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a b s t r a c t

In this paper we build a practical modification to the standard Euler–Bernoulli equation for flexural

modes of cantilever vibrations most relevant for operation of AFM in high vacuum conditions. This is

done by the study of a new internal dissipation term into the Euler–Bernoulli equation. This term

remains valid in ultra-high vacuum, and becomes particularly relevant when viscous dissipation with

the fluid environment becomes negligible. We derive a compact explicit equation for the quality factor

versus pressure for all the flexural modes. This expression is used to compare with corresponding

extant high vacuum experiments. We demonstrate that a single internal dissipation parameter and a

single viscosity parameter provide enough information to reproduce the first three experimental

flexural resonances at all pressures. The new term introduced here has a mesoscopic origin in the

relative motion between adjacent layers in the cantilever.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

The Euler–Bernoulli equation is used routinely by the Atomic
Force Microscopy (AFM) community to model the flexural
dynamics of the cantilever. In this standard approach, dissipation
is introduced through terms that address the cantilever–ambient
interactions (for example proportional to the velocity works well
at high vacuum). Terms of this kind are necessary to account for
the finite width of the resonance peaks. However, two problems
remain unsolved in this context: one mathematical and one
physical. First from the mathematical point of view it is known
that a single friction coefficient cannot account for the quality
factor (Q) of multiple peaks. If a friction coefficient is chosen to
reconstruct the Q of a given peak, then the same coefficient will
fail to predict the experimental Q at other resonance frequencies.
When needing to work with more than one resonance simulta-
neously, from a practical point of view one considers multiple
friction coefficients. However, this situation suggests a short-
coming of the model, that the dissipation cannot be due to only
interaction of the cantilever with the ambient. Second from the
physical point of view one knows that even in the absence of
external fluid Q remains finite, indicating that other loss mechan-
isms are at play. Different dissipation mechanisms like the
connection of the cantilever with the base and internal processes
such as phonon–phonon and phonon–electron scattering as well
as thermoelastic damping have been discussed in the litera-
ture [1]. In this intrinsic regime below 0.1 mbar (10 Pa), typical
Q ranges from the tens [2] to the hundreds of thousands [3]. The
task of converting these microscopic mechanisms into useful
ll rights reserved.
expressions to be incorporated into the Euler–Bernoulli equation
is so daunting that, to our knowledge, it has never been done.
Here, recognizing the need to account for internal dissipation, we
take an alternative approach based on continuum mechanics
through which an appropriate internal dissipation coefficient
produces a simple differential term that integrates out the over-
whelming information of the microscopic degrees of freedom.
Recently we added, on theoretical grounds, an explicit term to the
Euler–Bernoulli equation that accounts for internal dissipation in
the Atomic Force Microscope cantilever [4]. Our goal in this paper
is to firmly establish the validity of the new term based on
experimental observations [5]. We have partially tackled this
problem, but only for a single instance of a frequency spectrum
comprising the lowest two flexural modes [6,7]. Here we use
additional extant experimental frequency spectra containing the
first three modes as functions of ambient air pressure. We show
that a single ambient and a single internal dissipation coefficient
are all that is required to produce the correct Q of the three peaks
at all external pressures.

This work is motivated by the fact that a large number of
sample processes studied with AFM are dissipative [8–10], and
one commonly is interested in quantifying that dissipation. In
those cases, a good understanding of the Q of the cantilever is
indispensable in order to subtract its effect from the total Q. The
internal dissipation term considered here should be, due to its
analytical simplicity, useful for the analysis of experimental data
by other groups.
2. Theoretical background

We recall the modified Euler–Bernoulli equation that includes
internal dissipation, which we have derived earlier (see Ref. [4]
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for details of the derivation; see also [11] for a discussion of the
standard Euler–Bernoulli equation).
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Eq. (1) describes the flexion u (x, t) of the AFM cantilever at
location x and time t. E represents the elastic modulus, I the area
moment of inertia, r the density and A the transversal area. The
first two terms correspond to inertia and elasticity, respectively.
The term b (qu(x, t)/qt) is proportional to the local velocity of the
cantilever and represents viscous damping, due to the cantilever–
fluid friction. This drag can be written in terms of physically
relevant parameters using the Stokes expression [12]

b¼ b0wZrA ð2Þ

where b0 is a dimensionless form factor, w is the width of the
cantilever, Z the ambient viscosity and rA the ambient density.
The relevant aspect of Eq. (2) is that the drag coefficient is
proportional to the ambient density (or equivalently to the
ambient pressure at constant temperature). For the pressures of
interest in this work (under 10 Pa) this is consistent with more
recent studies [13–15].

The relationship between b and the Q-factor has been studied
theoretically, and experimentally [16] in the range 10tQ t104.
In particular, when b-0, Q-N. However, under ultra-high
vacuum conditions, b-0 as explained above, but Q is known to
be finite (103

�105) in practice. Therefore a different dissipation
term becomes relevant in ultra-high vacuum, when rA and
therefore b becomes negligible. It is for this reason that we
derived in Ref. [4] the term gð@4u=@x3@tÞ, which was shown to
represent internal dissipation whose physical origin is the relative
motion between consecutive layers inside the cantilever.

3. Results

The dispersion relation for a harmonically driven cantilever is
obtained by substituting the normal mode solution,uðx,tÞ ¼ ekxeito
Fig. 1. Quality factor versus pressure for the lowest three resonances of the canti
into Eq. (1).
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where o is the angular frequency and k the wavenumber.
Eq. (3) can be readily used to obtain an exact relationship

between o and k. However we exploit the fact that we are
interested in the large Q case, to avoid unnecessary complications
in the formulas. Thus, the resonance frequencies are
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where n labels the resonance number, L is the length of the
cantilever and we have introduced the notation x¼kL for the
dimensionless wavenumber. For the cantilever clamped at one of
its ends and free at the other x1¼1.87, x2¼4.69 and x3¼7.85 for
the lowest three resonances [17,18].

From Eqs. 2–4
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The quality factor can be computed [19] as the ratio
Re o2
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=Im o2
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We are interested in high vacuum, in which case the air
density rA can be written in terms of the pressure P and
temperature T using the ideal gas law.

Q ¼
x2
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lever. First mode (circles), second mode (squares) and third mode (triangles).



Fig. 2. Comparison of experimental data with theory. Symbols as in Fig. 1. All curves were obtained with the same single viscosity coefficient and the same single internal

dissipation coefficient.
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where R is the gas constant. Eq. (7) can be rearranged thus
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For a given cantilever its intensive and extensive properties are
fixed. If in addition the temperature is kept fixed during the
experiments then the quantities inside the brackets in Eq. (8) are
constants, which we redefine as

Q ¼
x2

n

BPþGx3
n

¼
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nÞPþðGxnÞ

ð9Þ

The parenthesis in the last expression underscores that the
denominator is a linear function of the pressure, and the coeffi-
cients are constants (B, G) simply modified by xn.

This is as much as we can learn of Q from Eq. (1) in the limit of
large Q. However, as we mentioned above, for the cantilever fixed
at one end there is an additional source of dissipation due to the
rotation of the cantilever relative to the base. This dissipation is
idiosyncratic, it depends on the connection, and cannot be treated
in a general way. To analyze experimental data the term is
necessary and we include it in

Q ¼
1

ðBPþGx3
nÞ=x

2
nÞþð1=Qc

nÞ
ð10Þ

where the dissipation of the connection is represented by Qc
n ,

where the subindex n emphasizes that that loss generally
depends on frequency.
4. Comparison with experiments

In this section we apply our main result, Eq. (10), to experi-
mental results [5]. An AFM silicon nitride cantilever with dimen-
sions 80 mm length, 17 mm width and 0.2 mm thickness, is forced
harmonically at one end while the other end remains free. Fig. 1
shows the data from Ref. [5] for Q versus pressure for the first,
second and third resonance peaks.
Fig. 2 shows a comparison between the experiment and the
theory developed here. A single set of parameter (B¼ ð2973Þ
�10�3 mbar�1, G¼(21075)�10�7) is enough to correctly recon-
struct the three resonant peaks at all pressures. Since ultimately G
must be understood from microscopic considerations, this
method can also be seen as a way to measure G, useful for
eventual checking against microscopic theories.
5. Conclusions

We introduce an internal dissipation in cantilevers, which
gives rise to an explicit additional term in the typical Euler–
Bernoulli equation of motion. Proper calibration in atomic force
microscopy requires an independent Q-factor determination of
the excited flexural modes. In particular, in non-contact AFM,
where the measurement of the Q due to tip–sample interaction is
paramount, the proper subtraction of the intrinsic Q is critical. We
tested the validity of the equation by solving it for a free-end
cantilever under harmonic excitation and comparing the corre-
sponding theoretical signal with extant experimental curves for
silicon nitride cantilevers for a large range of pressures. The
agreement is excellent, making the modified Euler–Bernoulli
equation (Eq. (10)) an appropriate starting point for AFM studies,
particularly in high vacuum, where the new term becomes
dominant. We demonstrated that Eq. (10) provides a fit to the
three lowest resonant peaks with the same parameters for the
three curves. Neither a simple harmonic oscillator model nor
ignoring the new term in the Euler–Bernoulli equation can deliver
the same results. Thus the new term introduced here has a
mesoscopic origin in the relative angular motion between con-
secutive layers inside the cantilever. The internal dissipation term
should be dominant in studies in vacuums with pressures less
than about 1 Pa. For pressure higher than that value, external
damping due to friction becomes relevant.
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