
A LINEAR THEORY OF THERMOCHEMICAL EQUILIBRIUM 
OF SOLIDS UNDER STRESS* 
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Manv multicomponent solids can be represented by 8 continuum model. On this basis 8 thermo- 
dynamic theory of multicomponent stressed solids has been constructed. 

After linearisetion, the necessary equations for equilibrium can be separated into purely elastic and 
purely chemical equations. In particular, the usual Hooke’s law coefficients are replaoed by new open 
system coefficients. All the parameters of these equations can be computed from standard measurements. 
Examples showing the use of these formulae are presented. 

THEORIE LINEAIRE DE L’EQUILIBRE THERMOCHIMIQUE DES SOLIDES SOCS L’ACTIOS 
DES CONTRAINTES 

De nombreux solides 8 composants multiples peuvent &tre represent& par un modele continu. Une 
theorie thermodynamique des solides 8. composents multiples soumis Q des contraintes 8 6te developpee 
8 partir de cette hypothese. 

Apr&s linearization, les equations necessaires pour exprimer l’equilibre peuvent etre divis&s en 
equations purement Qlastiques et en equations purement chimiques. En particuhjr, les coefficients 
hebituels de la loi de Hooke sont einsi remplaces par de nouveaux coefficients. Tous les parametres de 
oes equations peuvent &re caloul6s 8 partir des mesures classiques. 

Des exemples montrant l’emploi de’ces formules sont present&. 

EME LIh‘EARE THEORIE DES THERMODYNAMISCHEN GLEICHGEWICHTS VOX’ 
FESTKGRPERN IJNTER SPANNIJNG 

Viele Mehrkomponenten-Festkijrper konnen durch ein Kontinuumsmodell dargestellt werden. 
Nach der Linearisierung konnen die erforderlichen Gleichgewichts-Gleichungen in rein elestische und 

rein chemische Gleichungen separiert werden. Insbesondere werden die iiblichen Koeffizienten des 
Hookeschen Gesetzes durch neue Koeffizienten eines offenen Systems ersetst. Alle Parameter dieser 
Gleichungen k&men 8us den Ergebnissen von Standardmessungen berechnet werden. Es werden 
Beispiele fur die Anwendung dieser Formeln diskutiert. 

I. HISTORICAL SURVEY AND OUTLINE 
OF THE ARTICLE 

The thermodynamic equilibrium of multicomponent 

stressed solids has attracted interest for the last 
hundred years. Gibbs(l) u-rote a section of his memoir, 

“The Equilibrium of Heterogeneous Substances,” on 
the subject, but he never considered a solid which 

can change composition while remaining in the solid 
state. This is not surprising since solid state diffusion 

was discovered only around 1894.(2’ There is one 
not,able exception: t,he very special case of the 
“solid which absorbs fluids,” a material in essence 
comparable macroscopically to a sponge or micro- 

scopically to a gelatine (Ref. 1, pp. 215-218, 3). 

to the physical description of a solid for which a 
t,hermodynamics is constructed, and to the mathe- 

matical translation of this description. Then general 
conditions of equilibrium are deduced. Finally, 
the last section is devoted to the practical use of 
these formulas, where a completely linear theory is 

worked out for actual examples. 

The subject was reexamined much later by workers 
in three branches: fibers and polymers,‘4-14) geol- 
ogr(15-32) and metallurgy.‘as-39) Since their physical 
description of a solid-often implicit in their articles- 
is influenced by the material they were interested in, 
the various thermodynamics constructed do not reach 
the same results, although most claim to be general. 

In light of this difficulty, this article has been 
writt,en as follows : the first section is entirely devoted 
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The object of this study is to develop a thermo- 

d_ynamics of a multi-component solid which reaches 
equilibrium under non-hydrostatic stress. It is clear 
that, no equilibrium is possible if the solid behaves as 

a viscous fluid capable of continued deformation as 
long as the non-hydrostatic stress persists. It is 
equally clear that equilibrium is possible for the purely 
elastic solid in which all relative motion of the atoms, 
whether by slip or diffusion, is proscribed. We wish 
to explore equilibrium under much less restrictive 
conditions. For a solid to reach equilibrium, we shall 
show that it is sufficient to require that it possess an 
energy density that is a single valued function of 

entropy density and other state variables to be identi- 
fied later, and that such a requirement is realistic 
for a large class of solids. 

The composition variables require no special atten- 
tion, but the geometric variables are the main problem. 
For gases and liquids usually only hydrostatic 
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II. THE NETWORK MODEL OF A SOLID 
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equilibrium is possible and the volume is a sufficient 

variable. For non-diffusing and elastic solids one 

can define a strain which plays this role. But for 

diffusing solids, this is usually not so. Indeed, let us 

consider a small element of volume attached to the 
solid. During a deformation this element can be 
followed; but if diffusion occurs, its boundaries 

become “diffuse”. It loses its physical identity 

and cannot be followed. Therefore, one cannot in 
general define a displacement, and hence a strain. 
Truesdell’s’40) approach was to consider the solid 
composed of as many continuous media as there were 
independent component.s. But this formulation in- 
cludes also cases where there is no restriction on the 
movement of atoms-except, maybe, kinetic ones- 
a situation not, unlike that of a fluid. In most of 
t’hese cases only hydrostatic equilibrium will be 
possible. The introduction of restrictions on the 

atomic movements eliminates those cases and allows 
a simpler description which still covers a large 
fraction of the solids we are dealing with. 

We assume that the solid possesses the following 
property: that there exists a certain identity which 
we shall call network, which is embedded in the solid, 
and permits the definition of a displacement and 

hence a strain. Moreover, we shall consider only 
solids for which the displacement gradient (or the 

strain), the composition variables and the ent’ropy 
density form a complet-e set of state variables. This 

,has some important practical consequences. We 
shall identify lat,er a stress with the derivat,ive of the 
energy density with respect to strain. Therefore, 

on an equilibrium surface in the state space, the local 
stress in t,he solid is uniquely determined by the 
local strain, composition and entropy densit,y (or 
temperature). This automatically excludes materials 
for which the stress is history dependent, like plastic 

or elast,o-plastic materials. But, it, can include some 
viscoelastic solids or materials for which a restricted 

diffusional creep occurs. 
Before developing further consequences of this 

approach, it may be worthwhile to give examples of 
solids where the network is clearly present and has 
the desired property. Gibb’s “solid which absorbs 
fluid” is one of them and is exemplified by wood 

which absorbs water and which will reach a reversible 
equilibrium under non-hydrostatic stress. Here the 
network is the wood structure itself which is reversibly 

strained by the absorption of water or by stress. 
In interstitial solid solutions, the network is the 
matrix lattice itself. This case has, in III-b, been 
formally related to Gibb’s “solids which absorb 
fluids” for deformations that permit unrestricted 

diffusion of the interstitial atoms but permit only 

elastic strains of the lattice. Silicate network glasses 

below their softening point but at temperatures in 

which the positive ions can migrate, polymeric 

materials that absorb solvents or plasticizers and 
ion exchange resins all can be described by networks. 

Of particular interest to metallurgists are sub- 
stitutional solid solutions in which atoms diffuse by 

a vacancy mechanism. Here t,he lattice is preserved 
and can serve as the network, regardless of whether 
at,oms or vacancy occupy an atomic sit,e. The lattice 
can only be altered at. internal or external surfaces 
or at dislocations by vacancy creation or annihilation 
there or by slip or climb. Away from these defects, 
the lattice remains intact and fits our requirements 
for a network. Vacancy coalescence into a nen- 
dislocation loop or new void is usually a rare event ; 
and when it occurs, will be considered herein to- 
gether with dislocations and free surfaces as regions 
where the network is not preserved. 

For all these cases the lines or surfaces where the 
network can be diminished, increased or altered 
require special attention; and special examples of 
this will be developed. 

III. THE GENERAL CONDITIONS OF 
EQUILIBRIUM 

The material for which we want to det,ermine the 
conditions of equilibrium is composed of several 
phases, separated by interfaces. Within each solid 
phase there can be internal surfaces and dislocation 
lines. We require only that the physical propert’ies 
are piece-wise continuous functions of position and 
that the discontinuities in properties coincide in 
position with the interfaces, surfaces and dislocations. 
We also neglect capillarity. These dislocation lines 
and surfaces act only as mathemat,ical lines or sur- 
faces where the network can be altered; t,hey are 

ot,herwise without influence upon the contiguous 

material. 
Since the type of solids and the presence of surfaces 

of discontinuity inside our systems give rise to dif- 

ferent, conditions of equilibrium, several cases are 
treated separately. 

For each solid, a reference state for displacement 
is chosen. It is taken stress free and homogeneous.* 
Orthonormal basis vector and Cartesian tensors are 
used throughout this article. The definitions of 
symbols and operations are given in the appendix. 
Small strain theory is assumed sufficient, so that’, 
if x’ is the position of a solid particle (in the continuum 

l This state might be a non-reel one (cf. Gibbs Ref. 1 
p. 201). 
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mechanical sense), x its posit’ion in the actual con- 

figuration and u defined by 

x=x’+u (1) 

the components of t’he strain tensor E are 

(2) 

In small strain theory the difference between the 

derivatives ( au,/axj’) and ( aui/i3xj) is neglected. 
The total internal energy and total entropy are 

given respectively by the integral of the int,ernal 
energy density E’ and t’he entropy densit’y 
measured per unit volume in the reference state. 

& = E’ ad s V’ 

Y= A’dV’. s 21’ 

As we have assumed in the preceding paragraph, 
energy density is given by 

E’ = s’(E, A’, pIf, . . , ps’) , 

where pl’ is the molar density of component I 

(3) 

(4) 

the 

(5) 

per 
unit volume in the reference state. This equation 

is sometimes called caloric equation of state.(41,42) 

(a) Internal equilibrium of an interstitial solid solution 

Our interstitial solid solution contains one com- 

ponent which is free to move, so that its density 
p’ per unit volume in the reference state is arbitrary, 
and a network, immobile except for small displace- 

ments due to stress. 
The solid is isolated in a fixed volume (boundary 

condition of place of elasticit’y theory). 
As usual in thermodynamics, its equilibrium 

state minimizes the energy at const.ant entropy. 
This can be expressed by the following variat,ional 

problem : 

Minimum E’ av'. r ('3) 

Subject to 

1. Constant entropy 

Jd 

9 = [ dl av' = constant, (7 

2. Constant mass of the mobile component 

M = [p’ avf = constant. (3) 

The first variat’ion of the energy is : 

Subject to 

s 6.4 d2“ = 0 
c’ 

s bpl d2” = 0 
2~’ 

(10) 

(11) 

The first term in equation (9) is transformed. lvith the 
divergence theorem and the ident,ity 

div (-4 - v) = (div A*) - v + tr (A - TV) (12) 

where A is a second order tensor, v a vector and t,he 

subscript T is the operator “transpose”, into 

In these expressions, 6’ is a unit normal on t,he 
boundary av’ of v’ oriented t,oward the exterior 
and “dir”’ . IS a notation for the divergence operator 

on coordinates in the reference state, to differentiate 
with ‘rdiv”, the divergence operator on t,he coordinates 

in t’he actual state. 
Two Lagrange multipliers 0 and p are introduced. 

In view of the small strain approximat’ion, one get’s 
the following necessary equilibrium conditions : 

div’($) Ndiv ($) =O 

8 = g (constant throughout the volume) (14) (b) 

,u = s 
apI 

(constant throughout the volume). (c) 

(a) 

Since, at constant composition, the material is an 
ordinary elastic material, (&/aE) can be identified 
with the Cauchy stress tensor T. 

Wit,h the following identities : 

(15) 
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equations (14) look similar to the usual equilibrium 
equations for fluids. Indeed, equation (14-b) indicates 
that the temperature of the material is constant. 
But, as will be shown in Section III-c, (14-a and c) 
in general give rise to non-homogeneous stress and 
composition fields. 

(b) Equilibrium between a substitutional binary solid 

solution and a liquid in which it is soluble 

In this section we will do two things that could 
have been done separately : (1) introduce our network 
model.of a substitutional solid solution and compute 
the internal equilibrium condition and (2) introduce 
the liquid-solid boundary as an example of the surfaces 
or lines along which the network can be increased, 
decreased or altered (plastically deformed) and com- 
pute t,he surface equilibrium conditions. We introduce 
both together to demonstrate that the variational 
statement permits a clean separation into conditions 
for internal equilibrium and boundary equilibrium. 

Our model of a substitutional solution is one in 
which the atoms are free to move subject to the 
network restriction which in this case is that the 
lattice remain intact everywhere within the solid. 
This places a restriction on the molar densities 
pi’* in the reference state of the solid. 

pIf8 + p218 + p31s . . . = constant. (16) 

Vacancies can be considered as one of the com- 
ponents but are neglected since they are usually 
present in dilute concentration. This condition 
(equat.ion 16) constitutes a constraint and offers no 
special difficulty in the variation calculation. It 
is similar to constraints found for chemical compounds 
and electrolytic solutions. For a binary solution it 
becomes 

pII + p2+ = constant. (16a) 

The fluid is described in a parallel manner (cf. 
Gibbs, p. 105 et seq., equation 147) by an energy 
density Ed, function only of bF and pIF, pzF. This 
description is different from the usual, but is entirely 
equivalent and allows better comparison with the 
solid. 

The system is isolated in a fixed volume, and its 
total energy is: 

I$ = Q” + bF 

Note that integration is performed on the reference 
volume for the solid, but on the actual volume for the 
fluid. Superscripts have been omitted on each 

volume of integration and will be omitted, to simplify 
the notation, each time there is no ambiguity. The 
first variation of the energy of the solid is: 

66” = S( !?$a, f !&&J’S+ 
8’ iJE 

a&IS 
- 8~” 
aP21s 

eS 6x”. ii” ds. (lia) 
s 

The surface integral is due to accretion and dissolution 
of solid and is computed on the surface s in the actual 
state. +is is the normal pointing from the solid 
toward the fluid. 

The first variation of the fluid is: 

a&F 6PlF + - 
appF 

•j- s EF 6XF * riF as. (lib) 
s 

The total first variation is subject to the condibions 
due to conservation of total entropy, total mass of 
component and the network condition in the solid : 

+ppIFdu -lpIF 6NFds = 0 (18) 

+kplFdv-IppF6NFds=0 

6p,‘X + 6pi8 = 0. 

The first term of equation (17a) is transformed by 
the divergence theorem 

-I,!+ (g) * 6u dv. (19) 

In this equation use has been made of the fact that 
6n is zero on the surface of the solid, except along the 
interface 8’. The surface integral is transformed 
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by Nanson’s formula t41) into a surface integral on S: 

where F is the displacement tensor, the components 
of which are 

and J is its determinant. 6~ on the surface is decom- 
posed into a normal and a tangential component. 

&l = &,i + &6,~” 

The continuity between solid and fluid implies that 

bu,, + 6N” = -6NF (21) 

at each point on the surface s. 
Three Lagrange multipliers 0, ,ur, ,us are introduced 

to eliminate the integral constraints. 6N” and dp,” 
are eliminated from the total variation of the energy 
with equations (18-d) and (21), so that we are left 
with independent variables. In view of the small 
strain approximation and the identification of &/i?E 

with the Cauchy stress tensor, one is left with the 
following necessary conditions of equilibrium : 

div T = 0 inside the solid, (22) 

8 = g = gP constant inside the overall volume, 

(23) 

constant inside the solid, (24) 

constant inside the fluid, (25) 

pz = aaF 
a pzF 

constant inside the fluid, (26) 

?‘. T * 6.” = 0 on the surface s, (27) 

fi” . T . 3 = -t&F - eaF - plPlF - p2pzFj 
on the surface s, (28) 

Es - ed - plpls - p2p2s 
=& F - ebF - cllPIF - P2PzF 

on the surface s. (29) 

The expression 

T=--E+eb+zpipi (39) 
I 

is a scalar themodynamic pressure which reduces to the 
ordinary pressure in fluids. With this identification, 
the last three conditions on s can be written 

T .;” = +FI .G” (31) 

nS zzz # (32) 

where I is the unit second order tensor. 
Equation (32) is Gibb’s equation (385). Equation 

(24) underlined the fact that, in this type of solid, 
under non-hydrostatic st’ress, only the difference 
between two formal derivatives 

has a physical significance and is constant throughout 
the volume. 

Cases (a) and (b) can be combined, and their general- 
isation to multi-component solids in equilibrium 
with several fluids is straightforward. 

Within a multicomponent solid at equilibrium 
under non-hydrostatic stress, equations (22) and (23) 
(or their equivalents 14a and b) hold. For each of 
the interstitial components, a chemical potential 
can be defined and is constant (equation 14c), while 
for the N substitutional components, the N - 1 
chemical potential differences are defined and constant 
(equation 24). The case of a component that is both 
substitutional and interst’itial, or of component 
species that undergo chemical reaction can also be 
treated by the same methods. 

The equilibrium between solid and fluid requires 
that the normal pressure be constant all along the 
bounding surface of a particular volume of t’he fluid. 
For a solid obeying the compatibility condition and 
fully enclosed by a fluid, this results in hydrost,atic con- 
dit,ions. Non-hydrostatic conditions require either that 
the solid have a non-compatibility or that its surface is 
in contact with more than one fluid at different 
pressure (Gibbs, p. 196), or that part of its surface 
is under tractions other than those imposed by the 
fluid. While each of the fluids at different pressure 
can be in equilibrium with the same solid, bhey will 
not be in equilibrium with each other. Not only are 
their pressures different, but as was demonstrated by 
Gibbs (equations 393-5), the chemical potential of 
each subsbitutional element will be different in each 
of the fluids. Furthermore, as was also demonstrated 
by Gibbs (equation 39), each fluid is supersaturat,ed 
with respect to the precipitation of a hydrost,atic 
solid. 

The case of solid-solid equilibrium will be treated 
in the article on non-linear theory. 
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(c) The open-system elastic constants 

For practical use of the general equilibrium con- 

ditions derived above it is more convenient to make 
a change of variables, and to show that a detailed 

knowledge of the energy density function is also not 
necessary. It will be shown in this section that two 
equations of state involving no new type of measure- 
ment are sufficient to put the problem in known 

mathematical terms. 
For simplicity, we consider again only binary 

substitutional and int,erst’itial solid solutions. In 
the first case, the total number of lattice sites per 
unit volume in the reference state is constant; in the 
second, the total number of immobile atoms per 
unit volume in the reference state is constant. Let 
p,,’ be in both cases this constant density. It is 
convenient to take as independent composition vari- 
able the ratios pl’/p,,’ or p’/p,,’ which in both cases 
shall be called c. 

For interstitial solutions, the differential of the 
energy density is 

de’ = Tij dEij + 8 ILL’ + p,,’ ,u dc . (33) 

We shall use the same expression for a binary substi- 

tutional solution, with the understanding that 

Change of variables in the differential (33) are made 

as usual, and the following Maxwell relations can 
be deduced from equation (33) by differentiating 
E’ - T,,Eij twice with respect to c and Tii. 

8Eij ( 1 aP 

-z- T&= --Or aTij e.&Tk,tij’ ( ) 
(35) 

(1) The open system--interstitial solution. We now 
want to solve the following problem. A solid (inter- 

stitial solution) is in equilibrium, under hydrostatic 
pressure p, with a fluid in which only the interstitial 
component can dissolve. co is the composition of 

the solid in this state. A non-hydrostatic stress is 
applied on a part of the surface of the solid. The 
chemical potential of the mobile component and the 
temperature is kept constant in t,he fluid. When 
equilibrium is reached, w hat are the stress, strain and 
composition fields in the solid? 

The state of the solid at co, under zero stress, is 

chosen as the reference state for measurement of the 
strain. 

Under the general hypothesis of this article and the 
restrictive conditions of this case, the stress T is 
only function of the actual composition c and the 

actual strain E, independently of the path chosen 

to reach this state. We choose the following paths: 

1. A change of composition from co to c at zero 
stress, producing a strain EC. 

2. A change of stress from 0 to T at constant 
composition c. Since small strain theory was assumed 

applicable, and Hooke’s law is valid at constant 
composition, the stress-strain relationship of our 
mat,erial is 

T<j = K,j,!_(E,t - Eck-,) . (36) 

The Kiikl are the usual stiffness coefficients measured 
at constant composition and are function of com- 
position. EC is also function of composition and, as 
will be seen (IV - 2), can be computed from indepen- 
dent measurements. The total strain E is the measur- 
able st,rain. Equation (36) is invertible int’o 

Eii - Ecij = Gi,klTkl (37) 

and the Gijkl are the compliance coefficients, function 
of composition only. 

When equations (35) and (37) are combined, one 
obtains the expression for the differential of the 

chemical potential st constant compositlion : 

po’dp = - $YdT - ET :dT. 
( ) 

(38) 

This equation is integrated to give : 

where M(c) is an unknown function of c only. But 

the chemical potential under hydrostatic pressure 
p, is known empirically. Equating the t,n-o expressions 

one obtains 

P~‘MT> ~1 - P(P,, c)l 

= aEc. 
- ac. (T + ~00 

The pressure p. is arbitrary and can by any conven- 
ient pressure which can simplify the problem on 

hand. Equations (36) and (40) are the two equations 
of state necessary to solve our equilibrium problem, 
since, as we may recall, the equilibrium conditions 
are 

div T = 0 (41) 

$(T, c = pF(l-‘, cF) (42) 

where the right hand side of (42), pertaining to the 
fluid, is a given constant. 
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At this point, one can mention the difficulty of the 

problem since, even with linear elasticity and small 
strain theory, t’he thermod_ynamics included in 

equation (40) makes the problem highly non-linear. 
However, when (c - cO) = AC is small, further 

linearization can be made. Let pO equal the pressure 
of the fluid with which our solid is in equilibrium 

(i.e., we choose p,, to be p). When the solid is at 
equilibrium under this pressure, one has 

pYP> co) = /nP. CF) (43) 

,u( T, c) can then be eliminated between equations (43), 

(42) and (40). One obtains 

Po’[pS(P, co) - .N(P, c)l 

= -%:(T+pI) 

-ieT):T+fpZffI):I. (44) 

All the quantities function of c are expanded t,o the 
first order around c,,: 

E, = E,Ac + Ok 

G = so + G,Ac + Ok 

$(P> c) - $(P> co) 

= yp + ($+)c_c,l + oW2, 

where y is the act’ivity coefficient. 
At this point we introduce the notation 

x is related to the free energy per immobile site f by: 

1 8 
- = PO’ 2 = PO 

, + 

% 
z * 

To the second order in AC, equations (44) and (37) 

become respectively 

AC 
- = E,:(T + p I) + &(G,T):T - +p2(GJ):I (46) 
x 

E - ACE, = (Go + Ac3,)T. (47) 

If G, is small, so that terms containing 6, can be 
neglected, elimination of AC between equations (46) 
and (47) leads to: 

E - [xE, : (2’ + pl)]E, = GOT . (43) 

The second term of the left hand side of (48) written 
in terms of components, is 

XEi,(Tij + Pdij)Ei,l * 

It can be rearranged with the right hand side so as to 

group terms containing T 

Eii - ZPEI~~EI~~&Z = (Qkl + ~El,,E~kz)Tij . 

More compactly written, it reads: 

E - px(tr EJE, = (Go + xE, x EJT . (49) 

The quantity (Go + xE, x E,), a fourth-order tensor, 
could be called the open system elastic coefficient 

(not.ation G*). 
Equation (49) contains no composition dependent 

terms. It, is a purely elast,ic equation that will be 

written 
E* = 6*T. (59) 

The elastic problem is now separated from the chemi- 

cal problem since boundary conditions are also known 
and composition independent. Formally it is equiva- 
lent to an ordinary elastic problem, so that one can 

use already developed dolubions of this problem bo 
solve our elastic equations. Usually one has to 

replace 6 by 6*. Once the elastic equations are 

solved, t’he composition field is found through equation 

(46). 
2. The open system-substitutional system. The prob- 
lem considered is exactly the same as before, but 
the two components of the solid can dissolve so that 
the physical boundary between solid and liquid is 
unknown. Up to equation (39), the development is 
identical. 

For this solid, under hydrostatic pressure p,, the 

chemical potential of each of the t,wo components (1) 
and (2) is knoun. Since under this same pressure p 

is equal to (,ui - ps), it is a straightforward extension 
of case b. Equation (44) is now replaced by: 

Po’rplYP, c) - CliYP, c) - ruzs(Pt C) + ruzl(P> c)l 

=-i!?&T+pI)--1 ?? 2(ac T): Ttlp2@):I. 

(51) 
The expressions of the two potentials pi* and ,u2s are 

pw,s(P, cl - /Jup(P, co) 

,u2s(P, cl - puz”(p, co, 
(52) 

Through the Gibbs-Duhem equation at constant 
pressure, 

a ln y1 -= a ln y2 
a In c aln(l -c) 
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(a lny,/a In (1 - c)) can be eliminated, and the left 
hand side of equation (51) has the value 

Calling again 

it is obvious that the final equations of Section (b) are 
valid also in this case. 

A difference, however, lies in the boundary con- 
ditions. Since the solid can dissolve in the fluid, the 
boundary has an unknown shape and is subject to 
the Gibbs’ condition (32). This last equation can also 
be linearised, and the separation of chemical and 
elastic problems can again be obtained. But the 
elastic problem is not classical, and each particular 
case has to be examined. We shall leave the problem 
at this point. 

IV. APPLICATIONS 

In the last section, a general linear formulation 
has been derived. This section is concerned with the 
simplification brought by material symmetries, the 
practical calculation of the new elastic constants, 
and their use in a particular problem. 

1. The effects of material symmetries and choice of axes 

The simplifications due to a particular choice of 
axes, or material symmetries, appear in the stress- 
free strain t,ensor and the elastic coefficient tensors. 

The stress-free strain E, and its derivative E, at 
c = c,,, can always be diagonalised. Let the non-zero 
component of E, be k,, k,. k, when such an operation 
has been performed. 

E, = diag (xl,, k,, kJ . 

Using the two indices matrix notation(*), we 
see immediately (equat,ion 49) that elastic coefficients 
with indices 4, 5 or G are unchanged, and coefficients 
wit’h indices 1, 2, 3 are changed as follows : 

Ei* = &-,! + k,kjx iandj= 1,2,3 

Efj* = so,, iorj=4,5,6 
(55) 

If the set of axes that makes E, diagonal coincides 
with the cryst,al axes, the E&‘s simplify according 
to the appropriate symmetries. Formulae (55) show 
also that some combinations of elastic coefficients 
remain unchanged under certain crystal symmetries. 
For instance in cubic and hexagonal crystals, k, = k, 

and the difference (6,, - 6,,) is unaltered. 

In isotropic, cubic and occasionally in ot,her systems 
a change in composition at zero stress produces a pure 
dilation. EC is then a spherical tensor 

E c= k(c)I , (W 
as well as El 

E, = k,I . (ST) 

This constant k, is identical t,o the constant 4 used 
by Cahn.(“) The change in composition and elastic 
equations are then given by: 

AC 
- = k,(trT + 3~) -t :(G,T):T -pz(q):~ (58) 
% 

Eii - 3pXk126ij = (So + Xk,2d,jd,,)Tg... (59) 

The most useful material symmetry, for practical 
applications, is probably isotropy. The elastic coef- 
ficients are given, in this case, by 

v is the Poisson’s ration, ‘I’ t’he Young’s modulus and 
G the shear modulus. Inspection of formula (49) 
shows that El should be a spherical tensor for t,he 
material to remain isotropic. This is necessary since 
no phase change is allowed. Combining equations 
(57, (60) and (49) gives the new values of t,he familiar 
elastic coefficients as : 

y*= 1 
1 + Xk,21 

y* = 
v - xk121 

1 + xk21 
(61) 

(K-l)* = K-l + 9xk,’ 

G* = G, 

where K is the bulk modulus 

3(1 - 2Y) 
K= 

T- . 
1 

In terms of relative changes, the largest effect will 
usually be on the Poisson’s ratio v. It is interesting 
to point out that the value of the shear modulus is 
unchanged and the values of Y, v and K are reduced. 

Before computing numerical values of these changes 
it is necessary to know how EC or E, can be obtained. 

2. Calculation of the compositional strain tensor 

In crystalline materials, the most precise experi- 
mental values of EC are probably derived from lattice 
parameters measurements. The calculation is complex 
only for low symmetry crystals that do not have 
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orthogonal axes (triclinic, monoclinic and trigonal). 

For other crystal systems, the basis vectors undergo 

pure extension and constitute the principal axis 

of the compositional strain tensor EC. Around the 

composition ca, the lattice parameters are assumed 
continuous functions of c, and their values at c, 

are noted. 

a&J = u0 i = 1, 2, 3. 

The strain tensor E, is given by: 

EC=$diag[($,) -1, (5) -1, ($) -11. (62) 

Since we need only E,, the derivation of the preceding 
expression leads to 

i= 1,2,3 (63) 

with 

E, = diag [k,, k,, kJ. 

Another method is available when the stress-free 
st,rain tensor is spherical. In the limits of linear 

elasticit’y the trace of EC is equal to: 

trE,=3ke- 

VO 

and its derivative to 

aE, _ I av I -- 
ac 3vo ac A) 

but for interstitial solid solutions at zero stress, 

so that 

n’ 1 
C=-- 

vo PO’ 

ak=&,-, 
ac 3 

(64) 

where G is t,he partial molar volume of the interstitial 
component, at zero stress. 

In the case of a binary substitutional solution, the 

derivative av/&‘is to be taken at constant number of 
sites (nr + 11s’). Thus 

au 0 ac( 
= (fil - T&)(n, + 722’) 

n,‘+n*‘) 

= Po’Vo($ - h), 
where B, and B, are the partial molar volumes of 
components 1 and 2 at zero stress. It implies immedi- 
ately 

ak -= 
ac 

f$ (e, - 5*). (65) 

It might be worthwhile to emphasize that the quan- 

tit,ies needed are macroscopic. The composition 

strain t.ensor required by this theory is a macro- 

scopic average relating changes of dimensions between 

two macroscopic samples of different compositions. 
This is particularly evident in formulae (64) and (65). 
But the use of lattice parameters should not hinder 
the fact that they are indeed averages of individual 

lattice distortions. 
We are now able t’o calculate some new elastic 

coefficients. But before examining these numerical 
values, the expressions first derived put us in a 
position where we can compare our results to tno 

previous works. 
If we consider the case where the compositional 

strain is spherical so that (64) is valid, and if n-e put 

p = 0 in equation (40), one obtains: 

11(T,c)=y(o,c)-_gBtrT-1 &T 
(- > 2po’ ac 

: T (66) 

This expression can be compared to equation (14) of 

Li et uZ.(s4’ Their ,uHo corresponds to our ~(0, c), 
the second t,erm is identical, and their &, corresponds 

t,o the t,hird t,erm of equation (66). Our theory includes 
indeed the case treated by Li et al. and is in agreement 

with their results. 
The results of equations (55), when they are applied 

to a cubic system (k, = k, = k3) are also in agreement 
wiith the results of Alefeld et aZ.(45) Their formula 
(15) or (28)) when one makes use of the value of 
Aa/a they give on p. 340, becomes equivalent to (55). 

3. Num.erical values and orders of magnitude 

Numerical values for four alloys can be found in 

Table 1. The values of ki are large for all alloys. 
Such large values of k, usually indicate a small solu- 
bility limit and vice versa. The change in the elastic 
coefficients, equal to Xk12 for the three cubic alloys, is 

moderate. Exceptionally large values will exist near 
incoherent critical points and chemical spinodals 
where 31 approaches infinity. 

As can be seen from the last column, t’he composition 
changes. which are proportional to the stress, become 
significant only in the range of high stress, thus 
justifying the linear approximation. In this range, 

the terms involving the pressure p-usually a pressure 
of 1 atm-becomes negligible. 

The values of the second order terms in stress, in 
equat’ion (46) are more difficult to assess because 
experimental data on the variations of the elastic 
coefficients with composition are sparse. Most of the 
data up to 1969 have been compiled in Landolt- 
Bornstein tables.(4s) For dilute Fe-Al, the values 
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TABLE OF NUMERICAL RESULTS 
- 

Alloy, 
(at. %) 

k 1 

(Concentration 
unit)-’ 

% x lo’* 
(cmz/dyne) 

z&Z x 10’3 
(cm“/dyne) 

z&/tr T 
cm* x cont. unit 

d.yne i 

Al-2 % Cu 
723°K 
a-brass 

0.264 2.35 1.64 

-0.094 2.66 0.24 

1.12 

-0.35 

30 “/< Zn 0.095 4.87 0.44 0.195 
773°K 

Zn-0.5 % Cd k, = 0.117 s,,* - s,,o = 0.156 x IO-13 
573°K x1, = 0.117 s,,* - s,,o = 0.66 x 10-13 

k, = 0.24 S,,* - S,,” = 0.32 x lo-13 

The necessary X-ray data have been taken from Pearson, “” thermodynamic data from Hultgren.“*’ 

listed provide the following numbers (in cm2). 
dyne-l. 

a6,, 
ac 

1.49 x lo-‘*; 
a6 

-= 12 = -0.98 x 10-12; 

aC 

a6,, 
- = -0.71 x lo-l2 
ac 

The values to compare in equation (46) are El,, and 
QLITkl. With Eli, of the order of 5 to 10 per cent, the 
second order terms are clearly negligible up to stress 
levels of lo9 dynes.cm-2. 

For isotropic solids, as was mentioned earlier, the 
largest relative effect is on Poisson’s ratio. A value 
of Xk,2 of 0.5 x 10-13, of Young’s modulus of lo-12 
dynes.cmV2 and of Y of 0.3 give rise to a change of 
more than 10 per cent between v and v*. A change 
of sign in v might even occur if Xk12Y is larger than v. 

4. Practical applications 

Around a dislocation, atoms rearrange t,hemselves so 
t.hat largest ones are in tensile regions and smallest 
ones in compressive regions, forming what is called 
a dislocation atmosphere. The computation of this 
composition field can be done as follows. We consider 
a straight edge dislocation in an isotropic interstitial 
solution. Far away from the dislocation the stress 
is zero, the chemical potential is constant, and the 
composition is cO. 

Since the solution for t’he stress field around an edge 
dislocation in a constant composition material is: 

Gb sin 8 
a ,, = o&q = - 

2?7(1 - v)r 

Gb COS 8 
CT- 
rB - 2Tr(l - V)T 

Gb v sin 8 
a zz = - 

27r(l - v)r * 

(67) 

The stress field, in our problem is given by 

Gb sin 8 
a, = a,, = - 

27r(l - Y*)T 

Gb cos 8 

%I3 = 27r(l - V*)r 

Gbv* sin 0 
cr ZO = - 

27r(l - v*)r ’ 

(6s) 

where b is the magnitude of the Burger’s rector of 
the dislocation at composition cO. 

Since, in the isotropic case, t,he composition field 
is given by 

AC = Xk, t’r T (69) 

around one dislocation it is : 

2 f- v* Gb sin 0 
AC = -xk,----- . 

l- v*2?r r 
(70) 

The stored elastic free energy is now proport,ional t,o 
Gb2/47r(1 - v*), and is thus lower than the elastic 
energy of the same dislocation at constant compo- 
sition c,. 

The main difference between the composition field 
expressed in equation (70) and the one computed wit,11 
purely elastic theories equation (47) lies in the factor 
(2 + v*)/(l - v*). 

We shall consider a second example where the 
theory can be used. A parallelepiped of material A, 
of square cross-section is surrounded on four of its 
sides by an incompressible material B. Material A is 
put in contact on two opposite faces with a liquid L 
which it can absorb, but in which it cannot dissolve. 
What is the stress field and composition field in the 
material A at equilibrium? We assume that the 
pressure in the fluid is negligibly small and that A is 
an isotropic material. 
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The solution is obtained by performing the following 

operations : 
(a) let, the material absorb the liquid without 

constraints. It reaches composit,ion cO. 
(b) stress the material along x and y to regain the 

original dimensions, at constant chemical potential. 
Let Em and E,, = E, be the strain to be applied. 

The final stress is readily obtained using open system 
elastic coefficients as : 

T,, = Y*(l - ~*~)(l + v*)E,, 

TV, = Tm (71) 

T,, = 0 

and the expression for the composition field is 

AC = 2& Y*( 1 - Y*~)( 1 + v*)E,,. 

V. DISCUSSION 

The problems of developing a fundamental thermo- 
dynamics for chemical equilibrium in solids has been 
shown to be intimately connected with identifying 

the restrictions on chemical and diffusional processes 
that exist naturally within the solid. After defining 
the network structure and identifying it as a physi- 
cally realistic concept for solids, we have shown that 

its existence in solids is a sufficient condition for 
reaching thermochemical equilibrium in non-hydro- 
static stress fields. The existence of the network 
structure makes strain definable and a single valued 
function of stress and composition change. 

The conditions for equilibrium of a solid were 

derived both in the interior of the solid where the 
network is intact and at a surface with a liquid in 
which the solid was soluble and where the network 
could be increased or diminished. The surface 

condition was shown to be separable from the interior 
conditions. The interior equilibrium placed conditions 

on the chemical potentials as well as on temperature 
and stress (equations 14 or 22-24), while the surface 
condition resulted in an equating of a special thermo- 
dynamic pressure between solid and fluid (equations 
31 and 32). These conditions have also been derived 
for special cases by Gibbs, Li, Darken and Oriani, 
Nolfi, et,c. 

With the recognition that the application of stress 

under restrictions on the chemical potential produces 
composition changes and that these composition 
changes produce additional strains, the idea of an 
open system elastic constant, is introduced (equation 
50). It is shown to bear the same relationship to the 
ordinary isothermal elastic consbant where instead 
of a constraint on the chemical pot,ential the com- 
position is held fixed, as the isothermal elastic constant 
(temperature fixed) bears to the adiabatic one (en- 

3 

tropy fixed). In the latter case, the difference is 

rigorously expressible in terms of macroscopic meas- 
urables. It is so also for the difference between t,he 

open system constant and the isothermal one, 
except that the difference is highly nonlinear at 
moderate stresses. A linearization applicable to small 
stress is given (equation 55 generally, and equation 

61 for isotropic solids). All of the pertinent param- 
eters are then identifiedwith macroscopic measurables; 
in particular, the strain caused by composition 
change is just that and not some local distortion on 

the atomic level commonly used in obtaining inter- 
action energies for statistical calculat)ions of com- 

position changes due to stress fields. 
The magnitudes of the effect are discussed next. 

While interstitial solutions have the expectedly large 
effects, so do some substitutional solutions especially if 
they are not dilute and near a critical unmixing point. 

All kinds of solute interaction problems at equilib- 
rium can be solved readily by use of the open systems 

constant. The dislocation atmosphere is given as an 
example for the isotropic solution where the linear 
theory remains applicable. The stress field and elastic 

energy are given by the ordinary equations only 
the open system constants are used (equations 67 
and 68), and the composition field is then determined 
from the actual stress field (equation 70). This 
produces at once a completely self-consistent dis- 
location atmosphere in contrast to t#he usual cal- 
culation in which the stress field of the dislocation 
without the atmosphere is used to calculate the 
composition change, but then no allowance is made 

for how the strains introduced by the atmosphere 
affect the stresses and hence again the atmosphere. 

The non-linear case will be the subject of a subse- 
quent paper. It may be worthwhile at, this point to 
note that it retains the same equilibrium conditions 

and leads only to a non-linear stress-strain relation 
in which all the chemical parameters are still inde- 
pendently measurable on hydrostatic systems. Thus 
the non-linearity by not making approximat,ions intro- 
duces only computational difficulty in applications 
while preserving the full rigor and self-consistency 
that thermodynamics is capable of achieving. 

NOTATIONS USED 

Tensor quantities 

Notation Component Name 

E cijkl stiffness tensor 

‘3iikl compliance t,ensor 

%kl first derivative of G with 
respect to composition 
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Notation Component Name 

E Eij total strain tensor 

E, EC, stress-free strain tensor 

E1 Gii first derivative of E, with 
respect to c 

F ‘ij deformation gradient 
I sij unit tensor 

Ye&r Quantities 

x, 9, 2 are places in t,he actual 
state 

ii and f are unit vect,ors in the 
actual state 

The same quantit’ies primed are taken in the refer- 
ence state. Vectors, except li and f, are printed in 
boldface letters. 

Scalars and scalar functions 
8 
9 
& 

A. 

PI 

PI 
e 

c, CI 

P 
?r 

Y 

x 
v 

J 

R 

k 

k1 

a, ai 

total energy 
total entropy 
energy density 
entropy density 
mass densit,y of element I 

chemical potential of element I 
absolute temperature 
mole or mass fraction 
pressure 
thermodynamic pressure 
activity coefficient 
definition in equation (45) 
volume 
det,erminant of F 

gas constant 
defined in equation (56) 
first derivative of k with respect, to c equation 

(57) 
lattice paramet,er 

Miscellaneous symbols 

v, v’ volume of integrat,ion 
S surface of integration 

Functions used 

In the following formulae, il and B are second 
order tensors, b is a vector and (5. is a fourth order 
tensor. 

Meaning or 
Notation components form Nature 

AT transpose of A tensor 

tr A trace of A scalar 
det A determinant of A scalar 

%A KijklAkl 
tensor 

A-B AikBkj 
tensor 

A-b AijBj tensor 
A:B=tr(AT-B) AijBij scalar 

Notation Meaning or 
components form 

Nature 

AxB 

div’ 

div 

AiiBkl 4th order 
tensor 

divergence operator 
in the reference 
stat,e 

divergence operator 
in t’he actual 
state 

Einstein summation convention is used throughout 
the article. 
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