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Shear transformation zone (STZ) dynamics is used to examine the transition between different regimes
of flow serration in the strain rate dependent deformation of metallic glass. To capture the strain rate
independent yield strength of Vitreloy 1 at low to moderate strain rates, the model is adapted to
include STZ volume and activation energy that decrease with increasing strain rate. The different stages
of shear banding are examined in a statistical fashion over six different strain rates ranging from 10�5 to
100 s�1, with twelve replicates at each strain rate. Examination of flow serration, shear band nucleation
rates, propagation rates, and sliding rates in each simulation find support for the hypothesis that the flow
transition is caused by high shear band propagation and sliding rates at low strain rates, and high shear
band nucleation rates at high strain rates. The underlying cause for the flow transition is hypothesized to
be a strain rate dependent critical shear band nucleus size that increases with increasing strain rate. This
critical shear band nucleus size results from the strain rate dependent STZ volume and activation energy,
in which very small variations can cause a large change in shear banding behavior.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Metallic glasses show great promise as lightweight, high-
strength, flexible materials due to their impressive mechanical
properties [1e3]. However, metallic glasses suffer from poor
ductility at room temperature due to their tendency to localize
plastic strain into shear bands [2,4,5], which ultimately lead to
catastrophic failure. Interestingly, although the yield point of these
materials is often independent of strain rate for rates up to
102e103 s�1, the shear band density and degree of flow serration
are highly strain rate dependent [6e8]. A thorough understanding
of the mechanisms underlying this phenomena is necessary to
enable the development of tougher, more ductile metallic glass
composites and alloys.

The different modes of deformation, homogeneous and inho-
mogeneous, exhibited by metallic glasses are well characterized by
examination of Schuh's deformation map, shown in Fig. 1 [6]. The
homogeneous regime exists at elevated temperatures and lower
strain rates, where the deformation is characterized by viscous
flow. The inhomogeneous regime is characterized by localized
.
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deformation, typically in the form of shear bands. This regime en-
compasses temperatures below the glass transition temperature
(Tg) at lower strain rates to a much larger temperature range at
higher strain rates. Within the inhomogeneous regime, deforma-
tion at low strain rates is characterized by strongly serrated flow,
meaning that strain accumulates in the material in temporal bursts
accompanied by relaxation stress drops resulting in a jagged
stressestrain curve [9,10]. Higher strain rates are characterized by
moderately serrated flow, and very high strain rates have little or no
flow serration. In nanoindentation experiments, Schuh and Jiang
independently observed that this reduced flow serration was
accompanied by a reduction in the appearance of shear steps in the
surface of the material around the indenter [11,12]. At the lower
strain rates, the plasticity is localized into only a few shear bands; at
higher strain rates the plasticity is dispersed across many shear
bands. It has been hypothesized that this change from few to many
shear bands at increasing strain rate is due to competition between
shear band nucleation and propagation [7]; when individual shear
bands nucleate and propagate quickly relative to the strain rate, the
stress in the surrounding material is reduced, suppressing addi-
tional shear band nucleation. However, when shear bands do not
accommodate strain quickly enough to relieve stress in the mate-
rial, multiple shear bands occur to reduce the stress.

The process by which individual shear bands nucleate,
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Fig. 1. General deformation map for metallic glasses as a function of homologous
temperature and applied strain rate, adapted from Schuh [6]. Points investigated in this
paper are marked with a ‘þ’ on the deformation map.
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propagate, and arrest has been the subject of continued investi-
gation. The explanation of this process begins with the funda-
mental unit of deformation in metallic glasses, which is accepted to
conform to the shear transformation zone (STZ) theory introduced
by Argon [13]. The STZ involves the collective and inelastic rear-
rangement of several dozen atoms in response to an applied shear
stress. The action of one STZ causes an increase in the local stress
field along the direction of shear, creating preferential sites for the
activation of additional STZs [14,15]. Models applying Argon's STZ
theory have differed on how shear bands form and propagate from
an initial group of STZs, with three main viewpoints being most
prominent. First, some model the shear band as a percolating
boundary that reaches a critical concentration of STZs before
initiating simultaneous slip along the plane of highest resolved
shear stress [16]. Second, shear bands aremodeled as a propagating
zone of rejuvenated glass, followed by a zone of glue-like material,
and finally followed by liquid material, as adiabatic heating de-
creases the local strength [17]. Third, others model a two-step
process, with a shear band nucleating from a small cluster of
STZs, and propagating quickly through the sample before initiating
simultaneous slip [18,19]. Recent work by Qu et al. has shown that
metallic glass samples pulled to very low levels of plastic strain
show signs of partially propagated shear bands [20], lending
further credibility to the second and third theories. The two-step
theory, as explained by Homer, Schuh, Greer and others
[6,15,18,19,21], can be subdivided into three stages for the pro-
gression of deformation in metallic glasses:

1. Nucleation: STZs activate, cluster, and make up the growing
nuclei of competing shear bands

2. Propagation: When a shear band nucleus reaches a critical size,
it begins to rapidly grow, dominating plasticity in the region

3. Sliding: Stress relaxation occurs as the fully developed shear
band thickens and accumulates additional plasticity in the form
of shear band slip, until the applied load decreases enough for
slip to arrest

Once a shear band has arrested the free volume generated by the
action of STZs remains and allows it to be preferentially reactivated
[22e24]. In other works, stages 1 and 2 are generally referred to as
shear band initiation, while stage 3 is referred to as shear band
propagation. In this paper, shear bands are analyzed for their
progression through all three stages. Stage 1, nucleation, ends when
a shear band becomes dominant, stage 2 continues until the shear
band reaches the full width of the simulation, and stage 3, sliding,
encompasses all plasticity that takes place on the band after it is
fully propagated.

Investigating the transition between different flow serration
regimes requires a collection of shear band events to be studied in a
statistical manner so an understanding can be gained of how the
mechanics of shear band formation influence flow serration. Re-
searchers have used several different approaches to resolve shear
band events in experimental setups. For example, high-speed
cameras have been able to capture shear band sliding, and measure
shear band velocities [25]. They also show that flow serration is
often the result of the same shear band being activated multiple
times, rather than unique shear bands for each event [22]. Analysis
of pop-in stresses during nanoindentation enabled estimation of
STZ volumes and rate effects [26,27]. Although this information is
very useful, such experimental methods are unable to reveal the
details of what is happening at the STZ level in shear band nucle-
ation and propagation; the time and length scales of individual
STZs are too small and fast for current measurement resolutions to
capture directly, and indirect measurements do not give a complete
picture.

Modeling techniques provide unique insight into the possible
processes of shear band formation. Atomistic simulations dowell at
simulating the action of individual STZs, capturing the onset of
shear localization in metallic glass [28]. They can measure the STZ
volume for various glass compositions, and have shown that the
instability of shear bands arises from structural disordering in an
STZ, rather than thermal softening [19,29]. Constitutive models do
well at recreating the macroscopic behavior of metallic glass. By
treating the glass as a continuum material, rather than trying to
simulate each individual atom or STZ, they enable more compli-
cated structures and loads to be modeled, within the limits of the
constitutivemodel's scope [30,31]. Mesoscale models are needed to
investigate the range of time and length scales intermediate to
molecular dynamics and constitutive models [28]. One such
mesoscale model is the STZ dynamics model developed by Homer
and Schuh [32]. The STZ dynamics model is able to capture a broad
range of time scales associated with shear band events in an effi-
cient manner by using a kinetic Monte Carlo algorithm [14]. It has
been used to simulate both 2D and 3D metallic glass structures; it
predicts a propagating shear band, and captures the transition from
inhomogeneous to homogeneous flow at the glass transition tem-
perature [21,33]. It has even been adapted by Li to account for free
volume generation due to STZ activity [34]. Since this model is
capable of simulating the nucleation and growth of multiple shear
bands, and these are the parameters of interest, we use the STZ
dynamics model for our investigation of flow serration regimes in
metallic glasses.

In this work, the STZ dynamics model is adjusted to maintain a
constant yield point over strain rates of 10�5e100 s�1, consistent
with the behavior of Vitreloy 1, and other metallic glasses [6,8,35].
With the adjusted model parameters, we examine flow serration
and the early stages of shear band nucleation and propagation
across a range of strain rates, with multiple simulations at each
strain rate to determine statistical variance. Discussion of the re-
sults shows support for the hypothesis of competing shear band
nucleation and propagation rates, and is focused on determining
the underlying causes of this interaction. A hypothesis is developed
to explain the simulated behaviors, and its implications are
explored in the conclusion.



Table 1
Material properties for modeling Vitreloy 1 (Zr41.2Be22.5Ti13.8Cu12.5Ni10).

Model parameter Name Value

STZ strain g0 0.1
Shear modulus m0 35.76 GPa [52]
Poisson's ratio n 0.352 [52]
Debye temperature qD 327 K [53]
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2. Methods

2.1. STZ dynamics modeling framework

The STZ dynamics model is built around the STZ as the funda-
mental unit of deformation in metallic glass. The STZs are coarse-
grained by replacing groups of atoms with the features of a
finite-element mesh. Each node in the mesh represents the center
of a potential STZ, and the five to seven elements touching that
node represent the group of atoms which collectively shear if that
STZ is activated [32]. Each element can participate in different STZs,
just as atoms may participate in various STZs in a real material.
These course-grained STZs are treated mathematically as Eshelby
inclusions with coherent boundaries, the same approach originally
used by Argon, where the STZ is allowed to plastically deform as if
in a vacuum and then forced elastically back into the surrounding
matrix [13]. The kinetic Monte Carlo (kMC) algorithm is used to
control the evolution of the modeling framework. When a given
STZ is selected for shearing by the kMC algorithm, plastic strains are
applied to the elements to simulate the simultaneous plastic
shearing of atoms in the STZ. After each kMC step, finite-element
analysis solves for the resulting stress and strain fields
throughout the simulation, which then influence the selection of
STZs in subsequent kMC steps [32].

The kMC algorithmworks by listing all the possible transitions a
system can make, calculating each transition's associated rate, and
then using a random number to select one of the transitions for
execution. Time in the simulation is then advanced by Dt based on
the residence time in the current configuration, which is also based
on the rates of the possible transitions. A more complete descrip-
tion of the kMC algorithm is available from Voter [36]. In STZ dy-
namics, a modified kMC algorithm, introduced previously [14], is
used to ensure that realistic times and transitions are represented.
This is accomplished by suppressing any STZ events selected by the
algorithm which would activate in a Dt greater than a certain
maximum allowed time step (Dtmax). When this happens, the
model increments time by Dtmax without activating any STZ. This
allows other time-dependent parameters, such as stress and strain,
to update on a reasonable time scale in a dynamic simulation
beginning at very low stresses. After every time increment,
whether an STZ is activated or not, finite-element analysis (FEA)
solves for the new stress distribution in the mesh, and new acti-
vation rates are calculated for use in the kMC algorithm.

The kMC algorithm requires a rate calculation for each possible
event in its catalog for selection. For the STZ dynamics framework,
this is an STZ activation rate that calculates the rate at which a given
STZ will transition from an unsheared to a sheared state. The acti-
vation rate _s for shearing a particular STZ in one direction is given
by:

_s ¼ n0exp

 
� DF � 1

2 tg0U0

kT

!
(1)

where n0 is the attempt frequency (related to the Debye frequency),
DF is the set activation energy barrier for shearing an STZ, T is the
temperature in Kelvin, k is Boltzmann's constant, t is the local shear
stress in the direction of shear, g0 is the incremental shear strain
applied to an STZ, and U0 is the volume of an STZ. This rate captures
the thermally activated nature of the shearing process, which can
be biased by both its local shear stress t and the temperature T . A
more detailed explanation of this equation's parameters as they
relate to the STZ dynamics model can be found in previous work
[32].

The coarse-graining of the STZs follows previous works where
node-centered STZs are defined on a uniquely generated, irregular,
triangularmesh [32]. Themesh size is defined such that the average
radius of the potential STZs is equal to the target STZ radius. Each
simulation is generated with a length of 250 nm along the tensile
axis, and a width of 50 nm. The long sides of the simulation are
unconstrained, and the top and bottom surfaces of the simulation
are allowed to move laterally relative to each other to enable lateral
slip. The simulated tensile test is displacement controlled; this is
achieved by constraining the bottomnodes, while the top nodes are
displaced at a fixed velocity corresponding to the desired initial
strain rate. In each step of the simulation, the nodes move in
varying increments of strain corresponding to the elapsed time
from the modified kMC algorithm.

The simulations are run at six different initial strain rates: 10�5,
10�4, 10�3, 10�2, 10�1, and 100 s�1. With the simulation size of
250 nm, this results in displacement velocities that range from
0.0025 to 250 nm/s, at the lowest and highest strain rates,
respectively. Each simulation is run for as many kMC steps as
necessary for the simulation to reach 1.9% total strain, regardless of
strain rate. The maximum time step Dtmax values for the modified
KMC algorithm are set at 5 s, 1 s, 0.5 s, 0.05 s, 0.005 s, and 0.0005 s,
increasing from the longest time at the lowest strain rate to the
shortest time at the highest strain rate. The variation in Dtmax from
one strain rate to the next is necessary to provide the needed time
resolution that stabilizes the yield strength in each strain rate,
balanced against a reasonable number of kMC steps for a given
simulation. As an extreme example: at the 100 s�1 strain rate, a
large Dtmax like 1 s would cause 100% strain in the first kMC step,
before any STZs are able to activate. On the opposite end, a small
Dtmax such as 0.001 s used on the 10�5 s�1 strain rate, would require
106 simulation steps to reach 1% strain, still short of yield. A
representative strain rate was tested with several different values
for Dtmax spanning two orders of magnitude, and it was found that
this parameter has no noticeable effect on yield strength or STZ
behavior, other than to overshoot the yield strength when Dtmax is
too large. Material property values used in the simulation corre-
spond to those of Vitreloy 1, a commonly studied metallic glass,
listed in Table 1; DF andU0 are defined in the following section. The
simulation temperature is held constant at 310 K, which is 0.5Tg for
Vitreloy 1.

2.2. Parameterization of strain rate dependence

The STZ dynamics model relies on the rate equation of STZ
activation in Eq. (1) to control the evolution of the simulation and,
as a result, it has an inherent strain rate dependence that leads to an
increase in yield strength at higher strain rates. This is accompanied
by increased shear band density at higher strain rates, which cor-
responds with the flow serration being studied. As noted above,
most metallic glasses do not exhibit a strain rate dependent yield
strength over the rates studied in this work [6,35]; as a result, the
STZ dynamics model must be adjusted to capture this behavior. The
modifications to the STZ dynamics model are inspired by work by
Dubach et al. and T€onnies et al., who find strain rate and temper-
ature dependencies to the STZ volume [27,30]; in some cases the
STZ volume has a log-linear dependence on strain rate. As a result of
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this insight into the influence of STZ behaviors under differing
conditions, it was determined that this dependence be included in
the STZ dynamics framework.

In examining the influence of different model parameters one
can show that increasing STZ volume (U0) alone has the effect of
decreasing the shear band density and lowering the yield strength.
Increasing activation energy (DF) alone has no effect on shear band
density, but increases the yield strength significantly. Thus, having
U0 and DF both decrease with increasing strain rate lessens the
strain rate dependence of the yield strength while magnifying the
increased shear band density at higher strain rates typical to
metallic glasses. These are given by the following log-linear forms:

U0 ¼ �0:03772 log10 _εþ 1:6
h
nm3

i
DF ¼ �0:02274 log10 _εþ 1:07945 ½eV �

(2)

The STZ volume increases by 0.2 nm3 for each order of magni-
tude change in strain rate, ranging from 2.6 to 1.6 nm3, at the lowest
and highest strain rates examined in this work, respectively. These
values are selected to be consistent with STZ volumes found
generally [15,27,37], and particularly with the size range found by
Dubach et al. in their low temperature data [30]. The magnitude of
DF across the strain rates ranges from 1.08 eV to 1.68 eV, at the
highest and lowest strain rates examined in this work, respectively.
This represents a relatively minor variation compared to reported
values of the activation energy [38,39]. It is noted that this solution
is non-unique, as different forms for theU0 relation could be fit by a
similar DF relation to give comparable results, though these might
in turn be non-log-linear, which is the form Dubach et al. report
[30]. More importantly, a U0 relation with a positive slope reverses
the flow serration behavior (i.e. high strain rates give low shear
band density and low strain rates give high shear band density). As
a result, there appears to be a physical basis behind the negative
dependence ofU0 on strain rate. For the fewmetallic glasses that do
exhibit a strain rate dependent yield strength at low strain rates,
such as the Zr-based metallic glass investigated in the work of Chen
and Tsai [40], a modification to the STZ volume and activation en-
ergy, very similar to Eq. (2), would still be required to match the
experimental data. Thus, it is expected that a model metallic glass
with a strain rate dependent yield strength would exhibit similar
results to those reported here. Possible physical causes behind this
strain rate dependence on STZ volume and activation energy are
considered in the discussion.
Fig. 2. Yield strength dependence on strain rate, before (red triangles) and after (blue
diamonds) adjusting STZ volume and activation energy. After adjustment, the yield
strength has no dependence on strain rate. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this article.)
Fig. 2 shows the results of the parameterization of strain rate
dependence on the observed yield strength. Before fitting, there is a
clear log-linear relationship between yield strength and strain rate,
where a logarithmic fit has an R2 value of 0.9625. After parame-
terizing U0 and DF to strain rate, however, the R2 of the logarithmic
fit of the yield strengths is reduced to 0.0271, meaning that the
logarithmic fit of the yield strength no longer describes the rela-
tionship significantly better than the arithmetic mean; any varia-
tion is now ascribed to random noise in the data. Thus, the
parameterization is successful in eliminating the model's yield
strength dependence on strain rate.

2.3. Statistical analysis approach

The goal of this work is to understand the mechanisms under-
lying the transitions between different regimes of flow serration in
the deformation map. Emphasis is placed on measuring shear band
nucleation and propagation rates since it is believed that different
degrees of flow serration arise due to competition between these
rates. In order to ensure statistical significance, twelve simulations
are run at each of the six strain rates simulated, for a total of 72
simulations. At completion, the shear bands of each simulation are
identified, as shown in Fig. 3(a) and (b), where Fig. 3(b) has each
individual band highlighted in a unique color. These surrounding
lines are placed carefully as they define which STZs contribute to
each shear band, which is important for subsequent calculations. As
a rule, any group of five or more STZs in a line is identified. Once the
shear bands are identified, statistics are collected for:

1. The number of shear band nuclei in each simulation,
2. The dominance of individual shear bands during deformation,
3. Critical nucleus size of the first shear band when it becomes

dominant,
4. Front propagation rate of each shear band,
5. Sliding velocity of the most dominant shear band once it has

propagated across the entire simulation cell, and
6. The number and magnitude of stress drops in the simulation,

which are used to measure the degree of flow serration in the
simulation.

The manner inwhich each of these measurements is obtained is
explained below, and demonstrated with an example simulation
run at 10�4 s�1, shown in Fig. 3.

The number of shear band nuclei in each simulation is obtained
by counting the number of shear bands identified since each one
must have started through the formation of a nucleus.

The measurement of the critical nucleus size of a shear band
requires knowledge of when an individual shear band has reached
a critical size and accelerates its growth, thereby dominating
deformation in that moment. As such, we introduce an additional
measurement called shear band dominance, which is measured by
examining a simulation using a moving window of twenty kMC
steps. In each temporal window, the number of STZs activated in
each shear band is totaled. Shear band dominance is defined as the
fraction of STZs activated in a given shear band for that window in
time. This window is moved in two kMC step increments to
determine shear band dominance over the evolution of the whole
simulation. This is plotted against time in Fig. 3(c), with the colors
in the plot matching the coloring of the shear band selection lines
in Fig. 3(b). Awindowcan contain fewer than twenty activated STZs
if some of the kMC steps do not produce STZ activations; this
generally happens during the initial loading of the simulation,
where the model is accumulating elastic strain. To prevent hyper-
sensitivity to windows that contain very few STZ activations, no
shear band can be dominant if that twenty kMC step window does



Fig. 3. (a) Partial raw simulation result. (b) Individual shear bands identified with surrounding lines of unique color. (c) Shear band dominance measured by the fraction of all STZ
activity occurring in each shear band over time; unique colors match those in (b). (d) Propagation velocity of shear band front, corresponding to the unique color in (b). (e) Sliding
velocity profile of the primary shear band, identified in blue in (b), with velocity bursts labeled 1, 2, and 3. (f) Points on the stressestrain curve corresponding to labels 1, 2, and 3 in
(e), showing the stress drops resulting from sliding events on the active shear band. (g) Snapshots of the simulation at times immediately following the bursts corresponding to
labels 1, 2, and 3 in (e). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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not contain at least ten STZ activations. This has several implica-
tions; one is that when very few STZs are active, it is possible that
the sum of STZ activity in the plot will amount to less than 100%.
Similarly, some STZs in the simulation fall where two shear bands
intersect; these STZs will count towards STZ activity in both shear
bands and the sum of STZ activity can exceed 100%. Finally, even if
all of the first twenty STZs in a simulation fall on the same shear
band, the dominance ramps up to 100% rather than being instantly
100% dominant.

Shear band critical nucleus size is then defined as the total
volume of STZs in a shear band nucleus at the point in timewhere it
reaches a critical level of shear band dominance. A threshold of 60%
dominance is chosen as the proportion of STZ activity required for a
shear band to be considered critical. In combinationwith the lower
bound of ten STZs as the minimum number to be considered in
calculating dominance, this means that the minimum critical shear
band nucleus size that can be detected consists of six STZs. In this
example simulation, the shear band marked with blue becomes
dominant first, followed by the cyan and magenta shear bands in
later stages of the simulation. The shear bandsmarkedwith red and
green never reach the threshold level of dominance. The critical
nucleus sizes for each of these shear bands can bemeasured as their
size when they become dominant, but for the purposes of this
work, we examine only the first dominant shear band. This enables
cleaner comparison in sizes between simulations and less vari-
ability inmeasurements due to shear band intersections later in the
simulation.

Shear band propagation rate is measured by carefully finding
the change in length of each shear band in a moving window of
twenty kMC steps, then dividing that by the change in time for



Fig. 5. Box plot of the average stress drop magnitude in each simulation, arranged by
strain rate. This indicates decreased flow serration with increasing strain rate,
matching the deformation map in Fig. 1.
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those twenty steps to give a velocity measurement. The evolution
of the propagation speed is obtained bymoving thewindow by two
steps for each data point. The results of this measurement are
plotted in Fig. 3(d), with the same coloring scheme as in other parts
of the figure.

Shear band sliding rate is defined as the relative velocity be-
tween the part of the mesh just above and just below the shear
band. This is calculated by selecting several points on the shear
band selection lines above and below a given shear band. The
relative velocities of the nodes in the sliding direction is calculated
using the same moving window used in previous calculations, and
the results are given in Fig. 3(e). Shear band sliding rate is measured
only for the thickest, most dominant shear band in each simulation.
This is done to reduce the amount of interference from shear band
intersection and for clearer comparison between different
simulations.

In order to measure flow serration, stress drops in each simu-
lation are found bymeasuring the slope of the stress strain curve as
shown in Fig. 3(f). It is noted that the three stress drops in Fig. 3(f)
correspond to repeated activation of the same shear band, as shown
by Fig. 3(g). When the slope is large and negative, (a drop of at least
5 MPa in less than 0.000001 strain, for example) a stress drop is
identified, with the value of the stress before and after the region of
steep slope determining the magnitude of the drop as in Ref. [41].
Slopes are calculated in a moving window of twelve kMC steps, in
order to prevent very small drops from dragging down average
drop sizes. The average magnitude of these stress drops is used as a
measure of flow serration in the simulation.

It is noted that the present work differs from those generally
used in experimental setups measuring flow serration, where flow
serration is characterized by strain bursts. For example, the stress
drops in Fig. 3(f) do not have the appearance of serrated flow about
a constant flow stress for a sample in compression [9]. However, an
experimental tensile test of a nanowire produces a stressestrain
curve that is very similar to those shown in the results of this work,
which are also of nanoscale sizes [42]. As such, the differences in
flow serration examined here are attributed to differences in size of
the specimens as compared with traditional flow serration in
compression tests.

3. Results

Fig. 4(a) shows a group of six simulations, one from each strain
rate studied, with increasing strain rate from left to right. The
Fig. 4. Overview of results. (a) Example simulation at each strain rate, where the number o
trend of increased shear band density with strain rate, and the increased appearance of free
simulations shown represent typical results, with the number of
shear bands in each one near the median value for its strain rate.
Each simulation is shown at the final strain value of 1.9%. In general,
low strain rates result in fewer, more dominant shear bands, with
very few free STZs scattered outside the bands, while high strain
rates feature larger numbers of less dominant shear bands, with
many free STZs randomly scattered outside the bands. The stress
strain curves for these six simulations are shown in Fig. 4(b),
showing a tightly grouped yield strength around 1.72 GPa. While
the yield strengths are similar, low strain rates tend to relax more
quickly after yield, and have a lower flow stress than high strain
rates.

3.1. Flow serration

The average magnitude of stress drops in each simulation is
measured as discussed in Section 2.3. These average stress drops
are then categorized and summarized by strain rate using box plots
in Fig. 5. These box plotsmark themedian valuewith the horizontal
(red) line inside the box, the upper and lower quartiles of the dis-
tribution bound the box, and the maximum and minimum values
are marked by whiskers that extend from the top and bottom of the
box. Statistical outliers are marked as ‘þ’ in red. It can be seen that
the average stress drop statistics have a negative correlation with
strain rate. Strain rates in the Schuh's strong flow serration regime
f shear bands in each simulation is near the median for that strain rate. Note the clear
STZs at higher strain rates. (b) Stress-strain curves for the six simulations shown in (a).
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(10�5 to 10�3 s�1) havemedian values of 20e30MPa, while those in
the Schuh's moderate serration regime (10�2 to 100 s�1) have
values of 7e15 MPa. There is a marked decrease at 10�2 s�1, which
is near the border of the transition from strong serration to light
serration in Schuh's deformation map. The 10�2 s�1 strain rate also
shows mixed behavior, with a few outlying simulations above the
20 MPa range. To understand how this change in flow serration is
influenced by themechanics of STZ activation, we now examine the
statistics of shear band nucleation and propagation rates.

3.2. Shear band nucleation statistics

Fig. 6 provides statistics on the number of shear band nuclei, and
the critical shear band nucleus size. Simulations at high strain rates
show an increase in the number of shear band nuclei generated in a
given simulation, as indicated by Fig. 6(a). One can calculate the
rate of shear band nucleation, in units of shear band nuclei gener-
ated per second, which is provided in the inset to Fig. 6(a). This raw
shear band nucleation rate is proportional to the strain rate raised
to the power of 1.1 ( _ε1:1), which is indicated by the overlaid power-
law fit in the inset to Fig. 6(a). However, the nucleation rate isn't
necessarily the best comparison between different strain rates
because the tests last different time periods. As such, the total
number of nuclei (which is equivalent to nuclei per 1.9% strain), is
the better comparison between strain rates. It is noted that the
shear band nucleation rate has a positive correlation with strain
rate, because the proportionality exponent of 1.1 is greater than 1.
At low strain rates in the strong serration regime, a median of
4.5e6.5 shear band nuclei appeared throughout the entire simu-
lation. At 10�2 s-1 and above this increases steadily, up to a median
of 15.5 nuclei for the highest strain rate.

The statistics of the critical nucleus volume, or volume of the
first shear band when it became dominant, is plotted in Fig. 6(b).
This critical volume has a positive correlation with strain rate. It is
noted that at the highest strain rate, some of the simulations never
have a shear band become dominant at all, resulting in fewer data
points and an underestimation of the critical nucleus volume at
that strain rate. Also, due to the fact that a lower bound is enforced
on the measurement of critical shear band size, shear bands can
never be considered dominant with fewer than six STZs. In Fig. 6(b),
we see that all strain rates from 10�5 to 10�2 s�1 have at least one
simulationwhere the first shear band becomes dominant at exactly
this lower bound. Thus, the lower bound may overestimate the
critical nucleus size for these slower strain rates. At the lowest
Fig. 6. (a) Plot of the nucleation rate after being normalized by strain rate. Inset shows the nu
power-law fit. The normalized rate shows a positive correlation between nucleation rate and
box plots in the lower strain rates are due to the cutoff size of detectable critical shear ban
strain rate, two or three STZs may be enough to reach a critical
volume for the shear band to nucleate and propagate
unconstrained.

3.3. Shear band propagation and sliding

The statistics of the maximum propagation rate, or maximum
speed of the shear band's propagating front, are presented as a rate,
normalized by the strain rate in Fig. 7(a). The unnormalized prop-
agating speed is provided in the inset to Fig. 7(a). Here it can be
seen that before normalization, the maximum propagation speed
of a growing shear band in a simulation at first seems to increase
proportionally with the strain rate, though the proportionality
between the propagation speed and the strain rate is exponential to
the power of 0.56 (_ε0:56), which is indicated by the overlaid power-
law fit in the inset to Fig. 7(a). However, the normalization by the
applied strain rate indicates that at higher strain rates, the relative
maximum propagation rate actually decreases with increasing
applied strain rate, because the proportionality exponent of 0.56 is
less than 1. This means that while a single shear band grows faster
at increasing strain rates, it is moving slower relative to the applied
strain rate as that strain rate increases.

A similar relationship is found when looking at the maximum
shear band sliding speed, which is shown in its strain rate
normalized form in Fig. 7(b). The unnormalized sliding speed is
provided as an inset to Fig. 7(b), which has a proportionality
exponent of 0.59 (_ε0:59), as indicated by the overlaid power-law fit.
Once again, the unnormalized form goes from a positive correlation
with strain rate to a negative correlation when it is normalized by
the applied strain rate, because the proportionality exponent of
0.59 is again less than 1. This means that continued sliding of the
largest shear band accounts for less and less of the total plasticity as
the strain rate increases. Comparing Fig. 7(a) to Fig. 7(b), we also see
that the normalized shear band propagation speed is about three
orders of magnitude faster than the normalized shear band sliding
speed, which is consistent with measurements related to the two-
step shear band formation model, which place shear band propa-
gation on the microsecond time scale and shear band sliding on the
millisecond time scale [10].

In order to see how strain accumulates on the largest shear band
over time, the shear band sliding speed is plotted against time for
each simulation. Representatives of the highest and lowest strain
rates are shown in Fig. 8, with each plot appearing next to its
respective simulation result. These simulations are chosen because
cleation rate measured in shear band nuclei generated per second, on a log scale with a
strain rate. (b) Shear band critical nucleus size plotted against strain rate. The skewed
d nucleus size being reached.



Fig. 7. (a) The maximum shear band propagation rate for each simulation, defined as the speed at which a shear band nucleus grows across a simulation, normalized by strain rate.
(inset) Propagation speeds before normalization with a power-law fit. (b) The maximum shear band sliding rate for each simulation, defined as the relative velocity between points
above and below the most dominant shear band, normalized by strain rate. (inset) Sliding speeds before normalization with a power-law fit.

Fig. 8. Example simulations from the (a) slowest (10�5 s�1) and (b) fastest (100 s�1) strain rates. These demonstrate the extreme differences in shear band propagation, where in (a),
the shear band propagates in bursts only. In (b), the shear band has bursts in sliding, but always maintains a continuous sliding rate, though it is noted that most simulations at the
highest strain rate did not have a dominant band this pronounced. The insets plot the sliding speed as a function of kMC steps to indicate how sliding appears from the perspective
of individual STZ activations rather than the duration between activations.
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each has a thick, dominant shear band, though these were rare at
the highest strain rate. The graphs show that at the lowest strain
rate, the dominant shear band accumulates plasticity in very sharp
temporal bursts, with very little activity on the band in between
these strain bursts. At the highest strain rate, even when the
plasticity is concentrated mostly into a single band, the band ac-
cumulates plasticity in a more continuous manner with less pro-
nounced temporal bursts. This is illustrative of the flow serrations
expected for the two strain rates, indicating that the model is
producing the expected behaviors.

4. Discussion

One important attribute of the STZ dynamics model is that the
stochastic approach enables variation in a given process to be
studied from identical starting simulation parameters. This vari-
ability partially fulfills Greer's suggestions for treating STZ behavior
by statistical means [15]. In Fig. 5, for example, at 10�2 s�1 most
simulations belong in the regime of moderate flow serration, while
a few outliers seem to belong in the strong flow serration regime
[7]. Similarly, in Fig. 6(b), some of the simulations at 100 s�1 never
ended up nucleating a dominant shear band, which can mean that
they match Schuh's transition from light, to little or no flow
serration in the deformation map [7]. Such variability near regime
changes in the deformation map, where a given sample could
exhibit behavior from either regime, could be expected in experi-
mental results. Thus, the model appears to be capturing transitions
between distinct regimes, rather than simply modeling a general
trend of decreasing flow serration with increasing strain rate.

A summary of the different statistics and their strain rate
dependence is shown in Fig. 9, where each rate has been scaled so
they can be compared side by side. This shows a transition from
shear band propagation-driven plasticity that dominates at low
strain rates, to shear band nucleation-driven plasticity that domi-
nates at high strain rates. This shows strong support for the hy-
pothesis Schuh proposed, that the decreased flow serration seen at
higher strain rates is due to the nucleation of many small shear
bands in direct competition to the propagation of individual bands
[11]. However, the underlying cause for this transition is not clear.
One could question whether propagation is limiting nucleation, or
vice versa.

We hypothesize that the critical shear band nucleus size is an
underlying cause of the transition in flow serration. This is best
illustrated by examining the stages of shear banding. In stage 1,
STZs appear, and begin to cluster into shear band nuclei, which
grow and proliferate in the absence of a dominant shear band. If the
strain rate is low, then a small critical nucleus size means that stage
2 is reached quickly, and one shear band rapidly propagates across



Fig. 9. Comparison of median values of the normalized shear band nucleation rate
(yellow), shear band propagation rate (blue), and shear band sliding rate (green). The
transition from propagation and sliding dominated shear banding at low strain rates to
nucleation dominated shear banding at high strain rates supports the hypothesis that
the transition in flow serration is a competition between these two stages. The
increasing critical nucleus size (red) as a function of strain rate is proposed as the likely
cause of this transition. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)
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the sample, and begins to dominate all plasticity in the sample.
Then, in stage 3, additional plasticity is concentrated in bursts on
that dominant band. If instead the strain rate is high, then a large
critical nucleus size means that stage 2 is delayed, or skipped
entirely, and plasticity continues to be accommodated by nucle-
ation of additional shear band nuclei in stage 1. Then sliding in
stage 3 occurs more gradually as shear band nuclei begin to inter-
sect each other, and plasticity remains relatively diffuse.

In essence, this strain rate dependent critical shear band nucleus
would be a criterion for a kinetic theory of shear band nucleation.
This kinetic effect is important because a recent thermodynamic
model of nucleation only predicts a critical stress for nucleation
[21]. The thermodynamic model indicates very little dependence
on nucleation size and does not predict the flow serration transi-
tions evident in metallic glasses. Together, these kinetic and ther-
modynamic nucleation criteria provide a better picture of what is
necessary to nucleate a shear band.

Speculating that critical shear band nucleus size is indeed the
controlling factor indicates that the parameterization of STZ vol-
ume and STZ energy barrier as a function of strain rate may capture
physical mechanisms of STZs. As noted earlier, experiments do
indicate an STZ size dependence on strain rate [27,30]. For example,
Dubach et al. find that STZ volume has a clear positive dependence
on strain rate at very low temperatures, but at ambient tempera-
tures the data have too much variability to yield a strong depen-
dence. Their positive STZ volume dependence at low temperatures
matches our critical shear band nucleus size dependence rather
than our STZ volume dependence. This could be explained by the
fact that they are likely measuring shear band nuclei sizes rather
than STZ sizes in their acoustic emission tests [30]. On the other
hand, T€onnies find that STZ volume has a negative correlation with
strain rate at ambient temperatures [27], as does our model. But,
they are also likely measuring shear band nuclei sizes which would
contradict our positive strain rate dependence on shear band nuclei
with strain rate. It could be that nanoindentation confines shear
band nuclei sizes because larger and fewer shear bands might
penetrate deep into the sample while profuse shear banding would
involve smaller shear bands.

At this point, the exact physical basis of the STZ strain rate
dependence is not clear. Dubach et al. and T€onnies et al. provide
little discussion on the physical origin for the strain rate depen-
dence they report [27,30]. However, one possible explanation is
that the strain rate dependence comes from time-dependent
structural relaxations that occur in metallic glasses. For example,
Argon's model for the STZ includes both the creation of free volume
when an STZ is activated, as well as the redistribution of free vol-
ume through a competing diffusive process [13,34]. Atomistic
simulations report a distribution of STZ events [39], which are
altered under elastic [43] and plastic [44] loading. Specifically,
these distributions of plastic events are altered to remove the low
energy events [44]. Thus, one can reason that if these relaxation or
redistribution events are time-dependent, at slower strain rates,
there will be more time for relaxation to occur and remove these
low energy events, leaving behind only the larger, higher energy
events. At higher strain rates, there is less time for relaxation, so
these lower energy events remain in the system. As a result, these
could lead to an effective strain rate dependence on both the STZ
volume and activation energy, both of which would decrease with
increasing strain rate.

Alternatively, one could attribute the strain rate dependence to
some other phenomena like local elastic properties [45] or local
bonding such as icosahedral or non-icosahedral effects [46], that
would also have a time-dependent relaxation associated with their
evolution. In any case, it is noted that the variation of the energy
barrier (1.08e1.68 eV) and the STZ volume (1.6e2.6 nm3) is small,
and according to this work has log-linear dependence. These vari-
ations are likely within the resolution of techniques used to mea-
sure them. The variation in experimentally reported values may
even be the result of a functional dependence of the material pa-
rameters on strain rate. In the end, both the experiments and the
present simulations indicate a rate dependence to the STZ behavior,
which changes the critical nucleus size for shear banding. Accord-
ing to the model, shear band development is very sensitive to the
properties of STZs, and can thus lead to substantially different shear
banding behaviors.

Finally, the critical nucleus size also has implications for
improving ductility in metallic glasses. It is known that annealing/
quenching and mechanical deformation can influence the ductility
[47]; perhaps these can be used to influence the glass and increase
the number of nucleation sites to the point that the glass is forced to
deform in a more homogeneous manner. In addition, critical shear
band nucleus size may also help explain why metallic glasses
exhibit size-dependence for small samples. Metallic glass samples
which are less than one mm in width are able to deform plastically
more readily than larger samples; this is true for tension,
compression, and bending [48e51]. Just as in the highest strain
rate, where some shear bands traverse the simulation cell before
achieving the critical nucleus size, perhaps the smaller experi-
mental samples nucleate lots of shear bands because not enough
dominant shear bands are able to nucleate.

5. Conclusion

The present work provides insight into the transition from
strongly serrated flow at low strain rates to lightly serrated flow at
high strain rates in metallic glasses deformed at ambient temper-
atures. The transition is investigated using the STZ dynamics
framework, which now includes a strain rate dependence on the
STZ volume and STZ activation energy. Shear band nucleation,
propagation, sliding, and serration are examined statistically using
twelve replicate simulations over six strain rates, ranging from
10�5e100 s�1.

Statistical analysis of the results provides support for the hy-
pothesis that the transition from strongly serrated flow to lightly
serrated flow involves an increase of shear band nucleation rates
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and a decrease in shear band propagation and sliding speeds as
strain rates increase. The magnitude of flow serration in the sim-
ulations appears to show transitions from strong to medium and
medium to lightly serrated flow at the same rates predicted by
Schuh's deformation map [6].

The present work hypothesizes that the underlying cause for
this transition is a critical shear band nucleus size that increases
with strain rate. At higher strain rates, it is more difficult to achieve
nucleation so more shear bands are nucleated leading to less
serrated flow. Interestingly, this critical nucleus size dependence
emerges as a result of the fact that both STZ size and STZ activation
energy decrease with increasing strain rate in the present model.
This supports results from experiments, which also report rate-
dependent STZ properties [27,30]. While the variation in STZ size
and activation energy are small, they have a significant effect on the
shear banding behavior. Whether these STZ properties are rate-
dependent, or are surrogates for other physical phenomena such as
free volume, they have implications for improving ductility in
metallic glasses through the nucleation of additional shear bands to
accommodate deformation.
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