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Despite recent progress in understanding the outstanding role of shear bands in plastic deformation of
metallic glasses, the details of structural changes in the shear-induced zone is not yet known. In order to
probe such changes, we determined the distribution of residual strains at short- and medium-range
order around a single shear band in cold-rolled Vit105 bulk metallic glass using a nano-focused high
energy X-ray beam. Plastic deformation results in significant residual normal and shear strains at dis-
tances of more than 15 mm around the shear band. Based on a detailed analysis of the distribution profile,
the magnitude and the direction of the residual shear strain, it is suggested that the shear strain plays a
dominant role, compared to the normal strains, for triggering nucleation of further shear bands from a
mature shear band.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Shear banding is known as the main mechanism of plastic
deformation in metallic glasses at ambient temperature. A shear
band is a very thin (10e20 nm) localized sheared region which
nucleates by cooperative action of numerous shear transformation
zones (STZs) formed by sliding of energetically favored atomic
clusters under shear stress [1,2]. The overall plastic deformation
behavior of bulk metallic glasses (BMGs) at ambient temperature is
a consequence of several characteristics of shear bands including
the number, distance, direction, temperature, shear offset, propa-
gation speed and their mutual interactions [1e3]. This outstanding
role of shear bands has appealed almost all attempts aiming to
resolve the biggest Achilles heel of metallic glasses � their rather
limited room temperature ductility. An unique outcome of these
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studies is that the higher the number of intersecting shear bands
with small shear offsets, the larger is the overall plastic deformation
[1]. It has been suggested that shear banding localizes a large
amount of shear strain in a very narrow planar band and results in
softening due to disordering or heat generation [1,4,5]. When
considering a network of intersecting shear bands, it is believed
that the whole monolithic structure turns into a heterogeneous
array of sheared and un-deformed regions which can result in a
remarkable change in the macroscopic mechanical behavior of the
BMGs [6e9]. The appearance of such heterogeneous structures in
plastically deformed BMGs has been highlighted in terms of hard-
ness gradients [10e13], residual strain/stress domains [9,14e20],
and free volume changes [21,22]. These studies have well suc-
ceeded to draw a macroscopic image of a heterogeneous structure
in BMGs. There have also been a limited number of computer
simulations [23e25] and experimental studies [26e28] revealing
the structural scale changes within or around shear bands. The
measurement of the temperature profile along a shear band via in-
situ thermographic observation [26,27] revealed that plastic
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deformation can cause a very high temperature increase at the core
of the shear band resulting in premature failure of the deforming
BMG. Nano-indentation studies [28e30] at directions perpendic-
ular to a shear band have identified a wide shear-induced region
where the shear band has the lowest hardness and elastic modulus
compared to other regions.

The above mentioned experimental studies had a spatial reso-
lution of several microns and could not provide detailed knowledge
on localized structural features like residual strains at the area
around an individual shear band. To overcome this problem, we
have performed a X-ray nano-beam diffraction study of single shear
bands formed by cold-rolling of Zr52.5Ti5Cu18Ni14.5Al10 (at.%)
(Vit105) BMG. This enabled us to reveal the changes of the short-
and medium-range atomic order in plastically deformed metallic
glass on the nanoscale. For the first time, we have mapped fluctu-
ations of the inter-atomic distances across and around a shear band
and established that plastic deformation results in a strong residual
elastic shear strain extending far beyond the localized region of
shearing. It is shown that the magnitude and orientation of the
residual shear strain trigger the nucleation of further shear bands.
1.1. Experimental details

Bulk metallic glass with nominal composition Zr52.5Ti5Cu18-
Ni14.5Al10 (at.%) was prepared as a plate with a thickness of 1.4 mm
and a width of 3 mm by centrifugal casting. The glassy plate was
rolled in very small steps to reach a 5% of reduction in thickness.
Before rolling, one transverse side of the plate was mirror-polished.
After rolling, the plate was ground from the opposite side to a
thickness of ~100 mmwith twofold aim: i) tomake it transparent for
the nano-focused X-ray beam and ii) to have just one shear band on
the X-ray passway. A detailed microstructure analysis of the cold-
rolled and grounded plate using scanning electron microscope
(SEM) proved presence of the shear bands and absence of cracks. An
area of 25� 45 mm2with a single shear bandwas selected for the X-
ray diffraction investigations and marked with platinum dots of
about 5 mm size deposited by a Focused Ion Beam (FIB). These dots
were found with a florescence detector and used as guide points to
limit the area of the XRD scans. The X-ray beamhad awavelength of
0.189 Å and a size of 150 nm height and 5 mm width, measured as
the full width at half maximum of a fluorescent peak from the
deposited platinum dot. The selected area across a shear band was
scanned with sample holder movements of 1.0 and 0.5 m in the
directions parallel and perpendicular to the shear band, respec-
tively. The exposure time for each diffraction patternwas 5 s. A total
number of 4538 diffraction patterns was recorded. The XRD pat-
terns were integrated in 10� azimuthal slices between 0 and 360�

with the Fit2D software [31]. The integrated data were processed
using the PDFgetX3 package [32] to obtain the reduced pair dis-
tribution functions (PDF).

The position of the first shell in the structure function, q1, was
obtained by fitting to a Gaussian peak. In order to characterize the
structural changes at SRO (Short Range Order) and MRO (Medium
Range Order) scale in real space, the center of mass (CoM) of each
coordination shell in the PDF was determined according to
following equation:

CoM ¼

Z rootmax

rootmin

rGðrÞ
Z rootmax

rootmin

GðrÞ
; (1)

in which G(r) represents reduced PDF, rootmin and rootmax indicate
intersection of G(r) with the line G(r) ¼ 0 at SRO region. The strain
values, εi, for the different coordination shells were calculated ac-
cording to the following equation:

ε
i
deformed ¼ rideformed � riundeformed

riundeformed

; (2)

where rideformed and riundeformed are the centers of mass of the ith
shell in reduced PDF for a deformed and undeformed state,
respectively. The scanned area in the cross section of this BMG
includes regions between the shear bands which are far enough
from two shear bands and thus are not affected by shearing. The
peak positions of the diffraction patterns of several subsequent
points in this region were the same. Thus the peak positions in the
diffraction patterns of these points were chosen as the reference
point to calculate the strain values. In order to calculate the com-
ponents of the strain tensor, the angular variation of the strain, εiq,
was fitted to the following equation [33]:

ε
i
q ¼ ε

i
x cos

2q þ gixy cosqsinqþ ε
i
y sin

2q; (3)

where ε
i
x, ε

i
y are the directions parallel and perpendicular to the

shear band, respectively and gixy is the in-plane shear strains. The
maximum shear strain of each shell, gmax, and its angle with the x
axis, qgmax, were calculated according to the equations [34]:

gmax ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
εx � εy

2

�2

þ
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�2s
; (4)

qgmax
¼ qεp±45

�; (5)

where qεp is the principal strain angle, obtained via following
equation [34]:

tan 2qεp ¼
gxy

εx � εy
; (6)
2. Results and discussions

Fig. 1(a) presents a schematic of the X-ray diffraction in-
vestigations of the shear-zone in cold-rolled Vit105 bulk metallic
glass. The rolled sample contains a sequence of parallel shear bands
oriented at an angle of ±45� with respect to the rolling direction.
The scanning electron microscopy (SEM) image in Fig. 1(b) shows a
single shear band and a scanned area marked with a red rectangle.
The X-ray intensities, as illustrated in Fig. 1(c), indicate a fully
amorphous structure with no trace of crystallinity, implying that
the studied region is free from deformation- or heating-induced
crystallization.

It is known that the first maximum of the X-ray intensity or
structure function taken from a metallic glass, and in particular the
position of the first peak q1, carries significant information on
amorphous structure [35]. Recently, Poulsen et al. [36] showed that
the components of the strain tensor in uniaxially deformedmetallic
glass can be determined from the positions of q1 measured over all
azimuthal directions with respect to the incident beam. We have
determined the variation of the first peak on the XRD intensities
over the whole scanned area across the shear band in cold-rolled
Vit105 metallic glass. The corresponding maps for the fully inte-
grated diffraction patterns and the XRD intensities measured in the
planes along and perpendicular to the shear band are plotted in
Fig. 2(a). The map of q1 extracted from fully integrated patterns
reveals an asymmetric gradient with respect to the shear band



Fig. 1. Schematics of the sample and X-ray diffraction experiment (a) alignment of the beam, sample, and the two-dimensional detector; the x and y-axis were chosen parallel and
perpendicular to the shear band. (b) Scanning electron microscopy (SEM) image of a studied single shear band; the blue circle marks a secondary shear band while the red rectangle
depicts the scanned area. One of the four platinum markers deposited around the shear band is seen at the bottom-right; (c) Example of the integrated X-ray diffraction intensity
versus wave vector (q) and reduced PDF (inset). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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plane which diversely affects the atomic structure in the area
around the shear band. The maps of q1 for the diffracted intensities
at directions along and across the shear band in Fig. 2(b) and (c)
represent more pronounced variations over the scanned area. This
is a clear indication of a directional heterogeneity of the inter-
atomic distances as a result of shear banding.

In order to obtain information on atomic distribution, one needs
to transform the diffraction data from reciprocal space into real
space, in which the peak positions represent inter-atomic distances
[35]. Poulsen and co-workers [36] have shown on example of
Mg60Cu30Y10 BMG that the shift of peaks in the pair distribution
function upon deformation represents the atomic scale strain. They
observed that the strain at the low interatomic distances is signif-
icantly smaller than that at the larger scale [36]. In the case of
multicomponent BMGs, it is difficult to determine the overall strain
because of asymmetric shape of the maxima of pair distribution
function g(r) caused by overlapping of several partial pair correla-
tions. To overcome this problem, Hufnagel et al. [37] used the
points in which g(r) ¼ 1, arguing that the crossing point are less
sensitive to the effects of asymmetry [38]. Alternatively, there have
been studies [39e42] in which the center of mass of the first
maximum in the pair distribution function was used to track
structural changes upon mechanical or thermal actions. We have
also observed that using of the center of mass of the first maximum
results in considerably less scatter of the data compared to the
positions of the individual sub-peaks.

Analysis of the pair distribution functions was performed along
a line crossing the shear band, as indicated in Fig. 2(a). Fig. 3(a) and
(b) present the profiles for the residual strains, Ɛx, Ɛy and gmax
determined from the first peak of the reduced PDF at about 2.9 Å,
representing the nearest-neighbors shell, and from the fourth peak
at about 10.1 Å, representing medium-range order. It is clearly seen
that the residual strains spread over distances of more than 15 mm
from the shear band. Together with the maps for q1 in Fig. 2, this is
surprisingly challenging the “localized” nature of the shear strain in
a very narrow region (10e20 nm) of the shear band [1,4,5]. The so
far reported experimental evidences of the shear-induced zone in
Zr-based metallic glasses are related to the single shear bands with
large shear offsets which are responsible for catastrophic failure of
the sample [29,30]. In contrast, our current observations quantify
the diffusive residual strain fields around a non-catastrophic
mature shear band with small shear offset, formed during the
plastic deformation of the metallic glass.

Similarly to the q1 maps in Fig. 2, the normal strains indicate an
asymmetric distribution with respect to the shear band line. Ac-
cording to Fig. 3(a) and (b), in the very vicinity of the shear band,
the residual normal strains have opposite signs at the two sides of
the shear band and the change from tensile to compressive strain



Fig. 2. Variation of the position of the first maximum of XRD intensities q1 taken from the area containing a single shear band: (a) fully integrated diffraction patterns; (b) measured
along the shear band; (c) measured perpendicular to the shear band. All three maps reveal that the atomic structure is essentially affected over rather large distances from the shear
band. The arrows in panel (a) mark the shear band. The vertical lines across the shear band in panel (a) mark the area from which the data plotted in Fig. 3 were extracted.
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occurs at the core of the shear band. The altered interatomic dis-
tances at x and y directions result in a residual shear strain
component, gmax, in the shear band and nearby regions. Contrary to
the normal strains, gmax has a quasi-symmetric distribution with
respect to the shear band with a maximum at the shear band and
declining at farther distances. Such distribution of the residual
shear strain is in good agreement with similar profiles of hardness
[29,30] and elastic modulus [30] across a single shear band in Zr-



Fig. 3. Residual normal (Ɛx and Ɛy) and maximum shear (gmax) strain profile along the direction crossing the single shear band at (a) SRO, and (b) MRO, (c) The soft sheared material
flows out of the shear band in the as-deformed BMG.
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based BMGs. This suggests that compared to the residual normal
strains, the residual shear strain field plays a dominant role in
controlling the plastic deformation of themetallic glass. In addition,
comparing the gmax values for the SRO and MRO (Fig. 3(a) and (b))
reveals that the residual strain is larger on the MRO distances. This
is in agreement with the length scale dependence of the atomic
strain in BMGs, as reported previously by others [38,43,44].

It is known that the maximum shear strain during deformation
of bulk metallic glass is a crucial parameter in determining the
nucleation of irreversible STZs [45]. As it is observed in Fig. 3(a) and
(b), the magnitude of the shear strain at the vicinity of the shear
band has the largest value when compared with the distances far
from the core of the shear band. Although the shear strain around a
single shear band has not been experimentally quantified so far, the
fact that it has the highest value at the very vicinity of the shear
band is expectable due to the nature of the shear in the core of the
shear band. The more significant aspect of such kind of distribution
is obtained by from the variation of maximum shear strain angle
around the shear band. Fig. 4 shows the vectors of gmax calculated
along the line crossing the shear band, as indicated in Fig. 2(a). The
magnitude of the vectors is proportional to the absolute values of
gmax while their directions are shown relative to the angle of gmax.
The direction of gmax in the shear band core (green shaded area) is
parallel to the shear band for the short-range and medium-range
interatomic distances. It is worth to note that when getting far
from the center of the core region, the maximum shear strain di-
rection deviates from the shear band plane and reaches an average
angle of about ±24� at the border of the core region where the
residual shear strain has its maximum value. This is in very good
agreement with the direction of the observed secondary shear
bands (Fig.1(b)) which nucleate from themain shear band under an
angle of ~25� with respect to the main shear band. In addition, a
similar pattern of displacement vectors, obtained by molecular
dynamics simulations, has been recently reported [24]. This proves
the decisive role of the quantified residual shear strain in triggering
the further plastic deformation of BMG via nucleation of new shear
bands in the shear affected zone around a mature shear band.

The last but not least observation is a characteristic core region
of about 3.5 mmwidth around the shear band (shaded rectangles in
Fig. 3 (a) and 3(b)) which indicates an abrupt change in the normal
strains. Correspondingly, gmax at both SRO and MRO exhibits a
small local minimum in the middle of this region. A closer look at
the SEM image with the shear band (Fig. 3 (c)) reveals material
which has flown out of the shear band. This suggests that a
necessarily soft amorphous region has been formed at the shear
band during deformation. Together with the observed character-
istic core zone for the residual strain fields, this is believed to
represent the liquid-like/hot-zone region in a single shear band
proved via melting of a thin tin layer by Lewandowski and Greer
[46].



Fig. 4. Vectors of the residual maximum shear strain, gmax, in and around a single
shear band at different length scales (SRO and MRO) of the deformed BMG along the
line crossing the shear band. The length of the vectors represents the relative
magnitude of the shear strain.
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To conclude our study, we demonstrated that the plastic
deformation in cold-rolled Zr52.5Ti5Cu18Ni14.5Al10 BMG results in
diffusive residual normal and shear strain fields at both SRO and
MRO length scale extending over distances more than 15 mm away
from the shear band. The residual normal strains exhibit an
asymmetric distribution whereas the residual shear strain is
distributed symmetrically at the sides of the shear band. In agree-
ment with reported distributions of elastic constants and hardness
across a shear band, our results highlight the dominant role of the
shear strain in governing further plastic deformation at regions
near the shear band. This is also proved by the coincidence of the
direction of the nucleating secondary shear bands from the main
shear band with the orientation of the residual shear strain at the
vicinity of the mature shear band.
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