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Abstract

In the course of characterizing an electromagnetic cavity we have come to understand details of transmission and

reflection traces, some of which may be useful as tools to investigate local modes in random media. We have demonstrated

quantitative agreement of frequency shift observations with theory, have demonstrated that the spatial distribution of

electric and magnetic fields can be measured using insulating and conducting spheres, and have used perturbation due to

wires and disks to demonstrate the local direction of electric and magnetic fields. We have observed that not only frequency

shifts but also spatial shifts of modes can be used to observe the intensity of interaction of modes with extended objects in

the cavity.
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1. Introduction

Disordered systems have been shown to exhibit resonances associated with local modes [1,2], and we wish to
explore unusual modes which may be created in a cavity containing disordered media or other objects [3]. Very
low frequency cavity resonances are commonly used to provide well-defined, homogeneous fields to measure
electron spin resonance or electric or magnetic susceptibility [4]. We are interested particularly in higher order
resonances to understand the frequency range in which new modes may appear.

This paper reports our initial studies to understand electromagnetic modes in a 115.7 cm�
60.5 cm� 30.5 cm cavity built of 2.4mm thick aluminum sheeting, shown in Fig. 1. We mounted antennas
in the middle of the small end panels, one of which could be moved to adjust the length of the cavity.

We use an HP 8711C network analyzer to observe transmission and reflection as a function of frequency for
the cavity. Reflection measures the power reflected from the driving antenna as a fraction of input power, and
dips show energy coupled into the cavity at resonances. Transmission measures the power coupled to the
receiving antenna as a fraction of input power, and peaks show cavity resonances that couple to both
antennas.
e front matter r 2007 Elsevier B.V. All rights reserved.
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Fig. 1. Aluminum cavity with movable end panel and HP 8711C network analyzer. The end panel is shown moved about 10 cm into the

cavity from its base position. The inside dimensions of the cavity are given.
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2. Cavity mode basics

Cavity modes for a rectangular cavity are well-known combinations of standing waves with a spectrum of
discrete frequencies. For a rectangular cavity the wave vector k for allowed modes is determined only by the
cavity dimensions, and the square of the wave vector is

k2
¼ o2=c2 ¼ k2

x þ k2
y þ k2

z ¼ ðmp=aÞ2 þ ðnp=bÞ2 þ ðpp=dÞ2, (1)

where o is angular frequency, c is the speed of light, m, n, and p are the number of half waves in a mode in the
x, y, and z directions, and a, b, and d are cavity dimensions in the x, y, and z directions. At least two of m, n,
and p must be greater than zero. Poole has given a particular form for general transverse electric (TE) and
transverse magnetic (TM) modes [5]:

Transverse electric (TE) (p40 and m or n 40):

Hx ¼ �H0ðkxkz=ðk
2
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yÞÞ sin kxx cos kyy cos kzz,

Hy ¼ �H0ðkykz=ðk
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1=2
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Ez ¼ 0. ð2Þ

Transverse magnetic (TM) (m and n 40):

Ex ¼ �H0ðm=�Þ
1=2
ðkxkz=ðk

2
x þ k2

yÞÞ cos kxx sin kyy sin kzz,

Ey ¼ �H0ðm=�Þ
1=2
ðkykz=ðk

2
x þ k2

yÞÞ sin kxx cos kyy sin kzz,

Ez ¼ H0ðm=�Þ
1=2 sin kxx sin kyy cos kzz,

Hx ¼ iH0ðkky=ðk
2
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yÞÞ sin kxx cos kyy cos kzz,

Hy ¼ �iH0ðkkx=ðk
2
x þ k2

yÞÞ cos kxx sin kyy cos kzz,

Hz ¼ 0.

The terms TE and TM are associated with waveguide modes from which these expressions are derived. TE and
TM modes with the same m, n, and p values have identical wave vectors and thus the same frequency, so
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modes with m, n, and p all non-zero are degenerate. The factor i indicates that the E and H fields are
temporally in quadrature, and all fields have an implicit eiot time dependence.

We used loops (1.5 cm diameter) or wires (1.9 cm length) extending into the cavity as antennas to limit the
modes which were excited and/or observed in transmission spectra. Fig. 2 shows a typical set of reflection and
transmission traces, with resonances visible in both. However, the transmission trace is richer than simply a
row of spikes because the broad tails of the transmission peaks overlap and interfere. Recall that a damped,
driven resonant system has a phase difference with respect to the driving force; at low frequencies the system is
in phase with the driver, at resonance the phase changes quickly, passing through p/2 at resonance, and at high
frequencies the difference is nearly p. Consecutive peaks of the (m,3,1) family are separated by regions in
which the long tails add, because the field at the receiving antenna changes polarity with respect to the driving
antenna when m changes by 1, effectively cancelling the difference in phase in the frequency region above one
peak and below the next. When a peak from a different family intervenes, this pattern is disrupted: the deep
dip between the (2,3,1) and (6,1,1) peaks occurs because the tails of these two modes add with a relative phase
of nearly 180o at the receiving antenna. A simple model which treats the resonances as damped, driven
harmonic oscillators captures this behavior very naturally, as shown in Fig. 3. The shape of the model trace is
relatively insensitive to the Q values chosen for the various peaks.

There is an additional feature of interference of modes in Fig. 2. At about 919MHz there is a small dip in
the reflection accompanied by a small ‘‘wiggle’’ in the transmission (shown expanded in the inset of Fig. 2),
which can be understood as follows. The (6,0,1) mode couples to the driving antenna (as shown by the dip in
the reflection trace), here a loop in the horizontal plane, but does not couple to the receiving antenna, which is
a short wire along the centerline of the cavity. However, the presence of the strong resonance slightly changes
the strengths of the modes which couple to both antennas, altering the transmission trace. The effect is small,
and can be observed only because of the rapid change of phase at resonance. We do not have a quantitative
explanation, which could involve antenna loading or coupling through currents in the cavity walls [6]; since
each such ‘‘wiggle’’ is accompanied by a reflection dip associated with one antenna or the other we think that
antenna loading is probably involved. Transmission traces are identical regardless of direction of transmission
through the cavity, but reflection traces show dips only for modes that couple to the input antenna.

While a straight wire along the cavity centerline couples only to E fields, a loop can couple to either H fields
or to E fields. The (6,1,1) mode produces a peak in transmission, while the (6,0,1) does not. The difference is
that Ex, proportional to sin kyy, is zero at the receiving antenna for the (6,0,1) mode because ky is zero; for the
(6,1,1) mode n is 1, kyy is p/2 at y ¼ b/2, and there is maximum coupling. The driving antenna is a loop in the
horizontal plane which couples magnetically to Hz : cos kxx cos kyy sin kzz is maximum for n ¼ 0 and p ¼ 1
at the position of the antenna (x ¼ 0, z ¼ d/2) for the (6,0,1) mode.
Fig. 2. Transmission and reflection traces for the (0,3,1), (1,3,1), (2,3,1), (6,1,1), and (3,3,1) cavity modes. Q values range from 2400 to

1200 for the (m,3,1) modes in transmission. The expanded portion of the transmission trace shows a 5MHz region centered on 919.1MHz,

the frequency of the (6,0,1) mode which couples to the drive antenna only.
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Fig. 3. Model of transmission trace for the (2,3,1), (6,1,1), and (3,3,1) peaks treated as damped, driven harmonic oscillators, showing

interference between the (2,3,1) and (6,1,1) modes.
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Similar arguments show that the horizontal loop at x ¼ 0, y ¼ b/2 and z ¼ d/2 cannot couple magnetically
to (6,1,1) or to the (m,3,1) family of modes, since cos(p/2) and cos(3p/2) are zero. We conclude that a small
loop at the end of short wire leads actually couples to Ex! Coupling to electric fields appears to be stronger
than coupling to magnetic fields, since dips in the reflection traces for the (m,3,1) modes are substantially
larger than the dip for the (6,0,1) mode. The reflection and transmission traces thus have several features
which can be used to identify and track modes in later investigations.
3. Probes to measure spatial distribution and direction of fields

The frequencies of unperturbed modes are predicted by theory, and modes can be recognized by their
resonant frequencies. However, the unperturbed cavity is not especially interesting, and even small antennas
lower the resonant frequencies of modes. Our small antennas — a loop about 1.5 cm in diameter and a wire
extending 1.9 cm into the cavity along the centerline — lower frequencies by about 0.5MHz.

Our main tool to investigate the spatial distribution of modes is the shift of resonant frequencies caused
when an object is introduced into the cavity. Frequency shifts are given by the Bethe–Schwinger formula [7]

o� o0

o0
¼ �

R
tðP

n � E0 þMn � B0Þ dv
R

V
ð�E0 � E

n

0 þ mH0 �H
n

0Þ dv
, (3)

where subscript 0 refers to unperturbed (empty cavity) fields, t is the volume of the perturbing object, and V is
the volume of the cavity. For a first approximation we assume that the polarization and magnetization are
those due to the unperturbed field.

The polarization vector for a spherical dielectric object is

P ¼ 3�0½ð�� �0Þ=ð�þ 2�0Þ�E0,

and the magnetization vector for a magnetic sphere is

M ¼ 3½ðm� m0Þ=ðmþ 2m0Þ�H0.

For a metal object m ¼ 0 and e ¼N, and these expressions reduce to

P ¼ 3�0E0 and M ¼ �3=2H0.

Eq. (3) thus predicts shifts to lower frequencies for dielectric and metal objects interacting with electric fields,
but positive shifts for metal objects in magnetic fields. Note that the frequency shift is proportional to the
strength of |E|2 and |H|2 relative to the integrated energy of all the fields of the mode, so only the relative
strength of fields can be measured using frequency shifts.
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Fig. 4. Frequency shifts for a 7.7 cm diameter glass sphere at different positions along the cavity centerline. Frequency shifts, all negative,

for modes (0,1,1), (1,1,1), (2,1,1), and (3,1,1). The vertical dashed line marks the center of the cavity.
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We measured frequency shifts relative to the empty cavity for many modes by moving a glass sphere along
the centerline of the cavity. Fig. 4 shows data and fits for modes of the (m,1,1) family. The fits were made by
selecting an amplitude and wavelength; the wavelengths were always found to correspond to that expected for
the m value, given the measured length of the cavity. The amplitudes all gave the same value for the dielectric
constant of the glass. We are thus able to map the spatial distribution of E fields using an insulating sphere.
We also used a conducting sphere to map spatial distributions of H fields, although analysis of the shifts is
complicated because the conducting sphere couples with both E and H fields. We found that the shifts agreed
within 5% of the theoretical value for a conducting sphere (assumed to be a perfect conductor).

Direction of electric fields can be determined by using wires, which interact only with fields parallel to the
wires. We also observed the interaction of magnetic fields with conducting disks perpendicular to the field, but
this interaction is weak, and conducting disks also interact with electric fields parallel to the disk.

We can measure the frequency of a peak with an accuracy of 0.004–0.02MHz, depending on the sharpness
of the resonance. However, repeated measurements are limited to about 0.1MHz (about 2.5% of a typical
maximum frequency shift) by changes in the position of the movable cavity end: 0.1MHz corresponds to a
change of about 0.1mm in the location of the end panel. Measurements of higher modes (m44, n ¼ 3) are less
stable both because of the higher spatial frequency and because these modes are weaker. Fitting to
measurements at multiple positions increases the accuracy of frequency shifts, and we found that frequency
shifts for about a dozen different modes had an average deviation from theoretical values of about 5%.
4. Modes with a large inclusion

The spatial distribution of fields of a cavity mode will be altered if a cavity is partially filled with a dielectric
material [8]. We experimented by placing an array of 11 conducting spheres at the mid-plane of the cavity near
one end, as shown in Fig. 5.

Fig. 6 shows the spatial distribution of fields shown by frequency shifts of an insulating sphere moved along
the cavity centerline. In an unperturbed cavity, the frequency shift wave forms are symmetrical with respect to
the center of the cavity. Modes (4,1,0) and (3,3,0) show very slight spatial shifts to the left (towards negative
x); these modes have electric fields at the array in the z direction (perpendicular to the array). Modes (3,1,1)
and (5,1,1) show marked shifts to the left; these modes have electric fields at the array in the x direction, i.e., in
the plane of the array. Ex clearly interacts much more strongly with the array than Ez due to interaction
between the spheres, even though the direct interaction of the fields with the spheres (ignoring interactions
between spheres) is about equal.
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Fig. 5. Array of eleven conducting spheres (silvered glass decorative ornaments) in the midplane of the cavity near the negative x end.

Spheres are 6.6 cm in diameter, and are on a 7.4 cm square grid. Top view of the cavity and array, not to scale.

Fig. 6. Spatial distribution of four modes altered by an array of conducting spheres. Modes (5,1,1) and (3,1,1) have Ex at the array and are

shifted strongly, as shown by the offset of the negative peaks from the cavity centerline (vertical dashed line). Modes (4,1,0) and (3,3,0)

have Ez at the array, and have very slight spatial shifts. Frequency shifts for each mode are measured relative to the frequency of the cavity

with the array but without the glass sphere probe. Strong interaction with the array decreases the effective m value (see legend) in the air

portion of the cavity.
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5. Summary

We have shown how interaction of modes affects the transmission and reflection traces by direct
interference of the electric fields and by more subtle coupling of modes. We demonstrated quantitative
agreement of frequency shift observations with theory, that the spatial distribution of electric and magnetic
fields can be measured using frequency shifts caused by insulating and conducting spheres in various locations
in the cavity, and have used frequency shifts due to wires and disks to demonstrate the local polarity of electric
and magnetic fields. We have observed that not only frequency shifts but also spatial shifts of modes can be
used to register the intensity of interaction of modes with extended objects in the cavity.
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