
THE KINETICS OF CELLULAR SEGREGATION REACTIONS* 
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Cellular segregation reactions, such as diseont~uous precipitation and pearlite formation, often 
accomplish the segregation solely by diffusion along the cell boundary as it sweeps through the original 
unsegregated phase. Previous theories, which have assumed that the reaction is diffusion controlled, 
have been inadequate in describing many of its quantitative aspects. 

If the diffusion is limited to the advancing cell boundary, the lamellae of the cells or nodules cannot 
reach equilibrium composition at any non-zero growth rate and for this reason the growth rate of 
the cells can no longer be determined by the diffusion rates alone. It is concluded that at least two 
controlling kinetic processes are required to describe such a complex reaction. 

A simple model, which, in addition to diffusion control, assumes that the cell boundary moves with a 
velocity proportional to the net free energy decrease (taking into account the incompleteness of the 
segregation as well as the creation of lamellae surfaces), reproduces many of the observed features of these 
processes. Among these are the incompleteness of the segregation and the interlamellar spacing. 

LA CINETIQUE DES REACTIONS DE SEGREGATION CELLULAIRE 

Souvent les &actions de sbgregation cellulsire, telles que la precipitation des carbures et la formation 
de perlite, se produisent uniquement par diffusion 1% long de la front&e de la cell&e lorsque celle-ci 
traverse la phase non sCgrCgCe. 

Les theories anterieures, qui admettaient que la reaction est controlee par la diffusion, sont incapables 
d’interpreter quantitativement de nombreux aspects de cette reaction. 

Si la diffusion n%n%resse que la frontiera de la cell& en mouvement, les lamellss des cellules ou 
nodules ne peuvent atteindre la composition d’equilibre pour toute vitesse de croissance non-nulle. 
Pour cette raison, la vitesse de croissance dea cellules ne peut 6tre determince en s’appuyant uniquement 
sur les vitessea de diffuusion. Une telle reaction complexe ne peut. done &re d&rite que par l’intervention 
dun minimum de deux meoanismes cin&iques. 

Un modele simple permet de reproduire la plupart de8 aspects observes et attribues k ces mccanismes. 
Ce model% admet, outre l’action de la diffusion, que la front&e de la cellule se meut b une vitesse 
proportionnelle a la diminution d’energie libre du reseau. On tient compte egalement de la formation 
de surfaces lamellaires sin& que de l’etat d’achevement de la segregation. 

DIE REAKTIONSKINETIK DER AUSSCHEIDUNG VON ZELLARTIGEN GEFUGEN 

Ausscheidungsreaktionen von zellartigen Gefugen, wie die inhomogene Ausscheidung und die 
Perlitbildung, laufen oft allein durch Diffusion entlang der Zellgrenze ab, wahrend sich diese durch die 
urspriingliche iibersattigte Phase bewegt. Friihere Theorien, die angenommen hatten, dass die Reaktion 
durch die Diffusion bestimmt wird, reichen zur Beschreibung von vielen quantitativen Ziigen nicht aus. 

Wenn die Diffusion auf die vorriickende Zellgrenze besehrankt ist, kiinnen die Lamellen des Aus- 
scheidungs~f~~s bei einer endlichen Wac~~stumsgeschwin~gkeit nicht die Gleichgewichtsz~aln~ 
mensetzung erreichen, aus diesem Grund kann die Wachstumsgeschwindigkeit der Zellen nicht mehr 
allein durch die Diffusionsgeschwindigkeiten bestimmt sein. Daraus folgt, dass mindestens zwei 
bestimmende kinetische Vorgange nlitig sind, urn solch eine komplexe Reaktion zu beschreiben. 

Ein einfaches Modell, dem zugrunde liegt, dass die Reaktion durch die Diffusion bestimmt wird, und 
dass sich zusiitzlich die Zellgrenze mit einer Geschwindigkeit proportional zur Abnahme der freien 
Energie bewegt (wobei sowohl die Unvollst~ndigkeit der Ausscheidung als such die Bildung von 
Lamellenober~~chen in Recbnung gesetzt wird) gibt viele der bei diesen Prozessen ~obach~ten Ziige 
wieder. Unter diesen sind die Unvollst~ndi~keit der Ausscheidung und die Abstiinde zwischen den 
Lamellen. 

* Received April 11, 1958. 
INT~ODUGTION 

Yc2 
eneral Electric Research Laboratory, Schenectady, New Many solid state segregation reactions such as 

$ The distinction between eutectoid decompositions and precipitation and eutectoid decomposition,$. result in 
precipitations is as follows. In eutectoid decomposition two 
new phases form alternate lamellae in a cell or nodule growing 

a lamellar structure in which parallel plates of the 

from the parent phase. In precipitation one of the two phases final phases are grouped in nodules or cells. Most of 
forming the cell lame&e has the same strncture as the parent 
phase but differ8 in composition and orientation. Otherwise 

the segregation occurs as the boundary of the growing 

the morpholo~ is the same. nodules moyes through the sample leaving behind the 
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segregated structure. In recent years it has become 

apparent that diffusion along the moving nodule 

boundary is often the only way that this mode of 

segregation can occur, and that little diffusion occurs 

in the lattice ahead of the boundary or in the lamellae 

after they have formed.(1,2) Often the new phases in 

the nodules are formed at compositions which differ 

from the final equilibrium composition and can only 

approach equilibrium by means of slow lattice 

diffusion.(3) 

This method of segregation has been called a 

pearlite reaction for eutectoid decompositions. For 

precipitations it has been known as cellular or dis- 

continuous precipitation and occasionally as the 

recrystallization reaction. The mechanism for this 

type of process has been the subject of many papers. 

The approach of Zenerf4) for pearlite, which has been 

modified by Turnbullc5) for precipitation, seems to have 

been the only one which has attempted to treat some 

of the quantitative relationships describing this 

process. It has been quite unsuccessful in predicting 

the spacing between lamellae of the same phase, since 

the predicted spacing is reported5 to be smaller than 

that observed by a factor which ranges(4p6) from 3 to 

100. 

For the iron-carbon eutectoid (pearlite) Zener 

assumed that carbon diffusion through the lattice, 

rather than along the pearlite boundary, controls 

the growth of pearlite. (The extrapolated carbon 

diffusion data are sufficiently high to account for the 

carbon segregation.“)) Much evidence exists, however, 

to indicate that the rate of growth is not controlled 

by the carbon diffusion rate. For example, it is 

known that pearlite nucleates on a grain boundary 

but grows only into one of the adjoining grains. This 

cannot be consistent with the assumption that carbon 

diffusion through the lattice controls the rate, for then 

the pearlite would grow into both grains. Further- 

more, alloy elements exert a strong influence on the 

growth rate without having a corresponding effect on 

the carbon diffusion rate. There is strong evidence 

that the alloy elements diffuse along the boundary,(*) 

and it may be this diffusion which is important in 

controlling the growth rate. 

Turnbull’s modification (for precipitation) of Zener’s 

treatment included the assumption that the process 

was grain boundary diffusion controlled. However, 

not all of Zener’s original relations were consistently 

modified and there are some which still apply only to 

lattice diffusion. 

The present paper is an attempt to develop a 

3 See later section on AF,. 

model for these processes on the assumption that 

lattice diffusion is negligible compared with grain 

boundary diffusion. Two important modifications 

result. The first is that the cell can not segregate to 

equilibrium composition for any non-zero growth 

rate. This decreases the overall free energy change 

and places an upper limit to the growth rate for a 

given spacing. This upper limit results from the fact 

that at sufficiently high growth rates the segregation 

would be insufficient to give the thermodynamically 

required decrease in free energy accompanying cell 

formation. 

The second important modification results from the 

fact that any growth rate smaller than the above 

mentioned upper limit is now possible and consistent 

with the diffusion rate. Another kinetic parameter is, 

therefore, needed to specify the process. In this paper, 

a model which assumed that the boundary moves with 

a velocity proportional to the net free energy decrease 

will be developed. It will be shown that the behavior 

of the cellular segregation reaction depends on the 

ratio of the mobility of the boundary to the diffusion 

coefficient along the boundary. Two simple systems 

will be treated; precipitation from dilute solution, 

and a symmetric eutectoid. 

THEORY 

Zener’s model(4) for pearlite assumed that carbon 

diffusion ahead of the interface controlled the rate of 

growth. The rate of this diffusion to the tips of the 

carbide lamellae (per unit area of the lamellae tip) is 

proportional to a driving force and inversely pro- 

portional to the spacing. This driving force was as- 

sumed to be proportional to the net free energy 

change AF accompanying the formation of carbide 

and ferrite of equilibrium composition, including the 

surface energy of the ferrite-carbide interfaces. Thus, 

per mole alloy 

OF = AF, + ‘Gv 

where AF, is the free energy change for the formation 

of a mole of equilibrium composition pearlite, o is the 

carbide-ferrite surface free energy, V the molar 

volume of pearlite and S the interlamellar spacing. 

The growth rate, which is proportional to the flux to 
lamellae tips and hence also to AF/S, is small for large 

spacings because of the large distance over which 

diffusion takes place. It is also small for small 

spacings because - AF becomes small as more energy 

is converted to surface free energy. AF and hence 

also the growth rate vanish for a critically small 
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spacing S, given by 

The maximum growth rate is obtained for a maximum 

in - AFIS and occurs for a spacing equal to twice S,. 

Zener assumed that this spacing would be the observed 

spacing, but this prediction has not been verified. In 

view of this last assumption, this is not surprising, for 

the spacing could easily be governed not by the desire 

to maximize growth, but by any one of a number of 

quantities which the system might want to maximize, 

e.g. the rate of entropy production. Alternatively the 

ability of the cell to create new platelets might be the 

limiting factor. To eliminate this latter point the 

experiments on thermal cycling were carried out, and 

are reported later in this article. 

When we now consider how Zener’s model must be 

modified to take into account the assumption that all 

segregation occurs by diffusion along the advancing 

cell boundary we come to the following conclusions: 

1. The system cannot reach equilibrium segregation. 

This has been shown experimentally for several 

systems(6) and is a direct consequence of the diffusion 

assumption. The degree of segregation will be a 

function of the growth rate, spacing and diffusion 

coefficient. 

2. Only a fraction, P, of AF, is realized if segrega- 

tion is incomplete. The minimum possible spacings 

from purely thermodynamic reasons would corre- 

spondingly be larger by l/P. This fraction P is a 

function of growth rate, spacing, and diffusion 

coefficient and for precipitation has a form quite 

different from that for eutectoid decompositions. An 

examination of Fig. 1 shows that, for any small 

amount of precipitation, P is positive as long as the 

precipitate does not differ too drastically from the 

equilibrium composition, Hence a small amount of 

segregation, leaving the original phase only slightly 

changed in composition, will make P positive. For 

eutectoids, however, both new phases have to be 

reasonably close to the final composition for P to be 

positive, and hence a large amount of segregation 

must be accomplished. 

3. The growth rate is no longer inversely propor- 

tional to S. The gradients are still inversely pro- 

portional to S, and so is the total flux to the lamellae, 

but the flux per unit area of lamellae tip, which is the 

quantity that determines its growth, is inversely 

proportional to both S and 1 (the thickness of the 

lamellae). If the degree of segregation is constant, 1 is 

proportional to S and we obtain the relationship 

derived by Turnbull’5) that the growth rate is inversely 

I 1 I I 

x’. x; xi “i 
FIG. 1. Schematic free energy curves for a precipitating and 
eutectoid system. The chemical part of the free energy will 
decrease in a precipitating system as long as precipitate of a 
composition exceeding X’ is formed, regardless of how little 
precipitates, and, therefore, of how little the a phase change 
in composition. For a eutectoid system none of the new phases 
can approximate the original phase in composition, and 

segregation to at least Xa’ and Xg’ must occur. 

proportional to S2. But if the degree of segregation is 

not constant no such relationship will be obtained. 

4. For a given spacing a range of growth rates is 

possible, resulting in different degrees of segregation. 

Therefore, another quantity must be specified. In 

Zener’s treatment the spacing fixed the growth rate 

by the diffusion equation. Actually the diffusion 

equation provides only a relationship between spacing, 

growth rate, and the degree of segregation, and permits 

a range of growth rates for a given spacing within the 

limits imposed by thermodynamics. Another physical 

principle which relates these three quantities, growth, 

spacing and segregation is needed. Since within the 

limits imposed by thermodynamics, the boundary is 

free to move at any velocity, one can assume that it 

moves as an ordinary boundary under an applied 

pressure. The average pressure in this case is AFlV 
where AF now takes into account the fraction P of 

AF, realized due to incomplete segregation, as well as 
the retarding forces of the interlamellar surfaces. 

AF = PAF, + $L 

Any periodic variation in both driving pressure and 

boundary mobility will be smoothed out by a curving 

of the cell boundary if the surface tension of the 



boundaryis a sufficientlylarge fractionof -PAF,S/V. 

Thus we can use the AF defined above and write for 
the growth rate G, 
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(3) That the system has reached steady state, i.e. 
that the concentration in the advancing slab is 
stationary. We can then write the diffusion equation 

0~6 fg + G(X, - x,) = 0 

G = -MAF (4) 

where N is an average mobility of the boundary. 
Since the growth rate in turn influences the degree 

of segregation through the diffusion equation and 
hence P, we have two simultaneous equations in the 
three unknowns, Thus, for a given spacing we oan 
then determine the corresponding growth rate and 
degree of segregation, 

What then determines the spacing! From the 
t,hermal cycling ~x~er~ents we have good reason to 
believe that it is not the inability to create new lamel- 
lae, for a colony or nodule which had a spacing smaller 
than that usually observed for a given temperature 
rapidly changed over to the characteristic spacing. 
Let us assume that the spacing which the system 
chooses is that which maximizes the decrease in the 
free energy AF. Because of equation 4 this is also the 
spacing which maximizes both the growth rate, G, 
and the rate of decrease in free energy per unit area 
of cell boundary GAF,[V. It should be possible and 
would be desirable to justify this assumption on more 
basic grounds, but how this should be done has so far 
eluded the author. 

where X,, X, are the concentrations of the matrix 
and lamellae respectively and 2 is the distance along 
the boundary normal to the lamellae. X, and X,, 
are functions of 2, in other words the lamellae are 
allowed to vary in composition across their thickness. 

(4) That X, and X,, are related by some simple 
equation. This means that the local lamollae com- 
position is related to the composition of the boundary 
ahead of it. 

(5) That the phases are of equilibrium composition 
along the interface between lamellae. 

Precipitation from t&h&e so&ion 

Here we shah assume that X, for the depleted 
parent phase is proportiona;l to X, where the X values 
represent the minor component. The diffusion equa- 
tion is then easily integrated to give for the depleted 
parent phase 

Xp = X, + A oosh (6) 

For comparison it is interesting to note that in 
Zoner’s treatment the maxima in - AF, G and 
-GAF/ V do not coincide and give respectively for 
S/S, the values CO, 2 and 3 for bulk diffusion and 
CO, 312 and 2 for cell boundary diffusion. Zener and 
Turnbull both chose a maximum in G. 

where k = X,/X,, A is an integration constant, and 
Z is measured from the center of the lamella of the 
parent phase. 

The d+sion equation 

For precipitation from dilute solution the pre- 
cipitate lamellae will be thin compared to the spacing. 
Kence in view of the fifth assumption we can set 
X, = X, at 2 = S/2 and thus evaluate A to obtain 
for the depleted parent phase lamellae 

Of the available free energy change AF,, only the 
fraction P is realized during the segregation. P is 
related to the growth rate and the spacing by the 
diffusion equation which we will solve for two highly 
idealized cases. These illustrate some of the features 
of precipitation and eutectoid decomposition. 

x - x, 
--- = 
x, -. x, 

(7) 

We will make the following simplifying assump- 
tions : 

(1) That the advancing boundary is plane. This 
will underestimate the effect of spacing, and result in 
a higher value of P. 

(2) That no diffusion occurs except in the boundary 
and that the boundary can be represented by a dab 
of thickness 6, of material of concentration X, 
having a diffusion coefficient D,. D, will be assumed 
independent of concentration and S will be considered 
suficiently small for there to be no concentration 
variation across the thickness. 

The important parameter describing this process is 

kGP 

u=m* 
The fraction of minor component precipitated is 

Qz 2 1 
112 

(X, - x,, -0 
(X, - Xl 4ZIS) 

which upon integration becomes 

2 dg Q =I tanh_ (8) 
YM z 



22 ACTA ~~T~LLURGICA, VOL. 7, 1959 

For precipitation from slightly supersaturated solu- 
tion the free energy curve can be approximated by a 
parabola, and we obtain as the fraction of the total 
free energy change released by cellular precipitation 

2 

s 

i/s 

P(R) = l - (X, - X,)2 c (X - XJ2 WW) 

which gives 

4a 4” P(u) = ?- tanh 2 - -i sechc 7 
2/a 

(9) 

If P is a function of cc alone, the basic assumption that 

--Al? = -_PAF, - 7 

be maximized results in the following equation for cc in 
terms of a new dimensionless parameter @ 

fl0) 

where P’ = dPj&. Equation 10 gives a as a function 
of the important parameter B which contains only 
terms that can be evaluated by independent measure- 
ment. Figure 2 gives the various quantities of interest 
in a precipitation process. P and & are defined above 
as respectively the fraction of the available free 

energy change released by precipitations and the 
fraction of excess solute precipitated. R = -2oV/ 
XAF, = S,/X = 2aP’ is the fraction of AF, con- 
verted to surface free energy, and can have any value 
from 0 (infinite spacing) to 0.49 which corresponds to a 
spacing slightly larger than Zener’s predicted spacing. 
(P - R) is the fraction of AF, available to exert 
pressure on the boundary and hence is equal to 
@I(-HAF,). 

The prediction is that, for a highly mobile boundary 
wit#h a low di~usion constant, the precipitation is 
almost reversible in that all of the chemical energy 
released is converted to surface energy and the 
boundary goes as fast as is thermodynamically 
possible. At the other extreme of small /3, the bound- 
ary is sluggish compared to its ability to accomplish 
segregation. The spacing can now be large and the 
segregation will still be sufliciently complete. Furt,her- 
more, a large spacing will reduce the drag due to 
surface tension on the sluggish boundary, permitting 
the full pressure of hFo to bear on it. 

Let us consider a symmetric eutectoid system with 
the euteetoid composition at Xc = l/2, the two new 
phases at XRe = X, and at X,” = 1 - X, where 
X, < l/2. We will assume that the concentration of 
the minor constituent in either phase is proportional to 
its concentration in the boundary, i.e. X,/X, = k for 
the alpha phase, and (1 - X,)/(1 - X,) = k for the 

FIG. 2. Precipitation from dilute solution as a function of the 
parameter j3 = -M Vao2/DB6AF,, 

P the fraction of AP, realized. 
Q the fraction of material precipitated. 
R the fraztion of Ac\p, expended on surface energy. 
P - R the fraction of AP, exerting a pressure on the cell 

boundary p = kCXF/D,S 
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0 I '0 
10-8 10-7 10-6 10-5 10-4 IO-" 10-Z 10-l 

P’ 
IFIG. 3. Decomposition of the symmetric eutectoid as R function of the parameter 

B’ = MVW/D,SC for AF,, = -0.010. 

Jl phase, where k is a constant. Then for the a phase 

(11) 

and for the @ phase 

x-p 
-----=r- 
x, - 4 

(12) 

From assumption (5) we obtain k = 2X,. 
We can define Q again as follows 

4 

s 

l/d 
(8 - X) d(Z/S) o 

2/a = -4__ tanh p 
da 

(13) 

which is quite similar to the expression derived before 
(equation 8). In order to evaluate P we again assume 
a parabolic free energy curve for the two new phases. 
Hence the free energy AF of each phase relative to CC 
and p in equilibrium with each other is 

AF= ’ 
(+ - ;u,)2 

(X - XJz for a 

/r I , (14) 

’ 

C is approximately temperature independent and is 
very much larger than -AF,. The ratio -AF,IC 
varies approximately as the underoooling from the 
eutectoid temperature. 

Using equation (14) we can write as before 

P-l-i_ 
s AF&-X2 o 

(X - XJ2 d(ZIS) 

2 (1 +~~~~~~~tanh~ 

da - 4 sech2 - 
4 

(15) 

Again it is worth noting that, because --C/AF, is 
large, a must be small in order that P be positive. 
This was mentioned before in ~onl~e~tion with Fig. 1 
and is apparent from the form of equation 15. 

Since we are only interested in the region of positive 
P and hence small u, we can expand P in powers of 
Ci:- 

P(ct)= 1 _ti5-J&- ; 
0 

2 
+ * .* 

0 

Since P is again a function of a alone, we can apply 
equation 10 and obtain, by multiplying by -AF,/C, 

64 lx 5 

kMo2V 
/J’=-----_=: - -i 225 \ 16 

D,BC 
$!I + ; (;)” 

(16) 

where ,3’ =- -~AFofC and has the advantage that it is 
approximately temperature independent for small 
undercoo~~g. S~~arly we obtain 

(17) 

In Fig. 3 the values of P, & and R are plotted for 
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I.0 r 

-AF,,/C 

FIG. 4. The fraction R for a symmetric eutectoid as EL function of AB’, for 
various values of 8’. 

eutectoids with AF,,/C = -lO-2 for comparison with 

Fig. 2. For small values of p’ and j3 the behavior is 

quite similar, but for large values the behavior is 

different. For large /Y equation (7) gives 

cc 3AF, 1’2 
-_= 
16 ( 1 

-___ 
2c 

and P = R = 0.8 for all values of AF,/C for a 

symmetric eutectoid. Thus for large /?’ the eutectoid 

differs markedly from the precipitate. This is because 

in order to accomplish the thermodynamically 

required amount of segregation, a fine spacing is 

required. This fine spacing, in the limit, requires 0.8 

of the available free energy. 

In order to examine the behavior of the spacing 

with temperature for various systems, R is plotted 

against AF,/C for various values of B’ (Fig. 4). 

The iron-carbon eutectoid 

The iron-carbon eutectoid is of great practical 

interest. Unfortunately, the pure binary has never 

been systematically studied, and it is well known that 

small quantities of impurities or alloying elements 

exert a profound influence on the growth rate G.c7) 

The high temperature carbon diffusion data can be 

extrapolated to the region in which pearlite occurs, 

and this gives a bulk diffusion coeficient which, 

within experimental error, could account for the 

observed growth rate. The fact that pearlite in- 

variably grows into only one of the two grains must 

indicate that carbon diffusion through the bulk is not 

the rate determining step. Furthermore, the alloying 

elements which cannot diffuse rapidly through the 

bulk appear to segregate to a large extent and influence 

the growth rate markedly without affecting the spacing 

by more than a factor of 2.c’) 

Zenerc4) has pointed out that the impurities or 

alloy elements can not affect AF, markedly because 

of their low concentration. However, if the distri- 

bution coeficient between the boundary and the ferrite 

or cementite is small, they can be swept along by the 

boundary and thus reach a very high concentration. 

In this respect. their effect on the driving pressure may 

not be negligible. If this is so a large degree of segrega- 

tion of the alloy elements will be accomplished. 

A more significant factor in the alloy effect, might be 

in the marked dependence of grain boundary mobility 

on impurities. To a first approximation it seems that 

this would manifest itself mainly in the growth rate, 

since effects due to changes in the parameter p’ could 

well be independent of impurity content. Even if /3’ 

changes, the ratios P, Q and R are relatively insensi- 

tive to /3’ and the more significant change in 

G = -(P - R)M AF, 

would come from changes in M. Since the spacing is 

given by 

2ov 
X=-- 

RAF, 

it contains no quantities which would depend drasti- 

cally on impurities. 

The calculation of AF, 

The value of AF, is clearly defined here as the 

maximum available free energy change when one mole 

of alloy is decomposed to the ultimately stable phases. 

Some confusion exists because Zener introduced into 

his discussion both the free energy change AF,, and 

the chemical potential change Ap of the minor 
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component (carbon). For his computation of the 

minimum possible spacing he correctly used AF,. 

The chemical potential change is related by the 

Gibbs-Thompson equation to the minimum per- 

missible radius of curvature at the tip of the lamellae. 

The free energy change is related to the minimum 

permissible spacing. It is possible from a knowledge of 

the various surface tensions, and the A,u values for 

both components, to arrive at the minimum spacing 

by considering the curvatures of the cell boundary 

and the triangle of forces at the junction of two 

lamellae with this boundary. This gives an expression 

for the minimum spacing identical with equation (2). 

When we are considering precipitation from a dilute 

solution, Ap, which is equal to RT In (X,/X,), differs 

from AF, by a factor of 1/2(X, - X,). The former 

varies as (X, - X,) whereas the latter varies as 

(X, - XJ2. Turnbull(5$6) wrongly uses Ap instead of 

AF, to compute his spacing. 

Ap is related to the minimum precipitate thickness, 

AF, to the minimum spacing. That this is self 

consistent may be seen as follows: If the super- 

saturation (X, - X,) is doubled, A~,L is doubled and 

the platelets may be half as thin. But twice as much 

will precipitate on these thinner platelets. Hence 

four times as many platelets are possible, resulting in a 

reduction in the minimum spacing by a factor of 4. 

Turnbull and Treaftis(‘n report a spacing 100 times 

coarser than Zener’s predicted spacing. This is 

however the result of confusing A,u with AF,. In 

fact the Zener spacing as calculated by Turnbull 

would result in the thermodynamically impossible 

situation (in equation 1) where the surface energy 

term would be ten times the available free energy. 

Figure 5 is a plot, from their data, of --XAF,/2V i.e. 

o/R (--SAF,/2V = 2a if the Zener spacing exists). 

In order to evaluate AF, Henry’s and Rauolt’s laws 

were assumed. 

AF,=NkT xlog~+(l-x)log~ 
C 

1-x 

1-x ) 

X, was taken from Stockdale’s solubility data.tg) 

The more recent solubility data of Borelius et aZ.(lO) 

was not used because its temperature dependence 

seemed inconsistent with recent calorimetric measure- 

ments of the heat of formation of the alloys.ol) 

Indeed preliminary results@) on the redetermination 

of the tin solubility, by observing resistometrically the 

temperature at which it is completely dissolved, 

indicates that Borelius’ phase boundary is too high 

at the lower tin concentrations. The difference 

between Stockdale’s and Borelius’ data amounts to a 

factor of 2 in AF, in the region of interest for Fig. 5. 
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FIG. 5. The spacing data of Turnbull nnd Treaftis.‘“’ 

Using a value of o of 150 ergs/cm2 we obtain a value 

of R ranging from 0.06 to 0.15, and thus the spacing is 

coarser than the Zener prediction by a factor ranging 

from 3 to 8 instead of the reported factor of 100. 

Thermal cycling experiments 

A plausible explanation for the failure to observe 

the spacing predicted by Zener is that it is difficult to 

nucleate or create the additional lamellae. It then 

becomes hard to understand the rapid creation, 

during a quench, of a band of fine pearlite so often 

observed on specimens of partially transformed iso- 

thermal pearlite. Similar observations exist for 

PbSn precipitate nodules which continue growing, 

at room temperature, with the characteristic room 

temperature spacing with no discernable transition 

region. Down-quench observations like these could 

still be explained by rapid nucleation or multiplication 

of plates to within a certain factor of the Zener 

spacing. Up-quenches on the other hand force the 

specimen to start with a finer spacing than it normally 

would have, that is, a spacing closer to the Zener 

spacing. This should be a more nearly ideal spacing 

according to Zener, but not according to the present 

model. Accordingly two alloys, an SAE 1080 plain 

carbon eutectoid steel and a Pb-6.5 wt.% Sn, were 

partially transformed at a lower temperature to 

establish a fine spacing, and then permitted to grow 

at a higher temperature. In all cases the spacing 

coarsened within a short distance. Figures 6 and 7 are 

representative micrographs of the observed spacing 

change. The spacing predicted by Zener is therefore 
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FIG. 6. Spacing change in a SAE 1080 plain carbon eutectoid 
steel during an up-quench from 660°C to 700°C. x 7812. 

not “an ideal but otherwise unattainable” spacing. 

The system will approach its characteristic spacing 

from perturbations in either direction. 

DISCUSSION 

It has been found necessary to describe the growth 

of a cellular segregation reaction by at least two 

independent rate processes: the diffusion along the 

cell boundary, and the mobility of the cell boundary 

in response to the driving pressure which results from 

the decrease in free energy when the boundary moves 

and accomplishes segregation. The model was 

evaluated for two highly idealized cases; precipitation 

from dilute solution and a symmetric eutectoid. It 

was found that for each case, two extremes occurred. 

The low-mobility high-diffusivity extreme resulted in 

a coarse interlamellar spacing and complete segrega- 

tion. This is because, when the boundary is sluggish 

compared to the diffusion coefficient, much segrega- 

tion can be accomplished even at large spacings. 

The high-mobility low diffusivity extreme resulted 

in just enough segregation so that the free energy 

change was negative. The boundary rushed ahead as 

fast as it could within the limits imposed by the 

thermodynamics of the model. For eutectoids this 

resulted in an even finer spacing than that predicted 

by Zener, because much segregation must be accom- 

plished before AF is negative. For precipitation this 

resulted again in a coarse spacing, and this time in 

little segregation. 
Unfortunately none of the important kinetic para- 

meters for a cell boundary is known. We are therefore 

limited toestimatesand checks forinternal consistency. 

For instance there should be a relationship between 

spacing and degree of segregation which we can read 

off Fig. 2. From Turnbull’s and Treaftis’ spacings 

data we estimate R - 0.050.15, which means a ,3 of 

the order of lOP, which in turn should go along with a 

degree of segregation Q of 85-90:;. From their 

resistance data Turnbull and Trea.ftisc3) estimate 

Q = 0.6. A recent calorimetric determination of the 

heat of formation of the alloy(llJ can be combined 

with the reported heat of precipitation(13) to give 

Q = 0.6. Both these estimates of Q are for room 

temperature, whereas the spacing was measured at 

higher temperatures. Since there is a large uncertainty 

in the est,imation of R, owing to the estimation of AF, 

from an extrapolated phase boundary, the comparison 

is inconclusive. It would be useful to have simul- 

taneous knowledge of the heat and free energy of 

formation, the heat of precipitation, the surface 

tension and spacing. 

Another comparison with data comes from mea- 

sured growth rates. Let us consider the case when /3 is 
small, that is, the low-mobility high-diffusivity 

extreme. Then (P - R) is approximately constant 

and the growth rate is then proportional to A F, or the 

FIG. 7. Spacing change in a Pb-6.5% Sn colony started at 
6O”C, continued first at 80°C and then at room temperature. 

x625. 
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square of the supersaturation for small supersatura- 

tion. This is quite different from Turnbull’s prediction 

that 

which, together with the spacing prediction, results in 

a fifth power dependence of growth onsupersaturation. 

Table 1 gives a summary of growth dataf4) for Au-Ni 

in the small supersaturation region. The data seems 

to fit a square dependence, for which (X5,, - X,)/ 

(X1oil - X,) = 5112 = 2.2, better than a fifth power 

dependence 5115 = 1.38. This therefore permits a 

checking of the basic assumption of this paper. 

The value of /? of lop2 estimated for Pb-Sn is 

smaller by a factor of lop3 than would be estimated 

from the slab model of a boundary, if we assume iso- 

tropic mobilities in the slab and no barrier to the 

incorporation or removal of atoms into or from the 

crystal lattices. That /l and M appear to be small by 

this factor is not therefore surprising. In an actual 

boundary the atomic mobilities may vary over a wide 

spectrum as one traverses normal to the boundary. 

The atomic mobilities which enter into the diffusion 

coefficient are heavily weighted in favor of the largest, 

while the reverse is true for the boundary mobility 

which will reflect the lower atomic mobility of the 

atoms which are in process of leaving or entering 

the boundary. 

Most of the experimental observations of spacing 

fall in a very narrow range of undercooling, AI’ (a 

factor of lo), or supersaturation (a factor of 2). Over 

these ranges /3 and AF, would hardly change suffi- 

ciently to cause much variation in R, the fraction of 

free energy expended on lamellae surfaces. Indeed R 

appears to vary only slightly. The trend in R, as well 

as its value, are predicted by this model but require 

data on D, and M. 

Experiments on cellular precipitation in bicrystals, 

to determine growth rate, spacing and fraction pre- 

cipitated as a function of misorientation, would be 

extremely useful, since the variations of M and D 

with 8 can be estimated, and AF, remains constant. 

The one experimental observation available on 

growth rate only has been interpretedo5) according 

to the Zener-Turnbull model. This keeps the spacing 

constant and therefore makes the growth rate pro- 

portional to D,. Identical results would be obtained 

for the present model if the ratio of mobility to 

diffusion constant is independent of orientation. Then 

B is constant, resulting in a constant spacing and 

degree of segregation as well as a growth rate pro- 

portional to boundary mobility. Conversely, if the 

spacing is found not to be constant, one oan predict 

the change in /? and hence in MID,. This, together 

with a knowledge of the angle of dependence of D,, 

would enable one to predict M, G and Q. 

In the case of the iron-carbon euteotoid, pearlite, it 

would be useful to examine the high purity alloy to see 

if spherical instead of hemispherical nodules begin to 

form, and in addition to assess the complete role of the 

impurities which have hitherto always been present. 

Often general intragranular precipitation competes 

at higher temperatures with the cells, giving rise to 

what has been called the recrystallization reaction. 

By this term it has been implied that, the general pre- 

cipitation strains the grain, and that the cellular 

reaction has for its driving force the strain energy due 

to the general precipitation. That this is not so can be 

seen from the observations that the so-called re- 

crystallization reaction often stops before it, has oon- 

sumed its grain. This can only mean that the driving 

force has disappeared. This would seem to rule out 

strain energy, and is strong support, for a chemical 

driving force which has been diminsished by general 

precipitation. 

In summary the author would like to stress that the 

basic point of this paper is the need for at least two 

kinetic parameters to describe cellular segregation 

processes. The choice of the grain boundary diffusion 

coefficient and the grain boundary mobility was made 

here and is capable of experimental check. The 

assumption that the system chooses to maximize the 

free energy decrease proved to be useful, and it is felt 

that such an assumption should be derivable from 

more basic kinetic assumptions. 
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TABLE 1. Composition (at 0h Ni) at which growth rate of 
100 _.&/sec and 500&x10 am observed in Au-Ni alloys 

(E. E. Underwood) 

700 
17.75 4.1 
50.25 2.0 

600 
8.50 2.6 

66.5 1.8 
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