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The article is devoted to the discussion of the high-throughput approach to band structures calculations.
We present scientific and computational challenges as well as solutions relying on the developed frame-
work (Automatic Flow, AFLOW/ACONVASP). The key factors of the method are the standardization and
the robustness of the procedures. Two scenarios are relevant: (1) independent users generating databases
in their own computational systems (off-line approach) and (2) teamed users sharing computational
information based on a common ground (on-line approach). Both cases are integrated in the framework:
for off-line approaches, the standardization is automatic and fully integrated for the 14 Bravais lattices,
the primitive and conventional unit cells, and the coordinates of the high symmetry k-path in the Brill-
ouin zones. For on-line tasks, the framework offers an expandable web interface, where the user can pre-
pare and set up calculations following the proposed standard. Few examples of band structures are
included. LSDA+U parameters (U, J) are also presented for Nd, Sm, and Eu.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Over the past decade computational materials science has
undergone a tremendous growth thanks to the availability, power
and relatively limited cost of high-performance computational
equipment. The high-throughput (HT) method, started from the
seminal paper by Xiang et al. for combinatorial discovery of super-
conductors [1], has become an effective and efficient tool for mate-
rials development [2–6] and prediction [7–13]. Recent examples of
computational HT are the Pareto-optimal search for alloys and cat-
alysts [14,15], the data-mining of quantum calculations method
leading to the principle-component analysis of the formation ener-
gies of many alloys in several configurations [10–12,16,17], the
high-throughput Kohn-anomalies search in ternary lithium-bor-
ides [18–20], and the multi-optimization techniques used for the
study of high-temperature reactions in multicomponent hydrides
[21–23].

In its practical implementation, HT uses some sort of automatic
optimization technique to screen through a library of candidate
compounds and to direct further refinements. The library can be
a set of alloy prototypes [24,12] or a database of compounds such
as the Pauling File [25] or the ICSD Database [26,27]. An important
difference between the several-calculations and the HT philoso-
phies is that the former concentrates on the calculation of a partic-
ular property, while the latter focuses on the extraction of property
ll rights reserved.
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correlations which are used to guide the search for systems with ad
hoc characteristics. The power of HT comes with a cost. Due to the
enormous amount of information produced, standardization and
robustness of the procedures are necessary. This is especially true
if one were concomitantly optimizing thermodynamics and elec-
tronic structure, which is required, for instance, in catalyst design
[28], in accelerated ‘‘battery materials” discovery [29], and super-
conducting materials development [19,20]. Therefore a rational
HT computational framework must contain a general, reliable,
and standardized electronic structure analysis feature. It must
determine the symmetry automatically, the Brillouin zone (BZ)
integration path for all the possible 14 Bravais Lattices with all
their various sub-cases, and put the direct and reciprocal lattice
vectors in the appropriate standardized form, so that data can be
exchanged and recycled between different projects. Although Brill-
ouin zones integration paths have been included in books and lit-
erature for the last few decades [30–34], a standardized definition
of the paths for all the different cases is, to the best of our knowl-
edge, missing.

In this article, we describe the BZ paths features of AFLOW [35],
which is our free framework for performing high-throughput ther-
modynamics and electronic structure calculations on top of DFT ab
initio codes (currently the Vienna Ab-initio Simulation Package
(VASP) but the porting to other DFT packages, such as Quantum
Espresso [36] is underway). A typical task involves structural opti-
mizations to a ground state (‘‘relaxation run”), determination of
charge density and its projection onto electronic orbitals (‘‘static
run”), and calculation of energy levels along a path of ‘‘important”
wave vectors (‘‘bands run”). We refer this set of k-points as k-path.

http://dx.doi.org/10.1016/j.commatsci.2010.05.010
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Some definitions are pertinent for automatic construction of the
k-path. A k-point is a symmetry point if its site symmetry contains at
least one point symmetry operation that does not belong to the site
symmetry of the neighboring points in sufficiently small vicinity.
Similarly, a line or a plane forms a symmetry line or a symmetry plane
if it contains at least one symmetry point and all of the k-points on
the line or plane have site symmetry with at least one point symme-
try operation not possessed by the neighboring points. The k-path
must be carefully chosen so that the electronic properties of a mate-
rials imposed by its underlying crystal symmetry are correctly
described. For example, GeF4 (cI10, ICSD #202558, space group
#217,I�43m) has an indirect gap. The conduction band minimum
(CBM) occurs at point C, while the valence band maximum (VBM)
occurs at the point H of the BZ for the body-centered cubic (BCC)
lattice (Fig. 28). If a cubic unit cell were used instead the BCC, one
would incorrectly find a direct gap occurring at point C.

The coordinates of symmetry k-points are more conveniently
expressed as fractions of the reciprocal lattice vectors. Therefore,
the primitive lattice vectors needs to be properly defined in a stan-
dardized fashion. In order to build a primitive cell, the framework
AFLOW performs the following procedure:

i. Given any input structure (unit cell and the coordinates of
the basis atoms), AFLOW reduces it into a minimal set of
basis atoms in a primitive cell.

ii. A set of symmetry properties are calculated: lattice point
group, crystal point group, crystal family, factor group, space
group operations, Pearson symbol, and the Bravais lattice
type. If the input structure contains information about the
space group number, it will be used to double check the
Bravais lattice type.

iii. A standard conventional cell is then identified and con-
structed, and whenever possible, the lattice vectors are
ordered according to the axial lengths and the interaxial
angles. This ordering eliminates some choices in the possible
shapes of BZ in certain Bravais lattices. For example, let us
consider the body-centered orthorhombic lattice. Depending
on the ratios of the axial lengths the body-centered ortho-
rhombic cell has three possible shapes of the BZ, and conse-
quently three different coordinates of the symmetry points.
By ordering the conventional lattice vectors so that
ja1j < ja2j < ja3j (i.e. a < b < c) a unique choice remains. Fur-
thermore, the ordering improve the similarity between band
structures of different compounds with the same lattice: the
proportion between the length of each path segment in the
band structure will be comparable.

iv. From the ordered conventional unit cell, a standard primitive
cell is created. Amongst all the possible primitive cells,
AFLOW chooses the one with the reciprocal lattice vectors
passing through the center of the Bragg planes belonging
to the first BZ. The choice has considerable practical advan-
tages. It enforces the reciprocal lattice vectors to be as per-
pendicular as possible within each other (Minkowski
lattice reduction [37]) and minimizes the number of the
plane waves basis set used in the quantum mechanical code,
allowing faster convergence and smaller memory require-
ments.1 After all these steps, the standard primitive unit cells
of the 14 Bravais lattices as calculated by the AFLOW package
are safe to be used in the ‘‘relaxation” and ‘‘static” calcula-
tions. As usual, the latter calculation will be used for the elec-
tronic density of states.
1 The common visualization softwares used for generating BZs simply take the
input lattice vectors, generate reciprocal vectors and produce BZs which are not
necessarily the Wigner-Seitz cells of the reciprocal lattice.
The k-paths used in the band structure analysis are constructed
from the irreducible part of the first Brillouin zone (IRBZ). A sym-
metry line is included in the path if it belongs to the edges of the
IRBZ, otherwise it is included only if it carries one or more new
point symmetry operations with respect to those of its extremes.
Duplicate lines, due to the reciprocal lattice point group symmetry
and translations are also omitted. A point possessing only identity
(E) and inversion (I) operations cannot form a symmetry line, how-
ever, it may still be a zero-slope point [38]. Examples are point L in
face-centered orthorhombic, points N, N1, and M in C-centered
monoclinic, and all symmetry points in triclinic. To illustrate, TlF
(oF8, ICSD #30268, space group #69, Fmmm) has CBM and VBM
occuring at point L (Fig. 34). This result would have not been ob-
tained if point L were excluded. Therefore, for completeness, a line
from point C to such point is included in the k-path.

Notably for triclinic, monoclinic, and rhombohedral systems,
the shape of Wigner-Seitz cell of the reciprocal lattice depends
nontrivially on the lattice vectors. For this reason, some research-
ers use the parallelepiped of primitive reciprocal lattice vectors,
centered at k = 0, to define a plausible BZ. Even though the energy
is continuous throughout such BZ [30], its faces, in general, are not
parallel to the symmetry planes of the lattice. Therefore, there is
no guarantee that any line connecting two k-points on a BZ face
will be a symmetry line. In addition, since parallelepiped unit cells
have only eight points, one at each corner of the IRBZ, one would
miss some symmetry points on the Wigner-Seitz cell of reciprocal
lattice. Consequently, a complete irreducible set of symmetry lines
would not be obtained. For example if we were using a parallele-
piped as BZ in the C-centered monoclinic variation MCLC1

(Fig. 17), the site symmetries of points b1/2, b2/2, (b1 + b3)/2,
and (b2 + b3)/2 would be only E and I. Therefore, the line b1/2 � Y
would not be, for example, a symmetry line. Furthermore, points
like X, X1, I, and I1 and their related symmetry lines (C2 about
x-axis) would not be included in such simplification. To conclude,
although we believe that the simple parallelepiped BZ can be use-
ful in some particular difficult cases, we think that the solution is
not appropriate for a full automatic and high-throughput imple-
mentation of the band structure analysis. For this reason, inside
the framework AFLOW, all the BZ and their k-paths are derived
from the Wigner-Seitz cell of the reciprocal lattice and the avail-
able symmetries. In Appendix A, for all the Bravais lattices and
variations, we present the conventional and primitive lattice vec-
tors implemented in AFLOW, the coordinates of high-symmetry k-
points for the path, the shape of the BZ, and an example of band
structure calculation for a compound extracted from the ICSD
database.
2. Off-line implementation

The effort in developing the standardized tool AFLOW comes
from the ongoing generation of an extensive database of electronic
band structure for inorganic crystals for scintillator materials design
[39]. We have extracted approximately 195,000 structures from the
Inorganic Crystal Structure Database (ICSD) [26,40,41,27]. AFLOW is
equipped with utilities to select structures of interest. Selection
criteria can be based on atomic number or element’s name, mass
density, number of atoms per primitive unit cell, chemical formula,
structure prototype, space group number, lattice type, ICSD entry
number, etc. Features to remove/include structures containing
certain elements, partial occupancies, and redundancies (structures
with the same chemical formula and space group number) are also
implemented. Each structure is given a label which is composed of
the structure‘s chemical formula (in alphabetic order) and the ICSD
entry number. This label is the only information that AFLOW re-
quires to produce the band structure. After the structure selection



Table 1
Default value of U and J parameters given in eV applied to f-orbitals within the GGA+U
approximation included in AFLOW. Note that these parameters are subject to update.

Atom U J Ref. Atom U J Ref.

La 8.1 0.6 [53] Eu 6.4 1.0
Ce 7.0 0.7 [54] Gd 6.7 0.7 [55]
Pr 6.5 1.0 [56] Tm 7.0 1.0 [57]
Nd 7.2 1.0 Yb 7.0 0.67 [58]
Sm 7.4 1.0 Lu 4.8 0.95 [53]
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is performed, a list of labels is produced. Based on such labels,
AFLOW creates a subdirectory for each structure and the necessary
input file for the band structure calculation with VASP (porting to
other DFT packages, such as Quantum Espresso [36] is underway).
For running the DFT package, AFLOW has an option to run only one
structure and exit, or to search through subfolders and run those that
have not been calculated yet, or to wait for new structures to run. If
started as a common Unix daemon through the queue of a computer
cluster, AFLOW will generate, run, correct and converge many calcu-
lations per day, with minimum human input.

3. Electronic structure database implementation

The database of band structures under construction is calcu-
lated using VASP within the General Gradient Approximation of
the density functional theory [42]. We use projector augmented
waves pseudopotentials with exchange correlation functionals as
parameterized by Perdew–Burke–Ernzerhof [43,44]. All structures
are fully relaxed with a convergence tolerance of 1 meV/atom
using dense grids of 3000–4000 k-points per reciprocal atom for
the integrations over BZ. A much denser grid of 10,000 is imple-
mented for the static run to get accurate charge densities and den-
sity of states. Monkhorst–Pack scheme [45] is employed in the grid
generation except for hexagonal and rhombohedral systems in
which C-centered grid is selected for faster convergence. At the
beginning of relaxation, a spin-polarized calculation is performed
for all structures. Then, if the magnetization is smaller than
0.025lB/atom, the spin is turned off for the next relaxations and
subsequent calculations to enhance the calculation speed. At the
completion of each calculation (‘‘relax” ? ‘‘relax” ? ‘‘static” ?
‘‘bands”’), appropriate MATLAB scripts are invoked for data analy-
sis and visualization. All these steps are done automatically. One of
the most difficult challenges in the high-throughput combinatorial
search is about the response to erroneous interruption of the one
or more of the flows working on a big set of problems, concur-
rently. The most common cause is insufficient hardware resources.
Precaution must be taken, for example by estimating the memory
requirement of the tasks, by grouping jobs based on memory, and
by adapting the number of concurrent allocated CPUs with respect
to the expected simulation speed. In addition, in many shared
high-performance computer facilities, walltime is limited. This im-
poses a difficult problem because estimating computer time a pri-
ori is highly nontrivial, especially since the number of the required
electronic and ionic relaxations depends on how distant the initial
configuration is from the unknown final equilibrium. The second
most common cause of interruption is due to runtime errors of
VASP. AFLOW is capable of detecting most of the problems and it
contains many self healing features. This is achieved by diagnosing
the error message, self-correcting the appropriate parameters, and
restarting VASP. With AFLOW, a job can be easily restarted from
‘‘relaxations”, ‘‘static”, or ‘‘bands” steps. AFLOW’s capability to con-
tinuously search and manage sub folders are not limited to DFT
calculation. An ‘‘alien” mode is implemented, which allows AFLOW
to execute other tasks in a high-throughput fashion. For instance,
the many thousands Grand Canonical Monte Carlo calculations
used in a recent surface science absorption project [46,47], were
directed and performed by AFLOW. In addition, AFLOW is equipped
with options to run a ‘‘pre” and ‘‘post” command/scripts that will
be executed before and after the main program is performed in
each folder, respectively. This allows AFLOW to generate input files
on the fly depending on the results of different calculations, so that
ad-hoc optimization can be implemented by the users. In conclu-
sion, the ‘‘alien” mode and the ‘‘pre/post” command options
improve the flexibility on the recovery from a crash or an uncon-
verged run in a high-throughput manner as well as increase the
overall versatility and throughput of AFLOW.
4. Implemented electronic properties

A typical information that one can extract from the band struc-
ture calculations includes the Fermi energy, band gap, type of the
band gap, width of valence and conduction bands, effective mass
of electron and hole, charge densities, band structures, total and
partial density of states, etc. A user can easily create utilities in
any language at choice for data analysis, and use AFLOW in ‘‘alien”
mode to execute the utilities automatically in each subfolder. For
our purpose we have chosen MATLAB, which has produced all
the band structures and orbital-projected total density of states
for every shape the BZ as presented in Appendix A.
5. LSDA+U corrections

It is generally known that due to a rather weak orbital-depen-
dence of the DFT’s exchange correlation energy, the strong on-site
Coulomb repulsion in systems with narrow d- and f-bands is
underaccounted. As a result, DFT produces bandgaps that are smal-
ler than experimental values and some times it fails to get the cor-
rect ground state in such systems. Based on our experience in
calculating the electronic structure of many lanthanum halides,
DFT incorrectly gives conduction band minima with 4f states in-
stead of 5d orbitals. The insufficient description of strongly corre-
lated systems given by DFT, can be remedied, at least partially, by
GW [48] or LSDA+U corrections. Due to their large computational
cost, GW corrections are not currently applicable for high-through-
put searches. When needed, LSDA+U corrections are automatically
implemented by AFLOW, based on the formulas developed by
Duradev [49] and Liechtenstein [50]. To the best of our knowledge,
there are no systematic studies for the Hubbard U and the screened
Stoner exchange parameters J across all the elements with all the
possible oxidation states. Detailed analysis and determination of
the U and J values for different compounds would be one of the
tasks of high-throughput future research [51]. In the mean time,
we have applied the +U corrections to the 4f-wave functions of lan-
thanide compounds to get the correct orbitals at the conduction
band minimum. For the systems not available in literature but re-
lated to our current research, Nd, Sm, and Eu, we have fit U and J so
that the 4f levels reproduce the experimental density of states
from the X-ray photoelectron spectroscopy and Bremsstrahlung
isochromat spectroscopy (XPS-BIS) measurements [52]. Although
the data is for metals, we are confident that the values of U and J
for other compounds will not be very different from the fit. The val-
ues are listed in Table 1.
6. On-line implementation: ACONVASP-online

Users who do not need to perform high-throughput calculations
or to create databases, can prepare standard unit cells input files
and extract the appropriate k-points path by using the command
version of AFLOW called ACONVASP or the on-line tool ACON-
VASP-online available in our website (http://materials.duke.edu).

http://materials.duke.edu


Table 2
Symmetry k-points of CUB lattice.

�b1 �b2 �b3 �b1 �b2 �b3

0 0 0 C 1/2 1/2 1/2 R
1/2 1/2 0 M 0 1/2 0 X

b1

X

U

WK

b

L

Γ

b2
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The following protocol should be followed. Unit cells must first
be reduced to standard primitives, then they should be appropri-
ately relaxed (if needed). Before the static run, the cells should be re-
duced again to standard primitive (symmetry and orientation might
have changed during the relaxation). The user should then perform
the static run and then project the eigenvalues along the directions
which are specified in the ‘‘kpath” option. If the user is running
AFLOW and VASP, the web interface can also prepare a template in-
put file ‘‘aflow.in” which performs all the mentioned tasks.
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Fig. 2. Brillouin zone of FCC lattice. Path: C–X–W–K–C–L–U–W–L–KjU–X. An
example of band structure using this path is given in Fig. 27.

Table 3
Symmetry k-points of FCC lattice.

�b1 �b2 �b3 �b1 �b2 �b3

0 0 0 C 5/8 1/4 5/8 U
3/8 3/8 3/4 K 1/2 1/4 3/4 W
1/2 1/2 1/2 L 1/2 0 1/2 X
Appendix A

The choice of lattice vectors implemented in AFLOW is given
here. When the primitive lattice is the same as the conventional
one, it is simply called ‘‘lattice”. Variables a, b, c, a, b, c denote
the axial lengths and interaxial angles of the conventional lattice
vectors, while ka, kb, kc, ka, kb, kc are those of the primitive recipro-
cal lattice vectors b1, b2, b3. The coordinates of symmetry k-points
are given in fractions of b1, b2, b3.

A.1. Cubic (CUB, cP)

Lattice (see Fig. 1 and Table 2)

a1 ¼ ða;0;0Þ
a2 ¼ ð0; a;0Þ
a3 ¼ ð0;0; aÞ
A.2. Face-centered cubic (FCC, cF)

(See Fig. 2 and Table 3.)
Fi
st
Conventional lattice
g. 1. Brillouin zone of CUB lattice. Path: C–X–M–C–R–XjM
ructure using this path is given in Fig. 26.
Primitive lattice

a1 = (a, 0, 0)
 a1 = (0, a/2, a/2)

a2 = (0, a, 0)
 a2 = (a/2, 0, a/2)

a3 = (0, 0, a)
 a3 = (a/2, a/2, 0)
–R. An example of band
A.3. Body-centered cubic (BCC, cI)

(See Fig. 3 and Table 4.)
Fi
st
Conventional lattice
b3
N

P

Γ

b2

g. 3. Brillouin zone of BCC lattice. Path: C–H–N–C–P
ructure using this path is given in Fig. 28.
Primitive lattice

a1 = (a, 0, 0)
 a1 = (�a/2, a/2, a/2)

a2 = (0, a, 0)
 a2 = (a/2, �a/2, a/2)

a3 = (0, 0, a)
 a3 = (a/2, a/2, �a/2)
A.4. Tetragonal (TET, tP)

Lattice (see Fig. 4 and Table 5)
H

b1

-HjP-N. An example of band



Table 4
Symmetry k-points of BCC lattice.

�b1 �b2 �b3 �b1 �b2 �b3

0 0 0 C 1/4 1/4 1/4 P
1/2 �1/2 1/2 H 0 0 1/2 N

Fig. 4. Brillouin zone of TET lattice. Path: C–X–M–C–Z–R–A–ZjX–RjM–A. An
example of band structure using this path is given in Fig. 29.

Table 5
Symmetry k-points of TET lattice.

�b1 �b2 �b3 �b1 �b2 �b3

0 0 0 C 0 1/2 1/2 R
1/2 1/2 1/2 A 0 1/2 0 X
1/2 1/2 0 M 0 0 1/2 Z

Fig. 5. Brillouin zone of BCT1 lattice. Path: C–X–M–C–Z–P–N–Z1–MjX–P. An
example of band structure using this path is given in Fig. 30.
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a1 ¼ ða;0;0Þ
a2 ¼ ð0; a;0Þ
a3 ¼ ð0;0; cÞ
Fig. 6. Brillouin zone of BCT2 lattice. Path: C–X–Y–R–C–Z–R1–N–P–Y1–ZjX–P. An
example of band structure using this path is given in Fig. 31.
A.5. Body-centered tetragonal (BCT, tI)

(See Figs. 5 and 6 and Tables 6 and 7.)

Table 6
Symmetry k-points of BCT1 lattice.
Conventional lattice
 Primitive lattice
�b �b �b �b �b �b

a1 = (a, 0, 0)
 a1 = (�a/2, a/2, c/2)
1 2 3 1 2 3
a2 = (0, a, 0)
 a2 = (a/2, �a/2, c/2)

0 0 0 C 0 0 1/2 X
�1/2 1/2 1/2 M g g �g Z
a3 = (0, 0, c)
 a3 = (a/2, a/2, �c/2)
0 1/2 0 N �g 1 � g g Z1

1/4 1/4 1/4 P
g = (1 + c2/a2)/4

Table 7
Variations:

BCT1 : c < a

BCT2 : c > a
Symmetry k-points of BCT2 lattice.

�b1 �b2 �b3 �b1 �b2 �b3

0 0 0 C 0 0 1/2 X
0 1/2 0 N �f f 1/2 Y
1/4 1/4 1/4 P 1/2 1/2 �f Y1

�g g g R 1/2 1/2 �1/2 Z
g 1 � g �g R1

g = (1 + a2/c2)/4, f = a2/(2c2)
A.6. Orthorhombic (ORC, oP)

Ordering of the conventional lattice: a < b < c. Lattice (see Fig. 7
and Table 8)

a1 ¼ ða;0;0Þ
a2 ¼ ð0; b;0Þ
a3 ¼ ð0;0; cÞ
A.7. Face-centered orthorhombic (ORCF, oF)

Ordering of the conventional lattice: a < b < c. (See Figs. 8–10
and Tables 9 and 10.)
Conventional lattice
 Primitive lattice

a1 = (a, 0, 0)
 a1 = (0, b/2, c/2)

a2 = (0, b, 0)
 a2 = (a/2, 0, c/2)

a3 = (0, 0, c)
 a3 = (a/2, b/2, 0)



Fig. 10. Brillouin zone of ORCF2 lattice. Path: C–Y–C–D–X–C–Z–D1–H–CjC1–ZjX–
H1jH–YjL– C. An example of band structure using this path is given in Fig. 34.

Fig. 7. Brillouin zone of ORC lattice. Path: C–X–S–Y–C–Z–U–R–T–ZjY–TjU–XjS–R. An
example of band structure using this path is given in Fig. 32.

Table 8
Symmetry k-points of ORC.

�b1 �b2 �b3 �b1 �b2 �b3

0 0 0 C 1/2 0 1/2 U
1/2 1/2 1/2 R 1/2 0 0 X
1/2 1/2 0 S 0 1/2 0 Y
0 1/2 1/2 T 0 0 1/2 Z

Fig. 8. Brillouin zone of ORCF1 lattice. Path: C–Y–T–Z–C–X–A1–YjT–X1jX–A–ZjL–C.
An example of band structure using this path is given in Fig. 33.

Fig. 9. Brillouin zone of ORCF3 lattice. Path: C–Y–T–Z–C–X–A1–YjX–A–ZjL–C. An

Table 10
Symmetry k-points of ORCF2.

�b1 �b2 �b3 �b1 �b2 �b3

0 0 0 C 1 � / 1/2 � / 1/2 H
1/2 1/2 � g 1 � g C / 1/2 + / 1/2 H1

1/2 1/2 + g g C1 0 1/2 1/2 X
1/2 � d 1/2 1 � d D 1/2 0 1/2 Y
1/2 + d 1/2 d D1 1/2 1/2 0 Z
1/2 1/2 1/2 L
g = (1 + a2/b2 � a2/c2)/4, d = (1 + b2/a2 � b2/c2)/4
/ = (1 + c2/b2 � c2/a2)/4

Table 9
Symmetry k-points of ORCF1 and ORCF3.

�b1 �b2 �b3 �b1 �b2 �b3

0 0 0 C 0 g g X
1/2 1/2 + f f A 1 1 � g 1 � g X1

1/2 1/2 � f 1 � f A1 1/2 0 1/2 Y
1/2 1/2 1/2 L 1/2 1/2 0 Z
1 1/2 1/2 T
f = (1 + a2/b2 � a2/c2)/4, g = (1 + a2/b2 + a2/c2)/4
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Variations:

ORCF1 : 1=a2 > 1=b2 þ 1=c2

ORCF2 : 1=a2 < 1=b2 þ 1=c2

ORCF3 : 1=a2 ¼ 1=b2 þ 1=c2

example of band structure using this path is given in Fig. 35.
A.8. Body-centered orthorhombic (ORCI, oI)

Ordering of the conventional lattice: a < b < c. (See Fig. 11 and
Table 11.)
Conventional lattice
 Primitive lattice

a1 = (a, 0, 0)
 a1 = (�a/2, b/2, c/2)

a2 = (0, b, 0)
 a2 = (a/2, �b/2, c/2)

a3 = (0, 0, c)
 a3 = (a/2, b/2, �c/2)
Fig. 11. Brillouin zone of ORCI lattice. Path: C–X–L–T–W–R–X1–Z–C–Y–S–WjL1–
YjY1–Z. An example of band structure using this path is given in Fig. 36.
A.9. C-centered orthorhombic (ORCC, oS)

Ordering of the conventional lattice: a < b. (See Fig. 12 and
Table 12.)



Fig. 13. Brillouin zone of HEX lattice. Path: C–M–K–C–A–L–H–AjL–MjK–H. An
example of band structure using this path is given in Fig. 38.

Table 13
Symmetry k-points of HEX.

�b1 �b2 �b3 �b1 �b2 �b3

0 0 0 C 1/3 1/3 0 K
0 0 1/2 A 1/2 0 1/2 L
1/3 1/3 1/2 H 1/2 0 0 M

Fig. 14. Brillouin zone of RHL1 lattice. Path: C–L–B1jB–Z–C–XjQ–F–P1–ZjL–P. An
example of band structure using this path is given in Fig. 39.

Fig. 12. Brillouin zone of ORCC lattice. Path: C–X–S–R–A–Z–C–Y–X1–A1–T–YjZ–T.
An example of band structure using this path is given in Fig. 37.

Table 11
Symmetry k-points of ORCI.

�b1 �b2 �b3 �b1 �b2 �b3

0 0 0 C 1/4 1/4 1/4 W
�l l 1/2 � d L �f f f X
l �l 1/2 + d L1 f 1 � f �f X1

1/2 � d 1/2 + d �l L2 g �g g Y
0 1/2 0 R 1 � g g �g Y1

1/2 0 0 S 1/2 1/2 �1/2 Z
0 0 1/2 T
f = (1 + a2/c2)/4, d = (b2 � a2)/(4c2)
g = (1 + b2/c2)/4, l = (a2 + b2)/(4c2)

Table 12
Symmetry k-points of ORCC.

�b1 �b2 �b3 �b1 �b2 �b3

0 0 0 C �1/2 1/2 1/2 T
f f 1/2 A f f 0 X
�f 1 � f 1/2 A1 �f 1 � f 0 X1

0 1/2 1/2 R �1/2 1/2 0 Y
0 1/2 0 S 0 0 1/2 Z
f = (1 + a2/b2)/4
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Conventional lattice
 Primitive lattice

a1 = (a, 0, 0)
 a1 = (a/2, �b/2, 0)

a2 = (0, b, 0)
 a2 = (a/2, b/2, 0)

a3 = (0, 0, c)
 a3 = (0, 0, c)
Fig. 15. Brillouin zone of RHL2 lattice. Path: C–P–Z–Q–C–F–P1–Q1–L–Z. An example
of band structure using this path is given in Fig. 40.
A.10. Hexagonal (HEX, hP)

Lattice (see Fig. 13 and Table 13)

a1 ¼ a=2;� a
ffiffiffi
3
p� �

=2;0
� �

a2 ¼ a=2; a
ffiffiffi
3
p� �

=2;0
� �

a3 ¼ ð0;0; cÞ
A.11. Rhombohedral (RHL, hR)

Lattice (see Figs. 14 and 15 and Tables 14 and 15)

a1 ¼ ða cosða=2Þ;�a sinða=2Þ;0Þ
a2 ¼ ða cosða=2Þ; a sinða=2Þ;0Þ

a3 ¼ ða cos a= cosða=2Þ;0; a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 a= cos2ða=2Þ

q
Þ

Variations:

RHL1 : a < 90�

RHL2 : a > 90�
A.12. Monoclinic (MCL, mP)

Ordering of the lattice: a, b 6 c, a < 90�, b = c = 90�.



Table 14
Symmetry k-points of RHL1.

�b1 �b2 �b3 �b1 �b2 �b3

0 0 0 C g m m P
g 1/2 1 � g B 1 � m 1 � m 1 � g P1

1/2 1 � g g � 1 B1 m m g � 1 P2

1/2 1/2 0 F 1 � m m 0 Q
1/2 0 0 L m 0 �m X
0 0 �1/2 L1 1/2 1/2 1/2 Z
g = (1 + 4 cos a)/(2 + 4 cos a)
m = 3/4 � g/2

Table 15
Symmetry k-points of RHL2.

�b1 �b2 �b3 �b1 �b2 �b3

0 0 0 C m m � 1 m � 1 P1

1/2 �1/2 0 F g g g Q
1/2 0 0 L 1 � g �g �g Q1

1 � m �m 1 � m P 1/2 �1/2 1/2 Z
g = 1/(2 tan2 (a/2)), m = 3/4 � g/2

Fig. 17. Brillouin zone of MCLC1 lattice. Path: C–Y–F–L–IjI1–Z–F1jY–X1jX–C–NjM–
C. An example of band structure using this path is given in Fig. 42.
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Lattice (see Fig. 16 and Table 16)

a1 ¼ ða;0;0Þ
a2 ¼ ð0; b;0Þ
a3 ¼ ð0; c cos a; c sin aÞ
Fig. 18. Brillouin zone of MCLC2 lattice. Note that Y is equivalent to X. Path: C–Y–F–
L–IjI1–Z–F1jN–C–M. An example of band structure using this path is given in Fig. 43.
A.13. C-centered monoclinic (MCLC, mS)

Ordering of the conventional lattice: a, b 6 c, a < 90�,
b = c = 90�. (Figs. 17–21 and Tables 17–19).
Fig. 16. Brillouin zone of MCL lattice. Path: C–Y–H–C–E–M1–A–X–H1jM–D–ZjY–D.
An example of band structure using this path is given in Fig. 41.

Table 16
Symmetry k-points of MCL.

�b1 �b2 �b3 �b1 �b2 �b3

0 0 0 C 0 g �m H2

1/2 1/2 0 A 1/2 g 1 � m M
0 1/2 1/2 C 1/2 1 � g m M1

1/2 0 1/2 D 1/2 g �m M2

1/2 0 �1/2 D1 0 1/2 0 X
1/2 1/2 1/2 E 0 0 1/2 Y
0 g 1 � m H 0 0 �1/2 Y1

0 1 � g m H1 1/2 0 0 Z
g = (1 � b cos a/c)/(2 sin2 a)
m = 1/2 � gc cos a/b

Fig. 19. Brillouin zone of MCLC3 lattice. Path: C–Y–F–H–Z–I–F1jH1–Y1–X–C–NjM–C.
An example of band structure using this path is given in Fig. 44.

Fig. 20. Brillouin zone of MCLC4 lattice. Note that I is equivalent to F. Path: C–Y–F–
H–Z–IjH1–Y1–X–C–NjM–C. An example of band structure using this path is given in
Fig. 45.



Fig. 22. Brillouin zone of TRI1a lattice. Path: X–C–YjL–C–ZjN–C–MjR–C. An
example of band structure using this path is given in Fig. 47.

Table 18
Symmetry k-points of MCLC3 and MCLC4.

�b1 �b2 �b3 �b1 �b2 �b3

0 0 0 C 1/2 0 0 N
1 � / 1 � / 1 � w F 0 �1/2 0 N1

/ / � 1 w F1 1/2 �1/2 0 X
1 � / �/ 1 � w F2 l l d Y
f f g H 1 � l �l �d Y1

1 � f �f 1 � g H1 �l �l �d Y2

�f �f 1 � g H2 l l � 1 d Y3

1/2 �1/2 1/2 I 0 0 1/2 Z
1/2 0 1/2 M
l = (1 + b2/a2)/4
d = bc cos a/(2a2)
f = l � 1/4 + (1 � b cos a/c)/(4 sin2 a)
g = 1/2 + 2fc cos a/b
/ = 1 + f � 2l
w = g � 2d

Table 19
Symmetry k-points of MCLC5.

�b1 �b2 �b3 �b1 �b2 �b3

0 0 0 C 1/2 0 1/2 M
m m x F 1/2 0 0 N
1 � m 1 � m 1 �x F1 0 �1/2 0 N1

m m � 1 x F2 1/2 �1/2 0 X
f f g H l l d Y
1 � f �f 1 � g H1 1 � l �l �d Y1

�f �f 1 � g H2 �l �l �d Y2

q 1 � q 1/2 I l l � 1 d Y3

1 � q q � 1 1/2 I1 0 0 1/2 Z
1/2 1/2 1/2 L
f = (b2/a2 + (1 � b cos a/c)/sin2 a)/4
l = g/2 + b2/(4a2) � bc cos a/(2a2)
x = (4m � 1 � b2 sin2 a/a2)c/(2b cos a)
g = 1/2 + 2fc cos a/b, m = 2l � f
d = fc cos a/b + x/2 � 1/4, q = 1 � fa2/b2

Fig. 21. Brillouin zone of MCLC5 lattice. Path: C–Y–F–L–IjI1–Z–H–F1jH1–Y1–X–C–
NjM– C. An example of band structure using this path is given in Fig. 46.

Table 17
Symmetry k-points of MCLC1 and MCLC2.

�b1 �b2 �b3 �b1 �b2 �b3

0 0 0 C 1/2 1/2 1/2 L
1/2 0 0 N 1/2 0 1/2 M
0 �1/2 0 N1 1 � w w � 1 0 X
1 � f 1 � f 1 � g F w 1 � w 0 X1

f f g F1 w � 1 �w 0 X2

�f �f 1 � g F2 1/2 1/2 0 Y
1 � f �f 1 � g F3 �1/2 �1/2 0 Y1

/ 1 � / 1/2 I 0 0 1/2 Z
1 � / / � 1 1/2 I1

f = (2 � b cos a/c)/(4 sin2 a)
g = 1/2 + 2fc cos a/b
w = 3/4 � a2/(4b2 sin2 a)
/ = w + (3/4 � w)b cos a/c
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Conventional lattice
 Primitive lattice

a1 = (a, 0, 0)
 a1 = (a/2, b/2, 0)

a2 = (0, b, 0)
 a2 = (�a/2, b/2, 0)

a3 = (0, c cos a, c sin a)
 a3 = (0, c cos a, c sin a)
Variations:
Fig. 23. Brillouin zone of TRI2a lattice. Path: X–C–YjL–C–ZjN–C–MjR–C.
MCLC1 : kc > 90�

MCLC2 : kc ¼ 90�

MCLC3 : kc < 90�; b cos a=c þ b2 sin2 a=a2 < 1

MCLC4 : kc < 90�; b cos a=c þ b2 sin2 a=a2 ¼ 1

MCLC5 : kc < 90�; b cos a=c þ b2 sin2 a=a2 > 1
A.14. Triclinic (TRI, aP)

Lattice (see Figs. 22–25 and Tables 20 and 21)

a1 ¼ ða;0;0Þ
a2 ¼ ðb cos c; b sin c;0Þ

a3 ¼ c cos b;
c

sin c
½cos a� cos b cos c�;

�

c
sin c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 c� cos2 a� cos2 bþ 2 cos a cos b cos c

q !



Fig. 24. Brillouin zone of TRI1b lattice. Path: X–C–YjL–C–ZjN–C–MjR–C. An
example of band structure using this path is given in Fig. 48.

Fig. 26. Band structure of Sr(SnO3) in CUB lattice.

Fig. 29. Band structure of SnO2 in TET lattice.

Fig. 27. Band structure of CdS in FCC lattice.

Fig. 28. Band structure of GeF4 in BCC lattice.

Fig. 25. Brillouin zone of TRI2b lattice. Path: X–C–YjL–C–ZjN–C–MjR–C.

Table 20
Symmetry k-points of TRI1a and TRI2a.

�b1 �b2 �b3 �b1 �b2 �b3

0 0 0 C 1/2 1/2 1/2 R
1/2 1/2 0 L 1/2 0 0 X
0 1/2 1/2 M 0 1/2 0 Y
1/2 0 1/2 N 0 0 1/2 Z

Table 21
Symmetry k-points of TRI1b and TRI2b.

�b1 �b2 �b3 �b1 �b2 �b3

0 0 0 C 0 �1/2 1/2 R
1/2 �1/2 0 L 0 �1/2 0 X
0 0 1/2 M 1/2 0 0 Y
�1/2 �1/2 1/2 N �1/2 0 1/2 Z
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Variations:

TRI1a : ka > 90�; kb > 90�; kc > 90�; kc ¼min fka; kb; kcg
TRI1b : ka < 90�; kb < 90�; kc < 90�; kc ¼max fka; kb; kcg
TRI2a : ka > 90�; kb > 90�; kc ¼ 90�

TRI2b : ka < 90�; kb < 90�; kc ¼ 90�



Fig. 30. Band structure of Zn2(SiO4) in BCT1 lattice.

Fig. 31. Band structure of CaIn2O4 in BCT2 lattice.

Fig. 32. Band structure of BiF3 in ORC lattice.

Fig. 33. Band structure of Cd2(SiO4) in ORCF1 lattice.

Fig. 34. Band structure of TlF in ORCF2 lattice.

Fig. 37. Band structure of TlI in ORCC lattice.

Fig. 36. Band structure of SiSe2 in ORCI lattice.

Fig. 35. Band structure of InOF in ORCF3 lattice.

W. Setyawan, S. Curtarolo / Computational Materials Science 49 (2010) 299–312 309



Fig. 38. Band structure of BiI3 in HEX lattice.

Fig. 39. Band structure of BiAlO3 in RHL1 lattice.

Fig. 40. Band structure of Ba(GeF6) in RHL2 lattice.

Fig. 41. Band structure of Bi(BO3) in MCL lattice.

Fig. 42. Band structure of BaNa(BO3) in MCLC1 lattice.

Fig. 45. Band structure of Na4Sr(SiO3)3 in MCLC4 lattice.

Fig. 44. Band structure of InBr3 in MCLC3 lattice.

Fig. 43. Band structure of (LaO)2(SO4) in MCLC2 lattice.
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Fig. 46. Band structure of Na2(CdSnS4) in MCLC5 lattice.

Fig. 47. Band structure of LiCd(BO3) in TRI1a lattice.

Fig. 48. Band structure of Cd2(B2O5) in TRI1b lattice.
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Appendix B

Selected examples of band structure for each shape of Brillouin
zone are presented in this section. The Fermi energy is shifted to
the valence band maximum at zero. In each figure, the orbital-pro-
jected total density of states N(E) are plotted in the right panel in
logarithmic scale (see Figs. 26–48).
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