
terms balance identically to give the same M,, at the 
two surfaces. Again an equilibrium is reached in 
which M,, is constant throughout and vacancy con- 
centration gradients compensate for stress gradients. 

This surprising result that the 2x wedge dis- 
clination will not creep by vacancy flow even when 
there is a pressure difference can also be understood 
by considering the consequence of the transfer of an 
entire plane of atoms from the inside to the outside. 
If we start with either of the flat single crystal plates 
and create the disclination we see that the tube is the 
same whether the atom layer is transferred or not 
(Fig. 3). 

b 

C 

Fig. 3. RadiaI vacancy hxc.s that remove layers from the 
inner surfaces and deposit them on the outer surface of a 2~ 
wedge disclination do not enlarge the disclmation and 
therefore no work is done by any pressure difference. To see 
this, consider the cross section (c) of 2% wedge diination 
made by elastically bending the perfbct crystal (a) into a 
circular cylindrical shell and joining the ends. The 2n wedp 
disclination after radii diffusi6n is unchax~gad because it 
can be made from (b) which is identical to (a) except for 
translation of bottom layers to top. It will therefore reach 
the same equilibrium geometry la the presence of the 

pressure differences. 

8.5.3. Boiancirrg qmakatic and linear e$ets. The 
2x wedge d~cl~a~~o~. Linear effects do not auto- 
matically dominate quadratic elkts. Au interesting 
example where both are present and cancel identically 
is a hollow tube composed of a 2x wedge disclhmtion 
in which there is a pressure difference between the 
inside and outside of the tube. 

To form the 2r wedge disehnation we take a 
rectangukr sheet of a perfect single crystal, bend it 
into a tube and weld the seam to insure perfect 
matching of lattice planes (Fig. 3). 

At this stage there are tangential compressive 
stresses at the inner surface and tensile stmsses at the 
outer surfaces. M,, at the two surf- is the same 
because the stresses at the two surfaces have the same 
magnitude. Because of this the system reaches a 
vacancy equilibrium in this heterogeneousIy stressed 
system, .in which vacancy gradients and stress gra- 
dients combine to give a constant M,, throughout. 

Now apply a pressure diEerence between the inside 
and outside and permit vacancy flow. It is readily 
shown that in spite of the pressure difference the 
value of M,, at the inner surface equals that at the 
outer surface. In the presence of the higher pressure 
at the inside there is a change in e&-tic free energy 
density, a reduction at the inner su&ce and an 
increase at the outer surf=, and vice versa if the sign 
of the pressure differerme is changed. The elastic 
energy is quadratic in the stress, but the change in 

We have reviewed and applied the thermodynamics 
that has been developed for multicomponent multi- 
phase stressed crystalline solids. We have found 
equilibria in which the solids were neither homogen- 
eous in stress nor composition. We have considered 
equilibria for three types of multiphase contact, 
solid-fluid, incoherent and coherent solid-solid. We 
have also examined simple nonequilibrium cases 
where potential gradients determine diffusion. 
Diffusional creep in particular was used to illustrate 
the importance of a full thermodynamic treatment. 

Crystalline solids differ furrily from liquids 
in that they possess long range threedimensional 
translational order. This implies that we can define a 
lattice and site occupant. The number density and 
type of sites is known, and a IoeaI change in com- 
position can only be made by redistributing atoms 
and vacancies among these sites. This fundamental 
restriction in the interior of a cry&&e solid intro- 
duces important differences in the thermodynamics of 
solids compared to that of liquids. Because these 
restrictions apply at coherent boundaries but not at 
other boundaries, we Aad different equilibrium condi- 
tions at the various boundaries. 

The equations that result from the thermo- 
dynamics constitute a set of coupled partial 
differential, algebraic equations and boundary condi- 
tions for stress and composition. For the kinetics, the 
diffusion equations are added. Although full non- 
linear and large strain formulations exist, we have 
concentrated on examples where the essential features 
were displayed with smaII-strain arrogations and 
linearized thetmodynamica. 

The thermodynamics has resulted in identifying 
and precisely de6nining the important phenom- 
enological quantities needed for predktive calcu- 
lation. The definitions in pa&u& are important and 
much of the controversy in the litarature is judged to 
be the result of inadequate d&&ions of quantities. 
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Furthermore the necessary data needed for evalu- 
ating the equations turn out to be computable from 
classically measured quantities, such as free energies 
of hydrostatically stressed solid solutions, elastic 
coefficients and lattice parameters. 

One important method to solve the equilibrium 
equations uses the notion of open-system elasticity. 
This method eliminates the composition variable 
from the system of equations, and leaves a purely 
elastic problem to be solved. Central to the method 
are the open-system elastic constants, and in this 
paper we show that the same technique applies to 
multiphase solid quilibria. With this technique a 
large number of elastochemical problems are now 
solved, because they become identical to solved prob- 
lems of chemically homogeneous elastic solids. Once 
the stress field is known, only algebraic equations 
have to be solved to obtain the composition in the 
solid. As an example of the use of this concept, we 
have solved the dislocation atmosphere (stress field 
and composition field) in an isotropic and a cubic 
solid, automatically taking into account, in a seif- 
consistent way the ~e~~~~~ of the solid soiu- 
tions. Another example is tlte inclusion problem, 
although we have not found in the literature the 
shapes that satisfy the phase equilibrium boundary 
condition other than sphere, circular rod and plate. 

The question of the need for defining separate 
chemical potentials for each chemical species inside 
the solid has been a subja% of controversy ever since 
Gibbs. We hope that we have shown that problems 
of equilibria can be solved without defining or using 
them. Gibbs’ famous example of a homogeneously 
stressed solid which gave three different chemical 
potential when quilibrated with three fluids each at 
a pressure equal to minus a principal stress should 
alert everyone to the danger of attemp~ng a 
definition. Of course our Mh c&d be construed to 
be a chemical potential of the Ith specie, but we 
prefer for clarity to retain the vacancy as the counter 
specie. 

Questions of species that occupy more than one site 
needed to be addressed. As our section 5.6 shows, the 
classical notion of chemical reactions among species 
on different sites very nicely resolves any confusion. 
Treating interstitiais as atoms occupying sites that are 
mostly empty resulted in a unified treatment and 
clearly demonstrated the principle that make it poss- 
ible to develop a treatment in which inte~titi~ seem 
to require a diffwent treatment. 

We have supplemented an earlier overview on the 
effect of self-stress on diffusion by adding boundary 
conditions that permit phases to grow or shrink at the 
interface. 

Diffusional creep is an important field in which the 
linearized and simplified treatment of I-Ierring was an 
important first step. However Herring’s definitions 
were not precise and this has led to much later 
confusion. We have presented a detailed derivation of 
a fuiler treatment in which each term is f&y defined 

and related to the data base. To emphasize the 
importance of the nonlinear terms, which Herring 
alluded to, but discarded, we gave two examples each 
of which seems counterintuitive but thermo- 
dynamically correct, a long rod which in compression 
is unstable to necking by diffusional creep and a tube 
composed of a perfect 2~ wedge disciinrition which 
does not bulge by radial vacancy flux even when there 
is a pressure difference between the interior and 
exterior. The former is a case where Herring’s linear 
term is zero and we must resort to the quadratic 
terms, and the latter is a case where the linear term 
identically cancels changes in the quadratic terms. 
The fuller equation contains sever@ other terms 
usually ignored in creep theories that also can become 
important. 

Capillary effects (surface strain and surface free 
energy) are not included. A formulation exists for 
some type of interfaces or specific geometries [36,37]. 
Theories of equilibrium of stressed solids with capii- 
iarity effects for the three type of interfaces con- 
sidered here are being developed [38]. 

Although the elastic energy is usually small com- 
pared to the free energy change resulting from a 
composition change, there are domains where the 
interactions of composition and stresses are likely to 
be important. Self-st- resulting from the pres- 
ence of defects or heterogeneity of the material can 
have sizable consequences. The depression of the 
consoiutc critical point and the spinodal is a well 
known example. In systems without critical points 
coherent equilibrium is also strongly affected. Coher- 
ent phase diagram features have recently been found 
[39,40) that differ markedly from incoherent phase 
diagrams. The equations that could be used to calcu- 
late these phase diagrams have been obtained in 
sections 3 and 4. 

Interesting consequences originate from the long 
range nature of the elastic forces. For instance this 
introduces nonlocal effects in the diffusion equation. 
Under hydrostatic pressure, a multi-phase incoherent 
dispersion at equilibrium is degenerate with respect to 
the shape of the phases, i.e. the quiiibrium is inde- 
pendent of the shape of the precipitates. Under a 
more general state of stress (coherent precipitates, for 
instance), this simple result is no longer valid. The 
equilibrium equations have to be solved on an un- 
known boundary and the q~tib~~ shape is to be 
determined as part of the solution (a so+zaiied free 
aids-probiem~. With the use of the open-system 
elastic constants such problems can be expressed as 
a purely elastic problem. The phase equilibrium 
boundary conditions is the one that makes the prob- 
lem different from classical elastic inclusion problems 
for which a shape is imposed. The solutions of the 
elastic equations of general shape will not be consist- 
ent with the phase equilibrium boundary condition. 
The catalog of the shapes that produce an elastic field 
that in turn satisfies this condition has not yet been 
found. The intr~u~tion of capiliarity would modify 
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this condition. Work has been done on the subject 31. J. W. Cahn and F. C. Larch&, Scripta metall. 17, 927 

1411. 
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APPENDIX 1 

f-p:p,-pfPs= -P 

can be combined with the quation for the diffusion poten- 
tial 

M n’fG-P4 (A1.3) 

to give 

r:=(f +P+p,M,,)V, (A1.4) 

r; = (f + P - p,M,,)Yo. (A1.4) 

Because the solid ir wifonn, these expramiona are valid 
everywhere. The quantities on the right band aide of (A1.4) 
and (A1.5) depend only on the value of the atate variables. 
Let us call them p; and pi 

r; E (f + P + P~M,,)Y, (A1.6) 

pj=(f+P-P&W,. (A1.7) 

Elimination of Mu between these two quations give 

f- -P+P,P;+PlPj 

and, because of the uniformity, we can multiply by V, to get 
the total Helmholtz free energy 

F = - PV, + N,p; + Nsp; 

where N, and Ns are the total number of moles of com- 
ponents I and 2 respectively. The differential ofj’ is 

d/’ = TvdEv + M,,dp; 

Mu is replaced by its value obtained from (A1.6) and (A1.7). 
Using the ddinition of pi, and after multiplication by Vi, 
one obtains 

dF = - PdV,, + p;dN, + p;dN, 

Therefore 

We have recovered all the classical formula for tluid-tluid 
quilibrium. Despite network constraints, a solid under 
hydrostatic stress behaves as if it wnre a fluid. 
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APPENBIX 2 The differential of the diffusion potential is 

The boutdry conditions for coherent phase change: Small 
strain app10xtmattorl 

d& = c, dp’ + ~~),~E~. (A3.3) 

The fuli large atrain boundary condition for co&erent phase 
chamJe is [I51 Replacing dp’ from (A3.3) into (A3.1) yield 

Q)‘*--a)*#_n’% (F+r-F’r)+!!/~F)n~=O (A2.1) 

where the same reference state is chosen for both phases. 
The supemaipt T standa for transpose and F is the defor- 
mation gradient. (gf’/aF) is the first Piola-Kirchhoff tensor 
Ta. It is related to the Cauchy stress tensor T by 

Tn-JT(F-‘)r (A2.2) 
and the coefficient of the term dZ$ is the (I#) component 
of the open-system stiffness tensor, 

wltem J is the dctuminant of F. In the small strain Using the wn ~~tion~p (4.14) and the Max- 
approximation, the diiIacement tensor is given, to frrst well relation 
order in the derivatives u,,,, by (Ill 

F=Z+E+Q+O(u;) (A2.3) 
(A3.5) 

where E is tlw amall strain tenaor, [equation (3.1)], Q the one gets 
small rotation tensor, and Z the unit tensor. To the same 
approximation, its inverse ia given by = -qMlru+ 5(&,-EL). (A3.6) 

P-‘=I-E-Q+O(u&) (A2.4) The value of Mt, as a function of E, rather than Fe is 
using these equations we get obtained from (4.14) by using 

n’*(pT*Ta)*n’ s&&,, = a&J,. (A3.7) 

P,8.(I+E,-n).T.(I-E+n).a’+q~e). (A2.5) Neglecting strain dependent terms, we finally get 

Dropping terms of order up, and since. for an arbitrary 
3x3tenaor cg = qa/ (A3.8). 

n’.A.n’* n’.Ar.n’ Becau.w of the linearity, we have 

we finally obtain S$,CA = a#& (A3.9) 

~‘.fFZ.T,).~‘=il’.T.~‘-2e’.~.T.n’. (A2.6) where S&, are the open-system compliance& Combining 

Since the same reference state has been dtosen for a and ji, (A3.8) and (A3.9) gives 

the following equalities hold qtl = &RI + Pkvfyrlu (A3.10) 

where P# are dellned by (4.4). 

Using (A2.7). (A2.6) and (A2.1) we finally obtain A 3.2. Multicomponent soli& 
We follow the same derivation aa above. The differential 

of the stess tensor is 

(A3.11) 

The various terms am seen to be energies per mole of lattice 
dr,=(~),;dE,+~K(~)b;. 

sites. It is then easy to make a change of reference volume The differential of the potentials are 

(like the stress free state for each phase). To t&e level of 
approximation used iu Iinear elaatieity this won’t aSect the 
VT terms. But it does affect the terms linear in Tu. 

dp; can be obtained from this sytem of linear equation by 
Kramer’s rule 

APPBNBIX 3 

Derivation of the open-system elastic stl@ness and compliance where D is the determinant 

tensor 
All the calculations are done at constant temperature, so 
that all the partial derivatives ate understood to be at 
constant temperature. We first treat the case of a binary 

and AU is the minor of the @WrK/8p;,) term of A 

solid. then generalize to a multicomponent solid. 
Replacing dp; by its value in (A3.11) and using the Maxwell 
relation 

A3.1. Binary solid 
To simplify the notation we take p’ to be pi. The 

diFerential of the stress can be written 
~)s*, = ~~),~ (A3.14) 

we get 

or 

dT, = ($$dEl, + ($),,dM”. (A3.2) 
Using (A3.9), Hookc’s law, and neglecting strain dependent 
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terms we finally get 

(A3.16) 

where x is the determinant 

, a4 
X"PQac, I I 

and A,, the minor of the (IJ) term 

APPENDIX 4 

A common tangent construction 

Let Ck be three unit vectors normal to each other, such that 
{’ is the normal to the interface, with components t:. The 
vectors 1” arc defined by 

a: = E&j (A4. I) 

Since the determinant I<j;^I has the value 1 the system of 
equations (A4.1) constitute a valid linear change of variable. 
Using the chain rule, we obtain, considering the Ck as fixed 

After multiplication by cj and summation on j one gets 

(A4.2) 

(A4.3) 

Let us define the free energy {’ by 

(A4.4) 

=f - Tp,Eank 

and it is easy to show that 

(A4.5) 

M”=(&)&# =(igd,., (A4.6) 
. 

The conditions for equilibrium at an incoherent interface 
[equation (3.2411 can be written 

~-~c;~$)-Tp:n;V~ 

=p-~e{@-T/n!n~V~s (A4.7) 

where quantities such as/ate just /‘V& i.e. quantities for 
one mole of lattice sites. 

If the normal pressure is zero, so that T,n, = 0 it becomes 
equivalent to 

which together with 
JWir = We 

which can then be written 

show that c,~ can be obtained by a tan 
p” 

t construction to 
f, which, in this case is just equal to . 


