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a b s t r a c t

We introduce a concrete random model system to study the concept of parametric
ergodicity. It consists of a continuum mechanical cavity with an embedded random mass
distribution, constrained by a parametrized boundary condition. The interest is twofold.
On one hand, there is the practical interest of obtaining ensemble averages of physical
quantities from a small number of experimentally available samples, in many cases only
one. This is typically the case in studies on conductance fluctuations through disorder
mesosocopic systems. On the other handwewant to developmore insight into themeaning
of parametric ergodicity. For this, we focus on the statistical distribution of resonant
frequency generated by the ensemble of random samples, and how to produce the same
distribution from a single sample subject to changing a boundary condition — the external
parameter. The paper shows how the changing of the boundary condition is equivalent to
scanning the ensemble of equivalent samples.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we develop a concrete model to study how to extract ensemble averages from a single sample by varying
an external parameter. This problem is of paramount importance in experimental studies on disordered systems. There,
it is typically the case that only a handful of samples (sometimes even only one) are available but one wishes to study
statistical properties of similarly prepared ones. Evenwhenmany sampleswere available, it would be impractical to perform
measurements onmore than a fewof them. In fact, thisworkwasmotivated by theneed to obtain the distribution of resonant
frequencies of nominally cylindrical nanosensors that had, by intrinsic limitations of the growth process, uncontrolled
rough surfaces [1]. Indeed, the demand for nanosensors and nanoactuators capable of consistent sub-attonewton force and
sub-attogram mass measurements, has prompted interest in nanoelectromechanical (NEMS) oscillators [2–4]. In addition,
they are good candidates for the detection of single spin [5], and for the detection of motion approaching the quantum
regime [6,7]. These nano-oscillators have already been used to detect attogram particles [4], of major interest for chemical
and biological sensing. To improve the sensitivity and reliability of NEMS oscillator devices, knowledge of the material
mechanical properties and mechanical response is essential. One of our goals is the understanding of the mechanical
response of amorphous silica nanorods grown by electron irradiation. The experimental procedure allows one to grow one
nanorod at a time and tomonitor the processwith the same transmission electronmicroscope (TEM) used for the irradiation.
The control on the nanostructure with this technique is ideal for the study of the mechanical properties of silica at the
nanoscale, and for the development of ultrasensitive nanoresonators. Close analysis of the silica nanorods shows surface
roughness on the nominally cylindrical structures. In the field, these nanorods can be used as atomic force microscopy
cantilevers and the contact force between the sensor and the sample under study can be used as an external parameter, a
central topic of this paper.
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As a corollary of this study, and of no less importance, is the revision of the concept of parametric ergodicity. By means
of a specific model we develop a better understanding of its meaning.

Generally speaking, when experimentally studying statistical properties of stationary systems it is useful to use, if
possible, the property of ergodicity. In its commonusage, ergodicitymakes it possible to obtain time averages by considering
instead ensemble averages [8]. This is helpful because under normal circumstances, the initial conditions of a systemofmany
degrees of freedom are unknown and it would be impossible to take time averages. The ensemble average may describe our
ignorance appropriately [9].

Another type of ergodicity that has been considered is parametric ergodicity [10]. There, an external parameter is
varied quasistatically while a property of the system is monitored. A case in point is the study of frequency statistical
fluctuations of wavemodes in disordered systems [11]. While an external parameter (such as amagnetic field) is varied, the
frequency spectrum is measured and it is assumed that the distribution of frequencies so obtained are those corresponding
to an ensemble of similarly disordered systems. Tsyplyatyev et al. [12] proposed a rationale for the validity of parametric
ergodicity when transport is measured through disordered samples—typically mesoscopic ones. It is known that ensemble
fluctuations of conductance through mesoscopic samples are related to random dephasing at the substructural level. On
the other hand, swapping of an external magnetic field on a single sample induces random dephasing at different locations,
thus effectively generating the ensemble. Similar concepts have been shown [13] to be at play in universal conductance
fluctuations, where the sample ensemble has been obtained by varying, on a single sample, not only the external magnetic
field, but also the electron density. In this case they argue for parametric ergodicity on the basis of the idea that the external
parameter induces sufficient transitions between microstates.

Parametric ergodicity is at the cornerstone of recent experiments. For example, experiments measuring the position-
dependent elasticmodulus of copper nanorods deposited onorganosilicate glass [14]. For this purpose a resonator (an atomic
force cantilever) is brought into contact with the sample. By varying the contact force (external parameter) they were able
to perform a mapping of the elastic modulus by tracking a resonant frequency shift. Another example is the experimental
measurement of conductance fluctuations in mesoscopic superconducting–normal-superconducting samples [15]. The
fluctuations are the result of current channeling through subcomponent quantum dots: the total transmission is the result
of the average transmission through the collection of quantum dots. They find empirically that this average over many
samples can also be obtained by measuring on a single sample while varying the gate voltage (external parameter). In a
third example [16], experiments of conductance through gold nanowires were done to clarify the microscopic mechanisms.
For statistical analysis, instead of doing the experiments over a multitude of samples, they measure on only a few samples
but vary an external magnetic field (external parameter) to produce random distributed dephasing.

The definition of parametric ergodicity given above deserves further consideration. Here, we study the problem through
a concrete example of waves in disordered media that constructively develops the ensemble probability density function
from parametric measurements on a single sample.

The paper is organized as follows. In Section 2, we introduce the model system. In Section 3, we introduce notation
and the solution for the deterministic case, for a system with no disorder. In Section 4, we present the resonant frequency
changes induced by disorder. This is the core section of the paper and also shows how, for a given sample, the frequency
changes as a function of the boundary condition and why the frequencies so obtained correspond to those of an ensample
of unconstrained samples. Section 5 is an example of application of the concepts to a small ensemble. This section has the
purpose of clarifying the notation introduced in Section 4, and showing explicitly how the procedure of generating the
ensemble by varying an external parameter works. Section 6 contains our conclusions.

2. The system

Consider an ensemble of random samples generated by an elastic string of length a, tension T , and random linear mass
density. Let us suppose that we are interested in the statistical fluctuations of, for example, the lowest frequency in the
string, generated by measuring the same quantity on many samples. As explained in the introduction, such an ensemble
is not experimentally accessible. Moreover, let us further suppose that we only have a single string on which to make the
measurements. The central goal of this paper is to obtain the statistical fluctuations of the frequency by measurements on
a single sample. We proceed as follows. We introduce an external parameter that allows one of the fixed ends to become
loose. More specifically, in Fig. 1 we represent this by a spring (of constant β) attached to the right end of the string. The
β → ∞ limit, corresponds to the fixed condition. The β → 0 limit, corresponds to no vertical force on the right end of the
string. We assume that there is always a horizontal force present to provide the required tension, as can be achieved by a
small ring attached at the right end of the string and passing through a vertical fixed pole. Those two limits are conceptually
relevant: while oscillating at its lowest natural frequency, in the former case large amplitudes occur in the center of the
string, while in the latter, large amplitudes occur both at the center and more so at the right end. Thus, as we tune β from
∞ to 0, less kinetically active regions become more active. Therefore, the effect of the local mass on the global properties
of the system (e.g. the resonant frequency) can be enhanced or reduced by varying β . From the point of view of ergodicity,
we will show how to extract statistical properties of the ensemble from a single sample. This presupposes that the mass
density is equally distributed along a single string or many—a standard situation which is the result of the specific sample
manufacturing process, and that it is indeed the case in many relevant cases. For example, silica-based nanorods for sensor
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Fig. 1. A string with non-uniform mass along its length has an amplitude ϕ(x) in the lowest frequency mode corresponding to the boundary conditions
shown.

applications grown in Transmission Electron Microscope chambers present inherent surface roughness that is independent
of the location along the rod [1]. Thus the ideas developed here can, mutatis mutandis, be applied to such a system.

3. Dynamics with no randomness

Let ϕ(x) cosωt be a normal mode of oscillation of the string with uniform density — the random density fluctuations will
be introduced in the next section. To satisfy the wave equation and the fixed boundary condition at x = 0, we write

ϕ(x) = A sin kx, (1)

where k is the wavenumber, and ω the angular frequency.
At the right end, x = a, the total shear force on the cross section vanishes then,

0 = −T
[

∂ϕ(x)
∂x

]
x=a

− βϕ(a). (2)

Eq. (2) gives the correct limit when β → 0, in this case corresponding to no spring, the small ring senses a zero vertical
force when


∂ϕ(x)

∂x


. To check the correctness of (2) in the opposite limit, β → ∞, we can rewrite it as 0 = −

T
β


∂ϕ(x)

∂x


x=a

−

ϕ(a), and we see that because the first term on the right hand side tends to zero then the boundary condition becomes
ϕ(a) = 0, which is the correct result for an infinitely stiff spring.

Upon substitution of Eq. (1) in (2), we obtain an equation for k,

0 = Tk cos ka + β sin ka. (3)

We introduce the dimensionless wavenumber ξ = ka, and the dimensionless spring constant γ =
βa
T , and obtain,

1
γ

ξ + tan ξ = 0 (4)

which gives an implicit dependence of the wavenumber on the spring constant, ξ(γ ). Fig. 2 shows a plot of the function
obtained numerically. Also, as a guide, we found within less than 2% a good analytical approximation, as shown in Fig. 2,
and given by

ξ =
π

2
+ arctan(λ0γ ) (5)

with λ0 = 0.3788.
For a linear medium such as the one we are considering here, Eq. (5) immediately renders the lowest frequencies ω(γ ),

recalling that ω =


T
ρ0
k, where ρ0 is the density of this uniform string.

4. Dynamics with randomness

To introduce the effect of random masses along the string, we will borrow ideas commonly used in electromagnetic
cavities. Given amode in an electromagnetic cavity, one is frequently interested inmapping the actual distribution of electric
andmagnetic fields. Alternatively, electromagnetic cavities are often used tomeasure the permittivity and conductivity of an
unknown material placed inside. Although seemingly unconnected, the two applications can be understood from the same
theory. Bethe and Schwinger [17] (BS) showed thatwhen a small sample is introduced in the cavity, themean frequency (and
quality factor) of the resonant curve changes. This frequency change depends on the dielectric properties of the sample and
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Fig. 2. Numerical solution to Eq. (4) for various values of γ (dotted line). Also shown, an analytical approximation (continuous line).

is proportional to the intensity of the field at the location of the sample. Thus frequency shifts while the sample is scanned
encode information of the amplitude of the fields inside the cavity.

In fact, BS results are not restricted to the electromagnetic case, but apply to any wave phenomena. To clarify this point,
it has been explicitly demonstrated [18] how to use the results on one-dimensional mechanical cavities, similar to those
considered in this paper. For a small massive single inclusion in an otherwise homogeneous string, the frequency shift is
given by

ω − ω0

ω0
= −µϕ2(xn) (6)

where ω0 is the frequency of the homogeneous string, ω the frequency of the system including the inclusion, and µ the
excess mass of the inclusion at position xn. The negative sign means that a positive inclusion reduces the frequency, as
expected on simple inertia grounds.

Eq. (6) can be extended to the case of multiple inclusions, thus

∆(γ ) =

N−
n=1


−µnϕ

2(xn)


(7)

where µn is the excess mass at location xn. N is the number of divisions of the string and is related to the excess mass
correlation length ℓ, by Nℓ = a. We also have introduced the definition of the fractional frequency change ∆(γ ) =
ω(γ )−ω0(γ )

ω0(γ )
, where we emphasize the dependence with the external parameter, the spring stiffness γ .

Eq. (7) can be rewritten as

∆(γ ) = −
1
2

N−
n=1

µn +
1
2

N−
n=1

µn cos

2ξ(γ )xn

a


(8)

where we have used Eq. (1) for ϕ(x) and set A = 1—the constant A can be set to any desired value before the experiments
and depends only on the power of the external actuator.

The first sum on the right-hand side of the equation vanishes because µn has zero mean. For the second sum, we sample
the external parameter γ in discrete steps m so that π

2 ≤ ξ ≤ π (see Fig. 2). This is done explicitly as follows: write

ξm =
m−1
N−1

π
2 +

π
2 with m = 1, 2, . . . ,N , then, using Eq. (5) for the link ξm = ξ(γm), we have γm =

tan


π
2

m−1
N−1


λ0

which, for a
given N , gives the sequence of γm, and is equivalent to giving a prescription how to sample the external parameter.

Defining

Γmn = cos

2ξmxn

a


(9)

Eq. (8) for the fractional frequency shift can be rewritten as

∆m =
1
2

N−
n=1

Γmnµn (10)

where, to emphasize, the index n labels the position along the string, and the index m labels the external parameter such
thatm = 1 corresponds to no spring andm = N to a very stiff spring.
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By taking N samples of m, Eq. (10) is a square linear problem in the µn. The external parameter could be sampled more
finely and then µn could be found via a minimization algorithm, but that is a detail beyond the scope of the present article.
In the conclusions we comment on this point for systems with correlated mass fluctuations.

We now recall our original interest in trying to extract the ensemble distribution of frequencies for the unloaded string
(corresponding to γ = 0). To solve that problem, we proceed as follows. From Eq. (10),

µn = 2
N−

m=1

(Γ −1)nm∆m. (11)

These mass fluctuations correspond to those of an element of an ensemble of statistically equivalent random strings. We
generate other equivalent disordered strings as permutations of (11),

µ(q)
n =

N−
n′=1

P (q)
nn′µn′ , (12)

where µn′ is the mass fluctuation sequence given by (11) and P (q)
nn′ is the matrix element of the qth permutation of order N .

We now return to Eq. (8) and set γ = 0 and, correspondingly, ξ =
π
2 ,

∆(q)(0) =
1
2

N−
n=1

µ(q)
n cos

πxn
a


(13)

where we have again used that ⟨µ⟩ = 0 and have introduced all the elements of the ensemble through the index q.
Then from (11) and (12),

∆(q)(0) =

−
n,n′,m

P (q)
nn′ (Γ

−1)n′m∆m cos
πxn

a


(14)

we have again used that ⟨µ⟩ = 0 and have introduced all the elements of the ensemble through the index q.
Eq. (14) gives the explicit connection sought. Bymeasuring the frequencies,∆m, of a given realization of a random system

as a function of an externally controllable parameter (in this case the spring constant) one can through Eq. (14) obtain the
statistical properties of the frequencies of the ensemble with a free boundary (or any other, by changing γ to a non zero
value).

5. Example

To clarify the use of the method and the notation of the paper, we show explicitly how the method works for N = 3.
This corresponds to considering a string made up of masses µ1, µ2, µ3 on the left, middle and right sections respectively. N
should be large in practical situations, but we work the N = 3 case (a small non-trivial case) to emphasize the construction
of the method.

In this case, the matrix Γ defined in Eq. (9) is

Γ =

 1/2 −1/2 −1
0 −1 −1

−1/2 1 1


. (15)

This is because Γmn = cos


2ξmxn
a


, with ξm =

m−1
N−1

π
2 +

π
2 and xn =

na
N , that is Γmn = cos


1 +

m−1
N−1

 nπ
N


which is (15),

with the columns labeling n (position along the string) and the rows labeling m (the various values of the external spring
and the corresponding frequencies).

From (15),

Γ −1
=

 0 −2 −2
2 0 2

−2 −1 −2


. (16)

There are 3! permutation matrices for N = 3 namely

P (1)
=

1 0 0
0 1 0
0 0 1


, P (2)

=

1 0 0
0 0 1
0 1 0


, P (3)

=

0 1 0
1 0 0
0 0 1


,

P (4)
=

0 1 0
0 0 1
1 0 0


, P (5)

=

0 0 1
1 0 0
0 1 0


, P (6)

=

0 0 1
0 1 0
1 0 0


.

(17)
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Eq. (14) gives the frequencies of the free-end string for all the elements of the ensemble, ∆(q)(0) =
∑

n,n′,m P (q)
nn′ (Γ

−1)n′m

∆m cos


πxn
a


. Here the first matrix is given in (17), the second matrix in (16), the third vector


∆1 ∆2 ∆3


has the three

measured frequencies corresponding to the three spring constants on the actual single sample and the last vector is
cos(πx1/a) cos(πx2/a) cos(πx3/a)


= (1/2, −1/2, −1). Substituting,

∆(1)(0) = ∆1

∆(2)(0) = −∆1 −
1
2
∆2 − 2∆3

∆(3)(0) = 3∆1 + 2∆2 + 4∆3

∆(4)(0) = 2∆1 +
5
2
∆2 + 4∆3

∆(5)(0) = −3∆1 +
1
2
∆2 − 2∆3

∆(6)(0) = −2∆1 +
3
2
∆2.

(18)

Eq. (18) gives the 3! values of the frequencies thatwould bemeasured from3! different stringswith no springs (identified
by the label 0) from the same ensemble. The frequencies ∆1, ∆2, ∆3 are actual laboratory measurements on the single
sample available, for three different springs. Notice that the first entry is just ∆1, corresponding to the fact that P (1) is the
identity matrix and it does not induce a real permutation. But, out of all the possible samples one does expect to measure
the frequency ∆1 once.

This example can be generalized to anyN thus generatingN! elements of the ensemble and the corresponding frequencies
for the no-spring strings.

6. Conclusions

In this paperwehave introduced a concretemodel randomsystem, namely that of a stringwithmass density fluctuations,
and shownhow to obtain the statistical fluctuations of resonance frequencies froma single sample via parametric ergodicity.
The central concept in this connection is the realization that the variation of an external parameter (in this case the stiffness
of the connection of one end of the string to a rigid base) induces selective mechanical excitations of various parts of the
string. In this sense, scanning the external parameter is equivalent to experimentingwith different samples (prepared under
similar conditions). This provides a better understanding to the meaning of parametric ergodicity. At the same time, the
results are of practical interest since they show an explicit algorithm to use in experiments where only few samples are
available. It is worth noticing that the number of divisions N in Eq. (12) is such that the mass fluctuations are uncorrelated.
This allows us to introduce the permutationmatrices to produce the ensemble. Themethod can be generalized to correlated
fluctuations by substituting Eq. (12) to one that includes correlations. For example, in past work [1] we have considered self-
affine roughness, r , correlations given explicitly by C(r) = W 2e−(r/ℓ)2α , where the constantsW , ℓ, α represent respectively
the root mean square width, correlation length and roughness exponent.W is a measure of the roughness amplitude, ℓ is a
gauge of the distance at which points on the surface are no longer correlated, and α quantifies the smoothness of the surface.
If we used anN larger than that given by the coherence length, thenwe could vary the external parameter, solve forW , ℓ, α,
and then generate other samples of the ensemble by using the self-affine correlation function.
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