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The theory of crystal growth for diffuse and for non-singular surfaces is reexamined. It is found that 

if a critical driving force is exceeded the surface will be able to advance normal to itself without needing 
steps; if this driving force is not exceeded lateral step motion is necessary. For extremely diffuse inter- 
faces this critical driving force will be so small that any measurable driving force will exceed it. For 
sharp interfaces the critical driving force will be very large, and most growth will occur by lateral step 
motion. For most systems however the critical driving force should be accessible experimentally. 

In addition the nature of a step in a diffuse interface is discussed and its energy calculated. The con- 

ditions for interface motion by classical nucleation or screw dislocation mechanisms are derived. 

THEORIE DE LA CROISSANCE DE CRISTAUX ET MOUVEMENT D’INTERFACE DANS 
DES MATERIAUX CRISTALLINS 

La theorie de la croissence cristalline par des surfaces diffuses et sans singularite, a et6 reexaminee. 
On a montri? que si une force motrice critique est d&pas&e, la surface est apte It se mouvoir normale- 

ment a elle-m&me sans discontinuite. 
Si la force motrice n’est atteinte, un mouvement discontinu lateral est necessaire. 
Pour des interfaces tres diffuses, la force de mouvement critique peut Btre si faible que toute force 

motrice mesurable la depassera. 
Pour des interfaces nettes, la force motrice critique sera tres grande et une croissance importante 

aura lieu par mouvement lateral discontinu. Pour la plupart des systemes cependant la force motrice 
critique sera accessible experimentalement. 

Enfin, la nature de la discontinuite dans une interface diffuse a Bte discutee et son Bnergie calculee. 
Les conditions pour un mouvement d’interface par nucleation classique ou des mecanismes de 

dislocation-vis en ont et& deduites. 

THEORIE DES KRISTALLWACHSTUMS UND DER BEWEGUNG VON GRENZFLACHEN 
VON KRISTALLINEM MATERIAL 

Die Theorie des Kristallwachstums fur diffuse und nicht-singulare Grenzfliichen wird iiberpriift. 

Uberschreitet die treibende Kraft einen kritischen Wert, so kann sich die Flache in der Normalen- 
Richtung verschieben, ohne da13 Stufen niitig sind. Fur extrem diffuse Grenzflllchen ist der kritische 
Wert so klein, da13 jede mel3bare treibende Kraft ihn iiberschreitet. Fur scharfe Grenzfliichen wird der 
kritische Wert der treibenden Kraft sehr grolj sein, das Wachstum wird meist durch seitliche Bewegung 
van Stufen erfolgen. Fiir die meisten Systeme sollte die kritische treibende Kraft jedoch experimentell 
erreichbar sein. 

Zusiitzlich wird die Gestalt einer Stufe in einer diffusen Grenzfliiche diskutiert und ihre Energie 

berechnet. Die Bedingungen fiir eine Bewegung der Grenzflache durch klassische Keimbildung und 
einen Schraubenversetzungs-Mechanismus werden hergeleitet. 

In the theory of crystal growth one distinguishes(l) 

between two major mechanisms: 

(1) The surface advances by the lateral motion of 

steps one interplanar distance (or some integral 

multiple thereof) in height. An element of surface 

undergoes no change and does not advance normal to 

itself except during the passage of a step, and then it 

advances by the step height. It has been customary 

to assume the surfaces are sharp and that the steps 

have steep risers. We will here consider the step more 

generally as the transition between two adjacent 

regions of a surface, parallel to each other and 

identical in configuration, displaced from one another 

by an integral number of lattice planes. It is thus 

possible to conceive of a step in a diffuse surface even 
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though the step height is much smaller 

thickness of the surface. 
than the 

(2) The surface advances normal to itself without 

needing steps. This means that in the presence of a 

driving force every element of surface is capable of 

continued change leading to advance of the surface. 

For a sharp surface this continued change may be 

considered crystal growth by the more or less uniform 

change over large areas of each successive new layer 

to fit into the crystal whereas the growth of a diffuse 

surface requires simultaneous changes in several 

successive layers. 

The distinction between these mechanisms is 

two-fold; one is geometrical-lateral motion of steps 

vs. motion of the whole surface normal to itself; the 

other based on the time sequence of an element of 

surface-no motion or change except when a step 

passes vs. continual change. We shall term the first 
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mechanism nonuniform or lateral growth, and the 

second uniform or normal growth. 

The predictionof which mechanismwill be operative 

in a particular system is basic to the understanding 

of crystal growth. Two criteria have been used to 

make this prediction: 

(1) The first is whether or not the surface is dif- 

fuse.(l?) A diffuse surface is one in which the change 

from one phase to the other is gradual, occurring over 

several atom planes, and is in contrast to a sharp 

surface for which the major property change is 

confined to within one interplanar distance. The 
diffuse interface is thought to be able to advance 

normal to itself. What constitutes sufficient diffuse- 

ness and whether there is an abrupt transition from 

one mechanism to the other with increasing diffuse- 

ness has never been fully discussed. 

(2) The other criterion is based on whether or not a 

surface is singular. f3T4) A singular surface is one for 

which the surface tension as a function of orientation 

has a pointed minimum. Growth of singular surfaces 

is known to require steps, whereas it is usually believed 

that non-singular surfaces can continuously advance 

normal to themselves. 

The two criteria for the classification of systems 

according to expected growth mechanism have often 

been used interchangeably although they do not give 

identical answers. Furthermore, for either of the 

criteria the details for borderline cases have not been 

explored. It is for instance quite conceivable 

that a surface which is non-singular in the absence 

of a driving force could become singular when a 

driving force is applied. 

The purpose of the present paper is to develop 

another criterion for classification. Consider the 
necessary requirements for the appearance of lateral 

growth. It is evident that the lateral growth mecha- 

nism will be found when any area in the surface can 

reach a metastable equilibrium configuration in the 

presence of the driving force. It will then tend to 

remain in such an equilibrium configuration until the 

passage of a step. Afterwards the configuration will 

be identical except that each part of the surface has 

advanced by the step height. If the surface cannot 

reach equilibrium in the presence of the driving force, 

then it will continue to advance without waiting for 

the lateral motion of steps. 

The distinguishing feature is thus the ability of the 

surface to reach equilibrium in the presence of the 

driving force. In this paper we will therefore explore 

the nature of this equilibrium. The conclusion that is 

found is that, for every surface or interface in a 

crystalline medium, there exists a critical driving force, 

which, if exceeded, will enable the surface or interface 

to move normal to itself, and, if not exceeded, will 

require the lateral growth mechanism. This criterion, 

based on driving force will be compared with the 

other two criteria already described. Much of what 

will be discussed will apply not only to surfaces 

between a solid and a fluid, but also to interfaces in a 

crystalline medium when the same lattice extends 

into both phases as in order antiphase domain 

boundaries and ferromagnetic and ferroelectric domain 

walls. 

In t’he next section we will examine the origin and 

magnitude of the minima that occur in the free 

energies of surfaces, interfaces and domain walls when 

these are in a crystalline medium. We shall find a 

lateral growth mechanism in all cases at sufficiently 

low driving force, and the details of this mechanism for 

diffuseinterfaces~~illbeexploredinsubsequentsections. 

1. THE LATTICE RESISTANCE TO 
INTERFACE MOTION 

In the absence of a driving force, an interface held 

parallel to a low index crystallographic plane will 

assume an equilibrium configuration. Because the 

interface is in a crystalline medium the identical 

configuration, displaced by an integral number of 

lattice planes, will also be an equilibrium configura- 

tion. We can conceive of the interface being forced to 

advance normal to itself. It can reassume the lowest 

free energy configuration only when it has advanced 

by an integral number of interplanar distances. 

All stages of intermediate advancement. must corre- 

spond to configurations of higher free energy. In this 

section we will be concerned with this increase in free 

energy, which gives rise to a lattice resistance to the 

motion of the interface and results in a critical 

driving force necessary for t,he int’erface to advance 

uniformly normal to itself. 

For a sharp interface these concepts are obvious, 

and it is generally accepted that lateral growth will 

persist until extremely high driving forces. The 

intermediate states of uniform advance may here be 

thought of as the various fractional coverages of one 

layer of atoms. One can conceive of the chemical 

potential necessary to maintain a given degree of 

coverage.t2) This chemical potential will reach some 

maximum value at some intermediate coverage and 

this maximum value defines the critical driving 

force, which is expected to be quite large. 

For a diffuse interface there are many conceivable 

paths of advance from one equilibrium position to the 

next. We are aided by the fact that the path of 

interest to us proceeds over the lowest free energy 

barrier. This barrier, because it also represents an 
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FIG. 1. Schematic drawing of a domain wall advancing. 
Each rod represents the direction of magnetization of a 
plane of atoms; each row of rods represents the domain 
wall at an instant of time. The arrow points to the 

center of the domain wall. 

extremum in free energy (a saddlepoint), will also 

satisfy the same equilibrium equations which we use 

to obtain the equilibrium configuration. Fig. 1 

illustrates schematically for a 180” magnetic domain 

wall two types of interface configurations each satis- 

fying the conditions of equilibrium but differing in 

free energy. The domain wall with no spins in the 

hardest direction (i.e. symmetrical about an interstitial 

plane) is the lower in free energy.c5) Fig. 2 gives 

schematically the free energy as a function of position 

of the boundary. 

We shall now concern ourselves with computing 

approximately the variation in free energy that an 

interface encounters as it is forced to advance uni- 

formly through a crystalline medium in such a 

manner that the interface remains parallel to such a 

low index lattice plane. 

We shall assume that the excess free energy F per 

unit area of interface in the absence of a driving 

force can be represented by a sum over the lattice 

plane of the form 

F = a 5 (f(u,) $- Kc+(u, - %,I)“> (1.1) 
n= --m 

I 
u_, = u u* = un f(U’) =f(u”) = 0 

where u, is some parameter which characterizes the 

nth lattice plane, u’ and U” the values of u in the two 

phases; a is the interplanar distance and K is a 

constant. For example u might represent the fraction 

of sites occupied, the composition, the angle which 

the magnetization makes with some specified direction 

or the degree of order. The functionf(u,) represents 

the increase in free energy accompanying the creation 

of a unit volume of homogeneous material character- 

ized by IL, from the materials reservoirs of the two 

bulk phases. The second term represents the addi- 

tional work necessary to place such material in an 

environment of varying U, and has been called the 

gradient energy.(e) In magnetic domain wall theory 

f(u,J is the crystal anisotropy energy and the second 

term is the exchange energy.“) The extremals in F 
are obtained from the values of the u,‘s given by a 

set of the difference equations 

g + 2Kae2(2u, - u,+~ - u,,_~) = 0. (1.2) 

Equatitn (1.2) may be substituted into equation (1 .l) 

to give for the surface tension G 

(1.3) 

where the values of the u,‘s must satisfy equation 

(1.2). 

In general at least two sets of u,‘s can be found, 

one corresponding to the surface tension of the 

equilibrium configuration, the other to the surface 

tension at the saddle. Because of the lattice structure, 

each set of u,‘s is also a solution if each n is changed 

by an integer, corresponding to a translation of the 

surface by an integral number of lattice planes. 

Sharp interfaces occur when the values of f for 

intermediate values of u are large compared to 

Kc2(u’ - u”)~. The solutions to equation (1.2) and 

hence n are readily obtained. However for diffuse 

interfaces the solving of equation (1.2) represents 

considerable work, which can be reduced by an 

approximation which changes equation (1.2) into a 

differential equation.@) 

By changing the u’s into a continuous variable of z, 

the distance normal to the boundary, we obtain for 

equation (1.2) the differential equation 

which may be integrated to give 

f= Kg)’ 

(I- POSITION OF INTERFACE 

FIG. 2. The surface free energy of the domain wall of 
Fig. 1 as a function of its position. Minima correspond 

to configurations A and C, and maxima to B. 
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(1.4) 

in which u for z = 0 has been arbitrarily chosen. 
In identifying the continuous variable u(x) with the 

u,‘s there is a certain arbitrariness in choosing the 
values of x corresponding to a lattice plane. Once the 
value of z for one lattice plane has been chosen the 
rest are determ~ed. Let the value of z corresponding 
to the position of the 0th lattice plane be --ct. The 
quantity a thus gives the position of the interface 
relative to a fixed plane in the lattice. 
Then 

u0 = u( ---ix) 
and 

zc, = %(?&a -- a). 

Using the method of Poisson sums* we are now in a 
position to evaluate the surface tension as a function 
of cc from equation (1.3) and from the u(z) obtained 
from a solution of equation (1.4). 

CT= j -y(u) - &L f) dz 
-* 

+ 2 8z1 [148 cos zV: - B,sin ‘T] (1.5) 

where 
+m 

A, = s i _-m f(u) - Ju -g cos T 4% 

B, L=: 

The first term is the value of the surface tension if 
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one assumes the interface to be in continuous medium. 
The second term describes the periodic variation of 
the surface tension as the interface is made to move 
uniformly through the lattice, and constitutes the 
lattice resistance to the motion of the interface. The 
main assumption in deriving this term is that the 
interface is described by the same function u(x) 
regardless of the value of IX. This is probably a good 
assumption for diffuse int,erfaces.@) 

In order to obtain some feeling for the magnitnde 
of the quantities let us assume that 

S(u) =.f,(l - ,Y 
.u‘ =: -_1 U” =: 1 . 

Then the solution to equation (1.4) is 

u = tanh l/(fo/K)z (1.6) 
and equation (1.5) gives 

(1.7) 

The quantity n = 22/(K/f,,a2) may be thought of as 
the thickness of the interface in numbers of lattice 
planes. For “1~ large equation (1.7) reduces to 

(1.8) 
which shows that (r rapidly becomes insensitive to 
the position of the interface as n becomes large. It 

* The Poisson sum formula’s’ enables one to sum the values 
at periodic intervals of a function of a continuous variable 

+f l/(nn) = J!$c! y y(!gj 
9,. = -cc a= -cc 

where Y is t.he Fourier cosine transform of y 

Since changing t)he sign of s does not affect the value of the Y’s 

The meaning of the Poisson sum formula is quite straight- 
forward. Consider just the first two terms. We are trying to 
evaluate the sum of the values at periodic intervals of a 
function of a continuous variable. The integral of this function, 
the first, term of the sum, is a first approximation, but it 
weighs all parts of the function equally heavily. The integral 

tests whether the first term is a good approximation. It 
compares the value of y when z/a is close to being an integer 
with when it is not close to being an integer and makes a first 

approximation to the difference between the sum and the 
integral. The other terms represent higher correction terms. 

The advantages of the Poisson sum method for this problem 
are the rapid convergence of the series for diffuse interfaces 
and also the ease with which the position c( of the interface 
can be introduced. Consider the sum for various positions. 

The periodic variation of the sum with cc is thus convenientl, 
expressed in terms of a Fourier series. 
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will be useful to introduce g(x) 2 0, a dimensionless 
periodic function of u defined by 

44 = El -t- !?(41% (1.9) 

where o,, is the minimum value of CT as a function of tc. 
The periodic part of o is thus given by ~~(a), and 
g(a) is the fractional change in surface tension from 
the equilibrium value for the position given by TX. 
For that vaIue of a, g = 0. The approxima~ equation 
(1.8) gives 

In the presence of a driving force the variation per 
unit area of surface in total free energy of a system 
due to uniform motion of the interface 6a is approxi- 
mately given by 

dF= 
i 

(1.10) 

where APV is the driving force, the change in free 
energy when the surface sweeps through a unit 
volume. The lateral growth mechanism is required 
only when there exists a value of a for which AF, 
+ a,(dg/da) = 0. The maximum value of oo(dg)/(da) 

for large n is given by ~~~~~~~~. Hence 

_ AF, _ vcfOhax 
a 

(1.11) 

represents a driving force necessary to permit uniform 
advance of a diffuse interface. Such an advance does 
not need steps, and if in addition there are no diffu- 
sional barriers to motion, as in the ease of a magnetic 
domain wall, the interface will be glissile, that is, it 
will be able to move without thermal activation. The 
free energy of the system as a function of interface 
position when the critical driving force is applied is 
shown in Fig. 3. 

t 
a-POSITION OF INTERFACE 

FIG. 3. The free energy of the system as a function of 
interface position when the critical driving force 

(equation 1.11) is applied. 

Since the actual thickness of the diffuse interface 
is relatively insensitive to orientation@) the thickness 
in terms of the number of lattice planes is inversely 
proportional to the interplanar distance a and hence 
directly proportional to the density of lattice sites. 
Thus the resistance to motion is greatest for close 
packed planes and zero for irrational index planes. 

Although we derived g(a) as a function of interface 
thiekness ?a for large n, the concept, of g(a) is perfectly 
valid for sharp interfaces. It is possible to find a 
continuous function u(z) in which the change from 
u.’ to U” is confined to a distance of the order of one 
interplanar spacing which will adequately describe the 
surface at intermedia~ stages of uniform advance. 
For sharp interfaces the maximum value of g(a) can 
then be obtained directly from equation (1.1) and 
usually will be of the order of unity. This corresponds 
to a very high driving force. 

At the other extreme we have the situation of a 
ma,gnetic domain wall where R, is of the order of one 
hundred. Here g(a) is so small that the critical 
driving force corresponds to undetectably small 
magnetic fields and any measurable driving force will 
exceed it. We thus find that for these extreme cases 
the criterion being developed in this paper agrees 
with the criterion based on diffuseness. But for 
systems having interfaces with intermediate degrees 
of diffuseness the critical driving force will be of 
measurable magnitude and both lateral and uniform 
growth should be observed. 

It might be reasoned that when g(a) is sufficiently 
small the interface should be able to advance uni- 
formly by thermal fluctuation. This is true if one 
considers a small enough area of the interface, but it 
is obvious that it cannot occur simultaneously over a 
large area. We thus are led naturally to a lateral 
mechanism, the mechanism of growth by two dimen- 
sional nucleation. We will next consider this mecha- 
nism and the other main mechanism of lateral growth, 
the screw dislocation mechanism. For both of these 
mechanisms we will first have to consider the nature 
of the step, the transition between two portions of the 
surface differing in degree of advancement. 

2. THE FREE ENERGY OF A STEP IN 

A DIFFUSE INTERFACE 

In the previous section it was shown that the 
interfacial free energy is a periodic function of the 
position of the interface relative to the lattice. The 
periodic part of the free energy becomes small 
compared to the surface tension as one considers 
more diffuse boundaries. This periodic energy 
represents a force tending to keep the interface 
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parallel to the low index crystallographic planes. 

It is well established that when a sharp interface is 

slightly inclined to a crystallographic direction, that 

the interface consists of large areas which follow the 

crystallographic direction and which are bounded by 

steps of height corresponding to an integral number 

of interplanar distances. In this section we will 

examine the nature and energy of the steps as we 

consider progressively more diffuse interfaces. 

Consider an interface not quite parallel to a low 

index crystallographic plane. We may describe its 

position by giving cc as a function of the x and y, the 

coordinates in the crystallographic plane. Then we 

can define the function L such that the excess free 

energy due the inclination of the surface is given by 

/(dabJo i- L[(EjZ + ($j2]] dXdY. (2.1) 

The first term represents the work (equation 1.9) to 

move the surface parallel to the low-index crystallo- 

graphic plane to the position cc, and the second term 

represents the work of inclining the surface from the 

low-index direction to the direction given by the x 

and y derivatives of cc. The quantity L may be 

identified if we assume that IL(Z) is independent of 

cc and its derivatives. This gives 

(c!)” = (!?)I ($i" 

(gj' = (E)z (Ej2. 
(2.2) 

For a cubic lattice and a scalar u 

L [(Ej2 + (;j2]dxdy 

= dxdy/_TK[(;j2 + ($j'] dz 

where K has the same meaning as in equation (1). 

Combining equation (2.2) with the above, we obtain 

(2.3) 

which is the result one would have obtained if one 

noted that the surface energy per unit area in the 

continuum or cubic symmetry and scalar u is inde- 

pendent of orientation. If we now seek a minimum for 

equation (2.1) for the situation that g = 0 for x = 

&co and a(+co) - c((-co) = cc we obtain that 

and that the excess energy F per unit length of step is 

& = &, ,” dg au s (2.4) 

or approximately 

(2.5) 

One a,lso may define a width of the step by 

(2.6) 

The value of w is expected to be very much larger 

than the thickness of the interface. This is not 

unreasonable even for a relatively sharp interface. 

For instance on a solid vapor surface it is calculated(l) 

that the equilibrium steps are quite ragged with jogs 

and holes extending over a number of atom distances, 

the width being greater, the greater is the equilibrium 

adsorption. It has usually been assumed that e/au0 

= 1, but it is certainly always less than one and will 

be quite small for diffuse interfaces. 

Since for small deviations from the crystallographic 

direction a surface can be represented by a series of 

steps, a knowledge of the step energy will enable one 

to derive the shape of the minima of the polar plot of 

the surface tension near the low angle crystallographic 

directions and from this shape it can be determined 

whether the surface can be considered singular or not. 

If 8 is the angle between the surface and a low 

index crystallographic direction and CT~ the surface 

tension for a surface having the crystallographic 

direction then in a cubic material for f3 large enough 

that the number of steps exceeds the intrinsic number 

due to thermal fluctuations. 

0 
- = 1 + 
00 ( ,“r( 0 i 

8 = 1 + dg,,#. (2.7) 

3. THE THEORY OF GROWTH BY TWO 

DIMENSIONAL NUCLEATION 

When the driving force for moving the surface is 

less than the critical driving force for uniform motion, 

the surface must advance by the motion of steps 

across the surface. In the absence of a screw dis- 

location terminating in the surface the steps are 
rapidly exhausted and the surface would become 

exactly parallel to the crystallographic plane, unless 

new steps can nucleate from thermal fluctuations 

which locally change the value of cc. Classical nuclea- 

tion theory considers an area of advance by one 

interplanar distance and surrounded by a closed step, 
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usually called a pillbox. The line tension of the step critical nuclei are then given by particular saddle- 
acts as force opposing the spreading of the pillbox points of the total free energy of the system as a 
and the pillbox will tend to ~sappear(lo) unless function of ~(5, y). 

$ + aAF, < 0 (3.1) 

where r is the radius of the pillbox and AFV is the 
driving force for the formation of the new phase. 

The work W of forming a pillbox of critical radius 
re is 

S.r,z 
This equation is the two dimensional anaIogue of the 
equation used by Cahn and Hilliard(ll) for three 
dimensional nucleation with (MAP, -t_ ad) the two 
dimensional equivalent to their quantity f, and 

W=-EL- 
aAF, 

= ?w,& (3.3) 

7r = - _._ 
2 

ro2a AFV (3.4) 

E 
I-,=--. 

aAFQ 
(3.5) 

Because the step may be of considerable width these 
equations will lose their meaning if the critical 
radius becomes less than the width of a step. This 
condition gives 

W 

wcrO=z (3.6) 

OP 

(3.6) 

(3.7) 

This condition au~matically implies that 

or that the driving force is less, by a factor of 7~, than 
the critical driving force necessary for uniform 
motion (equation 1.10). 

Growth by a two dimensional nucleation mecha- 
nism is expected to be measurable when W is less than 
50 kT. v(‘e can therefore expect to observe growth 
occurring by classical two dimensional nucleation if 

7ra2ao < 50kT (3.9) 

and it will occur for a driving force less than (~d~,,)/a. 
This condition for expecting a range of driving force 
in which observable growth by classical two dimen- 
sional nucleation is expected does not explicitly 
depend on the interface diffuseness. 

If condition (3.8) is not met, that is, if the driving 
force is increased so that w is no longer less than the 
calculated radius of a classical nucleus then classical 
nucleation theory is not expected to hold. The 

iao[ (gj2 + (~)l 
equivalent to the gradient energy. Here critical 
driving force is equivalent to the spinodal and it is 
expected that the W will go to zero continuously as 
-AFe approaches the critical driving force. The 
radius of the critical nucleus is expected to decrease 
with increasing driving force until it equals w and 
then is expected to become larger again, becoming 
infinite at the critical driving force. The maximum 
required change in OL is expected to remain close to a 
until w = rc and then with increasing driving force 
approach zero. Thus the critical nucleus begins to 
look more and more like a uniformly advancing 
interface. 

4. THE SCREW MECHANISM IN 

A DIFFUSE INTERFACE 

When a dislocation having a Burgers vector with 
a component normal to the surface intersects the 
surface, it gives rise to a step which must always 
terminate at the intersection.(l) When a driving 
force is applied which favours one phase over the 
other this step will move and because it is anchored 
will rotate about the dislocation. The part of the 
step at large distances from the dislocation will have 
a much greater distance to travel per revolution and 
so will lag behind causing the step to form a spiral. 
A steady state spiral will be reached after a while 
where the retarding forces due to the curvature of 
the edge and geometrical factors combine to give 
each part of the spiral equal angular velocity. With 
increasing driving force the spiral rotates more 
rapidly and the spiral arms are closer together. 
The growth velocity is given by(r) 
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and LO the angular velocity of spiral is given approxi- 
mately by 

vco fr) = - 
27-C 

where V, is the velocity of a straight step for this 
driving force and rC is the radius of a two dimensional 
nucleus also for this driving force. The spacing 
between arms of the spiral is equal to 2r,. 

This theory is independent of the assumption 
about the sharpness of the interface and should hold 
until the driving force is so large that the spacing 
between arms is comparable with the width of a step. 
This again is given by 

& 
w<re=-_ 

aAF, 

or 

As AF, becomes greater than (o&,&/a the steady 
state spiral arms begin to overlap giving a more or 
less continuous slope instead of a spiral ramp. Until 
the critical driving force is reached, growth must 
still be considered as occurring by a lateral mecha~sm 
for the advance originates at the screw dislocation. 

SUMMARY AND DISCUSSION 

It has been shown that the mechanism of the 
motion of an interface in a crysta~ne material 
depends on the driving force rather than on the 
nature of the interface. At sufficiently large driving 
forces, the interface can move uniformly without the 
benefit of either a nucleation or screw mechanism. 
What constitutes a sufficiently large driving force 
depends on the diffuseness of the interface, so that 
for very diffuse interfaces any perceptible driving 
force will be sufficient, whereas for sharp interfaces 
the necessary driving force is so large that it may be 
difficult to achieve. 

The intuitive feeling that non-singular interfaces 
should be able to grow without the benefit of steps is 
not quite justified but in many cases the necessary 
driving force before this is so will be quite small. 
It may even be so small that the difference in driving 
force resulting from a nonequilibrium shape will be 
sufficient to let the crystal or surface approach the 
equilibrium shape dictated by the W-olff construction. 
For such a case it will never be possible to produce a 
crystal with flat surfaces by growing at a sufficiently 
low applied driving force since, if the incremental 
driving force due to the nonequilibrium shape is 
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sufficiently large, it will enable the crystal surfaces 
to achieve the other orientations, But many non- 
singular surfaces will not be so extreme so that the 
driving force necessary to move them uniformly will 
be appreciable and these must rely on a nucleation or 
screw dislocation mechanism. 

At small driving forces, the lateral growth mecha- 
nisms will be found, either the screw dislocation 
spiral or, in the absence of a screw dislocation, the 
two dimensional nucleation mechanism. The step 
energies and step widths for diffuse interfaces were 
computed. Since these steps tend to be quite wide, 
allowance must be made in the lateral growth meaha- 
nisms when the scale of the important features of 
these mechanisms becomes of the order of the step 
width. It was found convenient to distinguish 
according to the driving force - AP, as follows. 

(1) For 0 < - AF,_ < aogmiax/a classical lateral 
growth mechanisms should be observed. By this we 
mean that in this range t3he growth is governed by 
phenomena which can be understood in terms of a 
step energy E which is independent of AF, and is 
given by equation (2.4) or (2.5). 

(2) For o,,gmax/a < -AF, < no,g,,,/a the lateral 
growth mechanism has to be modified to take into 
account that the size of the critical nucleus and t,he 
spacing of the spiral arms are comparable with the 
step width. In this region a gradual transition is 
made from classical lateral growth to uniform advance 
of the interface normal to itself. 

(3) For -AF, > ~~~~~~~a the interface can 
advance normal to itself without the benefit of the 
later&X motion of steps. 

The application of these principles to solidification 
kinetics will be discussed in a subsequent paper. 

I am indebted to C. P. Bean, J. C. Fisher, G. 
Horvay, R. Kikuchi and D. S. Rodbell for many 
helpful discussions and to J. E. Hilliard and D. 
Turnbull for critical reviews. I am especially indebted 
to G. W. Sears and D. A. Vermilyea for their encour- 
agement and cont,inued interest. 
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