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ABSTRACT

A multiscale approach is proposed to predict how the presence of hydrogen influences the onset of
homogeneous dislocation nucleation (HDN) and thus of plasticity. The model takes inputs that can be
solely obtained from atomistic calculations, such as dislocation core structure, stacking fault energy and
hydrogen—hydrogen interaction. The equilibrium hydrogen concentration around the dislocation loop is
calculated using a recently developed self-consistent iterative method [1]. The complex nature of the
dislocation field, as well as the equilibrium hydrogen concentration around the loops, is taken into ac-
count. The onset of HDN as a function of bulk hydrogen concentration and temperature is quantitatively
predicted and is consistent with nano-indentation experiments on hydrogen loaded samples. Applying
the approach to Ni, we find that even low hydrogen concentrations of about 1 at-% result in largely

Hydrogenhydrogen interaction
Dislocations

reduced HDN energy barriers and thus largely reduce the critical shear stress.
© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Hydrogen embrittlement is a century-old problem [2] that is
known to occur in a wide range of materials [3—14]|. This phe-
nomenon is particularly severe in ferritic high strength steels due to
the high mobility of hydrogen solutes in bcc iron. However, despite
the growing interest in the topic, the underlying mechanisms that
cause hydrogen embrittlement are not well-understood. The diffi-
culty is rooted in the different time- and length-scales associated
with the phenomenon. Hydrogen diffusion at relevant tempera-
tures is fast relative to experimental time-scales, but not fast
enough to be easily simulated using current computational tech-
nology. On the other hand, both atomic and mesoscopic length-
scales are relevant due to nontrivial solute—solute interactions
and defects such as dislocations and cracks with long-range elastic
fields.

Several conceptual frameworks have been proposed to explain
hydrogen embrittlement, including hydride formation and cleavage
[10,15], hydrogen enhanced decohesion (HEDE) [5—7,13,16—18],
and hydrogen enhanced local plasticity (HELP) [3,4,8,11,12,19—24].
In particular, the HELP mechanism is based on the localization of
hydrogen around dislocations. Once this happens, it is thought that
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the hydrogen modifies the interaction of dislocations with other
defects (such as other dislocations) and results in local plasticity
that is macroscopically similar in fracture appearance to brittle
fracture. While various aspects of this mechanism have been
extensively studied, a quantitative connection between the
hydrogen localization around dislocations and the actual brittle-
like macroscopic behavior has yet to be made. In order to make
this connection, the interaction between the hydrogen solutes and
dislocations must be accurately quantified and understood.

A powerful experimental methodology to study this interaction
is through in situ electrochemical nanoindentation experiments
charged with hydrogen [25]. In these experiments, homogeneous
dislocation nucleation (HDN) in hydrogen-charged metal samples
is initiated by a nanoindenter. These experiments have the advan-
tage of having a well-defined system that facilitates the comparison
between experiments and theory. Due to the small sampling vol-
ume, grain boundaries and other hard-to-characterize and describe
defects (i.e. forest dislocations) do not affect the results, and one
can reasonably assume that the region at which the nucleation
occurs locally resembles a perfect crystal. The system also cir-
cumvents the common problem when describing the energy of
systems containing dislocations. A straight dislocation has a long-
range stress field which scales like 1/r. This means that, in princi-
ple, the interaction with solutes very far away from the dislocation
cannot be ignored. Dislocation loops, however, do not have a long-
range field and only solutes close to the dislocation are relevant in
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the analysis. Finally, analytic solutions to the stress field under-
neath the indenter prior to dislocation nucleation are well-defined
[2].

The effect of hydrogen on nanoindentation experiments has
been attributed to changes in the shear modulus, dislocation core
structure and/or stacking fault energy due to hydrogen [25,26].
These changes were treated as fitting parameters for the experi-
mental data and the localization of hydrogen around the disloca-
tion was not explicitly taken into account. More recently, Kirchheim
[27] proposed a thermodynamic framework wherein hydrogen acts
to lower the dislocation line energy through favorable interaction
with the dislocation. To quantitatively evaluate this effect, one has
to know how much hydrogen is localized around the dislocation
loops as well as determine the strength of the interactions. Apart
from the solute-dislocation interaction, hydrogen—hydrogen
interaction also plays a crucial role and may even lead to the for-
mation and stabilization of hydrides around dislocations [1,28].

In this paper, we derive and employ a multiscale approach that
allows us to describe the full complexity of forming and stabilizing
a dislocation loop both in the absence and presence of hydrogen.
Specifically, we develop an analytic model that is informed by
atomistic inputs, such as hydrogen—hydrogen interaction and the
geometry of the dislocation core, and takes into account the
discrete nature of the system. The model calculates the equilibrium
hydrogen concentration around a dislocation at finite temperature
and quantitatively predicts the onset of HDN as function of applied
shear stress.

2. Computational methods

A schematic representation of our simulation box is shown in
Fig. 1. An orthagonal supercell is created with principal directions
corresponding to the [110](111) slip system. The size of the simu-
lation box is 63.5 A x 72.1 A x 63.9 A, containing 28080 Ni atoms.
The size of the simulation box was chosen such that the elastic
energy of the largest dislocation loop considered is converged with
respect to system size to within 0.1%. Faulted hexagonal loops with
partial Burgers vector b” = ay;/6[121] are considered, where ay; is
the lattice parameter of Ni. This is because, at small loop radii that
are relevant to nucleation, faulted hexagonal loops are energetically
more favorable than full dislocation loops in fcc metals [29].
Hydrogen atoms are assumed to occupy only the octahedral sites in
the system.

The energetics of the system is described using an analytic
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Fig. 1. A schematic representation of the simulation cell used to model Homogeneous
Dislocation Nucelation (HDN). A faulted hexagonal dislocation loop (solid red line) with Bur-
gers vector bP = ay;/6[121] is introduced to the system. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

model that takes key inputs from atomistic calculations, such as
local hydrogen—hydrogen interaction and dislocation core struc-
ture. In the analytic model, the system is assumed to be an isotropic
linear elastic material. The hydrogen solutes are approximated as
point dilatational sources. Since the most important interaction in
the system is that of the hydrogen solutes and the stress fields, the
elastic constants chosen are the bulk modulus K and the Poisson
ratio » in the coordinate system above.

The atomistic calculations were performed using a modified
semi-empirical embedded atom method (EAM) potential based on
a potential developed by Angelo et al. [30]. The modification of the
original potential was done in Ref. [28] by increasing the cut-off
radius rey of the Ni—H interaction from 4.83 A to 4.92 A in order
to remove elastic instabilities arising from a negative C44 of the
rocksalt Ni—H structure without affecting other relevant properties
of the system. The materials properties that are obtained using this
potential are summarized in Table 1.

3. Energetics

To determine when the homogeneous dislocation nucleation
can spontaneously occur, the free energy of the system at finite
temperature must be considered. Consider a system coupled to a
hydrogen reservoir with chemical potential py. The temperature T
along with uy determines the equilibrium bulk hydrogen concen-
tration Pk, We define the bulk hydrogen concentration as the
ratio between the actual number of hydrogen atoms in the defect
free, unstressed bulk and the maximum number of available bulk
interstitial sites they can be incorporated. The latter number is
identical to the number of Ni atoms. When the bulk hydrogen
concentration cf"*«1, the free energy f* per host atom is,

[ =eni+ Q| (e — uy) + kT In Uik (1)

where ey is the energy of pure fcc Ni per atom, ey is the energy of
inserting one H atom in the Ni matrix in the dilute limit. Hydro-
gen—hydrogen interaction is assumed to be negligible in Eq. (1),
since cP¥ is small in typical experimental conditions. It should be
emphasized that )% refers specifically to the concentration of
hydrogen in the unstressed bulk. The local concentration of
hydrogen can be significantly higher in regions with large tensile
stresses. The term ey is determined by molecular static calculations
using 5 x 5 x 5 conventional supercells,

en = LY BBy @
where EJH is the energy of the supercell containing one H atom and
EPuIk js the total energy of the supercell without any H atoms. The
equilibrium bulk hydrogen concentration can be determined by
minimizing Eq. (1) with respect to ¢k,

bulk _ _€H — MH
g = exp( T ) 3)

When a dislocation loop is introduced in the system, the stress
gradient induced by the loop changes the local hydrogen concen-
tration around the loop. The change in free energy with respect to
the perfect bulk is,

Noc _
AFP =% (aff + AfP + AfF) + AF9, (4)

1

where
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Table 1
Elastic constants, stable stacking fault energy vy and misfit volume Avy, as given by the modified EAM potential, DFT [28], and experiments [30] for pure Ni and rocksalt NiH.
Ci1 (GPa) Ci2 (GPa) Ca4 (GPa) K (GPa) st (m]/m?) Avp, (A?)
Pure fcc Ni
EAM [28] 251.1 144.1 1339 179.8 162 35
DFT [28] 267.5 153.6 129.3 191.6 — 23
Experiment [30] 246.4 147.3 124.7 180.3 125 32
Rocksalt NiH
EAM [28] 281.5 186.2 324 217.9 — —
DFT [28] 281 169 77 2071 — —
4. Stress field of a faulted hexagonal dislocation loop
Aff _ Ci _ Cbulk (e _ ) (5) . .
i = \*H™*H H — MH The stress, strain and displacement fields of a faulted hexagonal

is the change in formation energy due to the change in local
hydrogen concentration at octahedral site i,

Afilb = chAuL (6)

is the change due to the local change in hydrogen binding energy
Aug7 arising from the interaction of the H atoms with the dislocation
stress field, as well as additional H—H interaction from increased
concentration of neighboring sites. Further in Eq. (4),

AfF = kT[cyIncly+ (1= cy)In(1-cfy) =™ ™| (7)

is the change in entropy of the system due to local changes in
hydrogen concentration. Finally, AFY! is the increase in free energy
due to the dislocation loop and is determined by calculating the
stress 0! and strain ¢{! fields at each Ni site, and considering the
additional energy due to the introduction of the stacking fault
within the dislocation loop,

N
; 1
AFdS! = Z 5%j a5 (1) e (rvni + vseAdist»
k

where vy is the volume of a Ni atom, vsf is the stable stacking fault
energy of Ni and Aqjg) is the area of the dislocation loop. The entropy
change due to the dislocation loop is ignored as it is much smaller
compared to the entropy of the H solutes.

The stress field a‘]“d due to the indenter changes the free energy
of the system further. The change in free energy AF°°P**X! from a
perfect crystal under the indenter to a crystal containing a dislo-
cation loop under the indenter is given by

AFloop+ext AFloop + AFeXt— loop + AFext— H (8)

where AFXt199P jg the interaction energy of the dislocation with
the indenter and AF**®H is the interaction of the indenter with the
H solutes. The term AF*t~19°P js equivalent to the work done by the
dislocation loop in the presence of the external field and is given by

AFEXt100P — 7ppA (9)

where bP is the magnitude of the partial Burgers vector of the
dislocation loop, 7 is the shear stress in the direction of the Burgers
vector and A is the area inside the loop. The term AF™H only
depends on the pressure field of the indenter and results in an
effective decrease in the bulk hydrogen concentration under the
indenter.

loop [31,32] are calculated using discrete Volterra segments. The
equations used for this calculation are summarized in Appendix A.
The elastic fields of regular hexagonal Volterra loops were calcu-
lated from r4%' = 0 to 1! = 10b at 0.1b intervals, where b = ay;/v/2
is the full Burgers vector of the system. In fcc materials and other
close-packed systems, dislocations are delocalized within the slip
plane [33]. Volterra loops are therefore insufficient in describing
the elastic fields close to the dislocation loops. A good description
for such dislocations is the Peierls-Nabarro model, which takes into
account the atomic displacements due to the dislocation in the slip
plane. In this work, we approximate the Peierls-Nabarro model by
superimposing the elastic fields of Volterra loops with the appro-
priate weights.

The stress field of a Peierls-Nabarro (PN) loop with radius pdisl js
then given by

<d151> ZW( dlsl) oY () (10)

where a,‘-]( (r;) is the stress field of a Volterra loop with radius r; and
w(ri,rdiSI) is the weight of that loop. The corresponding strain tensor
can be calculated using the compliance tensor of Ni (i.e.,
e = Sijaog)-

The weight is obtained by assuming an arctangent distribution
of the Burgers vector along the slip plane,

w (199 = 1 1 _ 1 Ax, (11)

7rA 2 2
_l + < T{hsl) _l + (T,-H’“‘S‘)

where A is the characteristic partial spreading of the dislocation
partial and Ax = 0.1b is the spacing of the Volterra solutions. The
term A is determined to be 3 A from our previous work on straight
Ni edge dislocations [1], and is obtained by matching the Nye tensor
of the dislocation core obtained from our analytic model to that of
the core obtained from direct molecular static calculations. The first
term in Eq. (11) corresponds to the Burgers vector distribution of
the segment along the slip plane, while the second term corre-
sponds to that of the segment directly opposite to the segment
located 219! away. This contribution has a negative sign due to the
fact that the opposite segment always has the opposite line sense.
The weight distribution w(r,r9%) ensures a smooth elastic energy
profile from a perfect crystal to one containing a full faulted
dislocation loop. Fig. 2 shows the displaced Ni position of a PN loop
with 14! = 4b, revealing a stacking fault inside the dislocation loop,
as expected.

The elastic fields in this description are not accurate on sites
close the dislocation core region. This is because the stacking fault
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Fig. 2. The displaced Ni positions of a crystal containing a faulted, hexagonal PN loop
with 19! = 4b. Three atomic layers are shown, with the colors corresponding to the out
of plane coordinate of the Ni sites. Outside the dislocation loop ABC-stacking is
observed, indicating a near-perfect fcc structure. Inside the dislocation, the white Ni
atoms eclipse the dark blue atoms, indicating a local ABA-stacking.

energy in the immediate vicinity of the partials is significantly
higher than the stable stacking fault energy. Because of this, the
elastic energy of small dislocation loops on the order of the partial
spreading A is expected to be underestimated. Note that this is
analogous to a classical analysis wherein results are expected to be
inaccurate when the loop radius is on the order of the core cut-off
radius [33].

5. Local hydrogen concentration and binding energy

The binding energy of the dislocation arises from the interaction
between the H solutes and the dislocation stress field. Traditionally,
only this elastic interaction has been considered, though recent
works [28,34] have shown that H—H interaction plays an important
role. Taking H—H interaction into account leads to hydrogen
localization around stress concentrators and may cause the for-
mation of local (nano) hydrides. This contribution can therefore not
be neglected. The hydrogen binding energy Aui'7 at octahedral site i
is therefore assumed to be composed of two components; the
elastic interaction between the dislocation Aue and the H—H
interaction Auy_ g [1],

AUl (ri, c) = AU () + Aufy_y(ri, cy). (12)

Since the H solutes are considered as point dilational sources,
the elastic interaction only involves the pressure fields of the
dislocation and the indenter, p%' and p™. More specifically,

auly(ry) =~ (pU(ry) + P (1) ) Avim, (13)

where Av, = 3.5 A3 is the misfit volume of H in Ni.

The binding due to H—H interaction Auy_y is taken to be a
quadratic function of 1% and 2™ nearest neighbors of the octahe-
dral site,

Auy (1, cn) = A1Nq +A;Ny +A3N% +A4N§ +AsN1N,,
(14)

where

12
Ny = cu(rm) (15)
and
. 6
N, = ZCH(rn) (16)

is the average number of hydrogen in the 1% and 2" nearest
neighbor sites of octahedral site i located at r,,; and ry, respectively.
A1 = -289 meV, A = -62 meV, A3 = 054 meV,
A4 = 3.7 x 1072 meV and As = 0.36 meV are constants fitted to
direct molecular static calculations [1]. The H—H interaction is
assumed to be independent of local strain, which is validated by the
good agreement of local hydrogen concentration between the
model and atomistic/Monte Carlo coupled calculations [1].

Once Auj, is determined, the equilibrium hydrogen concentra-
tion on the octahedral site i can be determined by the Fermi-Dirac
distribution,

1
Ty (chuk) ~texp [AuL/kT} -

cH (Au};,T) (17)

Due to Auy_y, the binding energy is a function of the local
hydrogen concentration cy, which in turn is a function of the
binding energy. Therefore, Egs. (12) and (17) must be solved self-
consistently in order to fully determine the equilibrium hydrogen
concentration profile in the system. This is accomplished by
adopting an iterative scheme similar to the one implemented for
straight edge dislocation [1]. The scheme goes as follows. The stress
field of the dislocation loop ag“' is determined by the steps outlined
in sec. 4. The elastic binding energy Au, is then calculated using Eq.
(13), which is used to generate the initial hydrogen seed in the
system. All sites with Auél< —40 meV are initially filled with
hydrogen (i.e., ¢}, = 1). This initial hydrogen concentration profile is
used to calculate the total hydrogen binding energy. Using Eq. (17),
a new concentration profile is calculated and compared to the
previous cy. These steps are iterated until the maximum error be-
tween the old c{_l and the new c{_l is less then 0.1%. Calculating a
converged hydrogen concentration profile using this method is
highly computationally efficient and takes on the order of minutes
to accomplish.

1.0

0.0

20—20 \\’

Fig. 3. The equilibrium concentration profile cy of hydrogen for a dislocation loop with
r4isl = 4b and ¢k = 1000 ppm. For clarity, only sites with cj; > 0.3 are shown in the
figure. Local hydride formation can be observed in the regions with large tensile
pressure fields.
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6. Results and discussion
6.1. Energetics of dislocation loops under pure shear load

Let us first examine the energetics of the system for the case
when an external shear stress 7°*¢ is applied in the direction of the
partial Burgers vector bP. In this case, the hydrostatic component of
the external field is zero (i.e., oﬂét = 0). A typical concentration

profile is shown in Fig. 3 for 4! — 4b, cpulk — 1000 ppm and
T = 300 K. In the presence of a dislocation loop, the hydrides are
observed to decorate regions with high dilatational stress, i.e.,
segments that have predominantly edge character. Since the
hydrogen mainly interacts with hydrostatic stress fields, the elastic
interaction energy is most favorable in the tensile regions of the
dislocation loop, which leads to an increase in local hydrogen
concentration. This increase in local hydrogen concentration is
positively reinforced by the hydrogen—hydrogen interaction due to
the presence of neighboring hydrogen atoms. This positive rein-
forcement leads to H concentrations at these segments that are
several orders of magnitude larger than the bulk concentration or
the concentrations one would find in the absence of an attractive
H—H interaction. The resulting hydrogen concentration profile
shows two distinct phases; a phase where the interstitial H atoms
form a local nano-hydride. The local hydride is surrounded by the
second phase where the interstitial H atoms are dilute and form a
lattice gas.

To understand the origin of this two phase regime, we can
consider the thermodynamic stability of the hydride as a function
of external pressure. At zero pressure and chemical potentials
considered here (which correspond to a few ppm H bulk concen-
tration) the formation of bulk hydrides is for many metals endo-
thermic and therefore not observed. However, applying a positive
hydrostatic (dilatational) stress expands the lattice and thus ther-
modynamically stabilizes the formation of the hydride. The tensile
stress fields induced by the dislocation therefore cause regions in
the solid where the formation of typically highly localized hydrides
becomes thermodynamically possible. Theoretical work on local
hydride formation around stress concentrators, such as dislocations
[1,28] and cracks [34,35] have been reported earlier. These local
hydrides are confined to the regions where tensile strain is induced,
i.e., once formed they grow until their equilibrium size has been
achieved. The equilibrium size can reach the order of a few nm, as
shown in Fig. 3. If the chemical potential remains unchanged,
further growth is not possible, i.e., the nano-sized features are
stable against coarsening.

The formation of this local hydride lowers the free energy of the
system and thus helps to stabilize the dislocation loop. Physically,
the insertion of the hydrogen atoms in the tension side of the edge
segments helps to mitigate the elastic energy increase due to the
introduction of the dislocation loop. This attractive interaction
between interstitial H atoms and dislocations results in an effective
decrease in dislocation line energy and is an example of the
“defactant” concept first introduced by Kirchheim [27].

Taking full advantage of the computational efficiency of the
model, we calculated the equilibrium hydrogen concentration for
dislocation radii ranging from 0 to 7b and bulk hydrogen concen-
trations ranging from 10 to 3 x 10 ppm at 300 K. Note that while
atomistic simulations of nanoindentation have been performed
[29], the strain rate in those calculations is too high for the
hydrogen to diffuse to their equilibrium positions. The total number
of excess hydrogen ANy = Zf’m (c'l'_l - cﬂ““‘) with i running over all
octahedral sites in the supercell is shown in Fig. 4. For a given radius
raisi, a critical concentration ¢/ is required before a local hydride
can form around the dislocation. This critical "X is higher for

(ppm)

bulk
g

raist (b)

Fig. 4. Number of excess hydrogen atoms ANy as a function of dislocation radius rgjs
and bulk hydrogen concentration cf* for T = 300 K. The contour plot shows the
critical bulk H concentration necessary to form a local hydride around a dislocation
loop with radius rgis. After the hydride forms, ANy increases dramatically with
increasing rgis and cﬂ““‘. The dashed line is the critical concentration for an isolated
partial dislocation, which corresponds to the case when rgisy — .

smaller rgis). This is because smaller loops have weaker pressure
fields due to the interaction with nearby segments. As the loop
grows, the stress field approaches that of infinite straight disloca-
tions. The critical concentration c%"¥ for nanohydride formation is
considerably higher than that of straight edge dislocations [ 1], since
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Fig. 5. Above: Formation energy to create a dislocation loop under the indenter
AF°°P+ind (Eq (8)) as a function of dislocation radius rg;g at T = 300 K and 7 = 4 GPa
at various bulk hydrogen concentrations cB!. The red dashed line indicates the free
energy of the bulk system without a dislocation. Below: The line contours show the
total energy change as a function of dislocation radius rqi; and bulk hydrogen con-
centration ¢l at T = 300 K. The external shear stress is 7 = 4 GPa. The energy
barrier becomes zero above a critical H concentration (shown by the red dashed line),
indicating that HDN is spontaneous. The continuous blue contours correspond to the
maximum hydrogen concentration in the system. If a local hydride forms in the sys-
tem, this quantity approaches unity. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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the two partials in a straight edge dislocation have the same di-
rection. This leads to an increase in pressure field as the two partials
are brought together. In contrast, the opposite segments in the
dislocation loop have different line directions, leading to a decrease
in pressure field if brought together (i.e., as rqgiss — 0).

Once the equilibrium hydrogen concentration has been calcu-
lated, the energy needed to create a dislocation loop as a function of
bulk hydrogen concentration 2% and temperature T can be
straightforwardly calculated using Eqs. (4)—(8). A typical energy
landscape is depicted in Fig. 5 for 7°** = 4 GPa. At low H concen-
trations c2'k (low uw), a dislocation loop growing from rgisi = 0 to
rdis = oo encounters a barrier. However, above some critical 2% (or
equivalently uy), the energy monotonically decreases with
increasing dislocation radius rgjg, indicating that the HDN process
above this concentration is no longer activated but is spontaneous.

The energy profile of the system (Fig. 5) shows a minimum at
raiss = 1.5b. However, preliminary molecular static simulations
show no evidence that such small loops can be stabilized. This
discrepancy is likely related to the fact that the model un-
derestimates the dislocation core energy, since the model only
takes the stable stacking fault energy vy rather than the full gamma
surface of the system. This error scales with the loop perimeter and
increases with decreasing loop radius. As the ratio between loop
area and length increases, the contribution to this error becomes
smaller. To take this into account, we adopt the convention of
assuming that the energy increases monotonically from rgjsj = 0 up
to the critical dislocation loop radius where the energy is maximum
[25,26,33]. The energy barrier is therefore taken to be the
maximum energy at any given "X and 7°*,

The energy barriers are extracted from the energy landscapes as
a function of bulk hydrogen concentration cﬂ“lk and external shear
7%Xt_The critical dislocation radius at which these barriers can be
found always coincides with the start of local hydride formation,
indicated by the edge of the blue contour in Fig. 5. These barriers
are presented in Fig. 6, showing that after a critical bulk hydrogen
concentration of ¢%'"=300 ppm, the energy barrier of HDN is
drastically reduced by the H solutes. When the barrier is 0, the HDN
process is spontaneous. The zero contour line can therefore be
taken as a prediction on when HDN can occur.
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Fig. 6. The energy barrier to HDN as a function of dislocation radius rqijs) and bulk
hydrogen concentration c'ﬁ,“lk. The barrier drastically decreases after the critical
6}2,””‘ =300 ppm is reached. The shaded area corresponds to the region wherein HDN is
spontaneous (barrier-free). The dashed line is the critical shear stress required for HDN
without hydrogen.

6.2. Effect of indenter pressure field

The analysis in the previous section assumes that the external
stress field is purely deviatoric in nature. Conventional analysis of
HDN assumes that the nucleation event would occur in the region
of the material experiencing the largest deviatoric stress [25,26]. In
nanoindentation experiments, however, the indenter also exerts a
(compressive) pressure field that pushes hydrogen atoms under-
neath the indenter away. Since the presence of hydrogen affects the
nucleation barrier to HDN, it is important to take the pressure field
into account. This can be done by considering what the effective
bulk hydrogen concentration is beneath the indenter,

ext
CDulkelf _ bulkey [l%] ’ (18)

where the external pressure field p®*t = %aiﬁt is negative
(compressive) in this case. Thus, co'™* is always less than cplk
underneath the indenter. The previous analysis holds provided all
instances of 2k are replaced with cltfl“lk*eff

To make this more concrete, we model the interaction with the
indenter as a sphere forming a Hertzian contact with an elastic half-
space. Other geometries might be considered, but this would not
change the general conclusions of the analysis. The stress compo-

nents due to the indenter in cylindrical coordinates are given by [2],

-1
or_9_ Zan ) 1.2
e (1+0{1-tan Z}+2(1+a2) : (19)
oz 1422 -
p—0=7<1+ 2 ) , (20)

where z is the coordinate perpendicular to the surface, a is the
radius of the indenter (inset in Fig. 7(a)), and py is the pressure at
the center of the indenter on the surface. These principal stresses
along with the principal shear stress :%\az — oy| and pressure
field p = %(ar + oy + gz) are shown in Fig. 7(b). Typically, HDN is
assumed to occur at the depth at which the principal shear stress is
maximum (at z/a = 0.45) [25,26], since the pressure field does not
affect the energetics of the dislocation nucleation. When mobile
solutes are involved, this is no longer the case. The effective bulk
hydrogen concentration as a function of depth is also shown in
Fig. 7(a) for the case when T = 300 K. Due to the indenter pressure
field, CE,“”"Eff at z/a = 0.45 is almost two orders of magnitude lower
than cP¥. The point at which HDN occurs can therefore no longer
be assumed to occur where the principal shear stress is highest.

To assess the stability of the system against the nucleation of
dislocation loops, Fig. 6 can be inverted to create a prediction of
critical stress 7. as a function of effective bulk hydrogen concen-
tration cﬂ”lk’eff. Since cﬂ“‘k’eff increases with z, 7. decreases as z in-
creases. When 7. is below the principle shear stress, HDN can occur.
The above discussion allows us to make a direct comparison of the
model's prediction with experiments made in Ref. [25]. The exact
value of the bulk hydrogen concentration after charging in these
electrostatic experiments is difficult to determine, but it is on the
order of 1-2% [36]. After hydrogen charging, the pop-in force f.
dropped on average to approximately a half of its original value.
Since the critical stress 7. scales with the critical applied force
~fcl/3. 7. dropped by approximately 20% of its original value. The
critical shear stress in the absence of hydrogen rH-free is predicted
to be 4.25 GPa, in good agreement with 3.3 GPa obtained from
experiments.

Fig. 7(c) shows 7. and 7ext as a function of normalized depth z/a
at three different bulk hydrogen concentrations (2% = 0%, 1% and



150 G.PM. Leyson et al. / Acta Materialia 107 (2016) 144—151

100 T T
a
=
e indenter
S 107 H 4
\ 7
s=
®»
=4
=
"QUE 1072 E
1073 I L
~~
ey}
ol
O
SN—r
n
n
[B)
—
%9 |
shear stress
0 L L L
(c)
4.5 T T T
4.0
~—~
ey}
A, 35F 'max — Ve fce
O
N—r 30 |
n
n
& 25}
+>
n
2.0 shear stress /
]“5 L L L L - L L
0.0 0.1 0.2 03 04 05 0.6
z/a
Fig. 7. (a) The effective bulk hydrogen concentration cllf,””"e“ normalized against the

bulk hydrogen concentration cﬁ“lk for T = 300 K as a function of depth z/a along the

indenter axis. The maximum external shear stress is set at 80% of the critical shear
stress for HDN without the presence of hydrogen r?*free. The inset in the right figure
shows a schematic representation of the nanoindenter experiment. (b) The corre-
sponding principal shear stress 7 and the magnitude of the pressure field |p| along z/a.
(c) The critical shear stress for HDN 7. and the external shear stress 7°** as a function of
normalized depth z/a for c}?,“lk = 0% 1% and 2% for T = 300 K. At the point of maximum
external shear (z/a = 0.45), 7 is insufficient to initiate HDN for all cases. However,
when zja > 0.61, 7<r®™ for Pk = 2% (shown in the plot as the shaded region),
indicating that HDN will spontaneously occur. HDN will not occur for the other
concentrations.

2%) for the case when the maximum principal shear stress is 80% of
the critical stress of the hydrogen-free nickel. At z/a ~ 0.45, where
the principal shear stress is maximum, 7% is too low for HDN to
occur for all cases. However, if we go to a larger ratio z/a = 0.6, the
critical shear stress 7. drops below 7¢*t for the highest bulk con-
centration c',Zl”“‘ = 2% considered here, indicating that HDN occurs
spontaneously. The origin, as shown in Fig. 7(b), is that the principal
shear stress falls slower than the pressure field exerted by the

indenter. The prediction of the model is therefore consistent with
previous nanoindentation experiments [25,26] but is able to
reproduce and explain them, without the need to invoke hydrogen
effects on shear modulus, dislocation core radius or stacking fault
energy.

The analysis in this paper primarily deals with the energetics of
HDN. However, the kinetics of the system is expected to play an
important role since dislocation loop and the hydride depend on
each other. A small subcritical loop is stabilized by the hydride,
which in turn is stabilized by the dislocation's stress field. While a
detailed analysis of the system's kinetics is beyond the scope of this
work, we propose the following mechanism to explain how local
hydrides might form around small dislocations. At a given stress
below the critical value, it is possible to form small unstable
dislocation loops at finite temperature. These loops would quickly
collapse. Due to these fluctuations hydrogen is attracted to the
dislocation loop until it collapses and would localize in regions that
are energetically favorable. These in turn make the formation of the
unstable dislocation loop a bit more energetically favorable,
increasing the frequency of the fluctuation. This self-reinforcing
process would continue until the critical loop radius is reached.
Once the dislocation exceeds this radius, the dislocation can grow
by incorporating additional hydrogen atoms and enhances
plasticity.

The presented model may be regarded as a practical realization
of the “defactant” concept introduced by Kirchheim [27], since both
the solute-dislocation and hydrogen—hydrogen interaction are
favorable and can be attributed to an effective decrease in the
dislocation line energy. Here we have identified the origin of this
interaction (both mechanical and chemical) and have quantified
the effects given specific boundary conditions.

It should be noted that the indenter introduces significant stress
concentrations in regions not directly underneath the indenter. In
particular, large tensile stresses are expected at the surface close to
the edge of the indenter [37]. However, modeling hydride forma-
tion at the surface requires a methodologically very different
approach that is beyond the scope of the paper. Additionally, only a
single dislocation loop has been considered in the analysis. If
multiple dislocations are close enough together, then the formation
of the local hydride phase might get affected. However, for this to
happen, the spacing of the dislocation should be rather close (on
the order of a few Burgers vector). As such, treatment of multiple
dislocations in relation to hydride formation must be treated with
care and will be explored in a future paper.

7. Conclusions

In this paper, we have extended our model for hydride forma-
tion around a straight edge dislocation [1] to describe the impact of
local hydrides on the nucleation of dislocation loops. The derived
multiscale model takes atomistic inputs, such as dislocation
stacking fault energy, dislocation core structure and H—H interac-
tion. In particular, H—H interaction plays a critical role in explaining
the drop in pop-in force observed in experiments. The model
faithfully predicts the spatially resolved equilibrium hydrogen
concentration at finite temperature as a function of bulk hydrogen
concentration (or equivalently, the hydrogen chemical potential
un). The exact distribution of the interstitial H in the vicinity of
defects such as dislocation loops is critical to accurately describe
the impact H has on plasticity but would be computationally
challenging or unfeasible by molecular dynamics based atomistic
approaches only.

The described concepts and formalisms regarding local phase
transformation around stress concentrators can be extended to
defects apart from dislocations. Examples are situations where



G.PM. Leyson et al. / Acta Materialia 107 (2016) 144—151 151

pressure fields induced by external loads activate mechanisms that
without H are not operational. For instance, the pressure field in
front of a crack tip may increase the local hydrogen concentration
above a critical level to activate dislocation sources that would be
inactive without the presence of hydrogen. Studying such systems
will help elucidate the effect of hydrogen in failure mechanisms
outside HDN. Employing the multiscale approach derived and
outlined in the present study provides an efficient simulation tool
to quantitatively describe such scenarios.
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Appendix A. Stress field of a straight dislocation segment

The calculation of the stress field induced by a straight dislo-
cation segment is summarized in this section. For a complete
derivation of these expressions, readers are directed to Ref [33]. In
the following equations, the coordinate system is chosen such that
the dislocation segment lies along the z-axis. The components of
the stress tensor due to the dislocation segment are then given by,

oxx X2 x2 pY x2
0~ PRR+2) (RH) [”ﬁ*R(RH)}”’YR(R+/\){1’IT2
XZ
’R(RH)}’
(A1)
oy V[ Y V] X Vi
2= b || et Ran) PRERTH | R
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0z 2vy yA 2vX XA
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0_—0 bx +by( R+R3) +bzm7 (AS5)
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2

where R=1/x2 +y2 + (z—2)%, a9 = uf4n(1-v)and A = z'—z.
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