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Abstract

Equivalent crystal theory (ECT) is a semi-empirical technique used for the calculation of defect energetics in metals and semiconduc-
tors. The implementation of the method involves the solution of transcendental equations. Although this is not a problem for simple
defects, for complex defects, Monte Carlo and molecular dynamics calculations in large systems, it could be the speed-determining lim-
itation in a calculation. In this paper we propose a procedure for bypassing this step and obtaining the desired result directly. The form of
the particular transcendental equations suggest a different approach, namely, the equation can be cast in the form of the Lambert func-
tion that can be readily evaluated from standard routines. We test this scheme by evaluating the surface energies for a variety of metallic
elements and by standard numerical approaches, and demonstrate that they agree to within a few ppm.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Equivalent crystal theory (ECT) [1] belongs to the class
of semi-empirical quantum algorithms used to evaluate the
energies of metallic and semiconductor atomic aggregates.
It has been applied to determining the energies of crystal
defects [2], the energetics of alloys using the Bozzolo–Ferr-
ante–Smith (BFS)–ECT method [3,4] and more recently to
study charge transfer in metal nano-clusters [5]. Of partic-
ular interest is the calculation of surface energies. In ECT
like in other semi-empirical methods, surface energies typ-
ically agree with ab initio values within 20% – see for exam-
ple Skriver et al. [6] for ab initio results, Daw for embedded
atom method [7], and Mehl and Papaconstantopoulos for
tight binding [8]. By allowing for charge transfer, the agree-
ment can be improved to below 20% as shown in Ref. [5].
In the present paper, our objective is to improve the com-
0927-0256/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.commatsci.2007.09.017

* Corresponding author.
E-mail address: zypman@yu.edu (F.R. Zypman).
putational speed of the ECT algorithm. ECT as originally
formulated, although giving outstanding agreement for the
high-density planes [9], tends to overestimate the anisot-
ropy ratio for higher index planes. A complete discussion
of this issue is presented in Ref. [9].

In ECT the total energy of a collection of atoms in a
defect is the sum of individual energy contributions
U(aeq), where aeq is called equivalent lattice parameter
and U(aeq) is explicitly given by the Universal Binding
Energy Relation (UBER) [10] which is simply parameter-
ized in terms of physically known constants in the Rydberg
function. In ECT an atom near a defect is viewed as sensing
a reduced or increased electron density. This condition is
then interpreted as a point on the UBER in terms of an
expanded or contracted perfect crystal. Perturbation the-
ory is used to obtain the equivalent lattice parameter of
the expanded or contracted crystal, aeq, in terms of a0,
the lattice parameter corresponding to the perfect crystal.
Once aeq is known, the energy the atom near the defect is
obtained from that point on the UBER. The value of aeq

is obtained in terms of a0 from the inversion of the basic
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Table 1
Smallest values of y and corresponding c values for various elements

yminimum c n21cpe�cy

Al 3.537 1.126 0.037
Cu 5.282 1.044 0.016
Ag 6.960 0.975 0.009
Au 8.579 0.906 0.007
Ni 5.282 1.032 0.017
Pd 6.960 1.002 0.007
Pt 8.579 0.882 0.008

Table 2
ECT equivalent lattice parameter, and relative difference between Lambert
evaluation and Newton–Raphson method

aeq (Å) aLambert�anumerical

anumerical

Al 4.74 4 � 10�7

Cu 4.33 9 � 10�8
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ECT transcendental equation that is given in Section 2.
Although conceptually simple, the inversion process repre-
sents the computational time limiting step in the implemen-
tation of the algorithm. In this paper we present an
analytical expression to invert this equation that reduces
the computation speed. In Section 2 we state the problem.
In Section 3, we present the exact solution to the approxi-
mate problem when the atomic electron density decays fast
enough that only first near neighbors play a role in the cal-
culation. In Section 4 we study the location of the maxi-
mum of the density curve. This is necessary to
understand the region of parameter space in which ECT
operates. In Section 5, we present the general solution. In
Section 6, we perform a test of the method: we evaluate
the surface energy formation for a variety of elements
and compare with the standard approach. Finally, Section
7 presents conclusions.
Ag 4.81 2 � 10�8

Au 4.60 1 � 10�9

Ni 4.21 2�10�7

Pd 4.52 4 � 10�9

Pt 4.42 2 � 10�9
2. The problem

The implementation of ECT involves a perturbation
equation that determines the energy of a solid with a defect
in terms of a perfect crystal of the same substance
expanded or contracted from the equilibrium lattice
parameter to a new, ‘‘equivalent” lattice parameter. This
procedure is equivalent to finding and embedding electron
density q. A typical atom at a given location is embedded in
a density q produced by the electronic charge density of the
remainder atoms in the system. The, yet unknown, equiva-
lent nearest-neighbor distance, Req, satisfies

N 1Rp
eqe�aReq þ N 2ðcReqÞpe�ðaþ

1
kÞcReq ¼ q ð1Þ

where N1 is the number of nearest-neighbors in the mini-
mum energy crystal structure corresponding to that atom,
N2 is the number of next-nearest- neighbors, c is the ratio
of the next-nearest-neighbor distance to the nearest- neigh-
bor distance, and a and k are known material-dependent
constants. In many applications of ECT to evaluate defect
formation energies, q, on the right-hand side of (1), is writ-
ten in a form similar to the left-hand side. For example, the
density produced by neighbors on an atom next to a
vacancy is q ¼ N 01Rp

0e�aR0 þ N 02ðcR0Þpe�ðaþ
1
kÞcR0 where N 01 ¼

N 1 � 1 and N 02 ¼ N 2 because the atom in question loses
one next nearest-neighbor (where the vacancy is located)
and no second near neighbor. In this example, the lattice
is unrelaxed and, consequently R0 represents the nearest-
neighbor distance of the perfect crystal. This shows explic-
itly that Req is the unknown in Eq. (1). Once Req is
obtained, ECT uses this value in the UBER function
U(aeq). The corresponding energy cost is then UðaeqÞ�
Uða0Þ.

The general problem is to find the function

Req ¼ GðqÞ ð2Þ

Eq. (1) can be cast in dimensionless form by defining
y � aReq,
ype�y þ N 2

N 1

cpype�ð1þ
1
akÞcy ¼ qap

N 1

ð3Þ

Finally, introducing 1þ 1
ak

� �
c� 1 � c; N2

N1
� n21;

qap

N1
� x,

ype�yð1þ n21cpe�cyÞ ¼ x ð4Þ

The constant ak is about unity or larger, and c > 1, thus
c > 0. This is a conservative lower bound for c. By using
appropriate values from Tables 1 and Table 2 in reference
[1], one finds the physical constraint n21cpecy < 0.04. This
will be proved at the end of Section 4, in Table 1.

Thus, in Eq. (4), the second term inside the parenthesis
is much smaller than unity, a fact that will be used later.
The rest of the paper is devoted to build the inverse func-
tion y = G(x).
3. Solution for large c

Inside the parenthesis in Eq. (4), as mentioned at the end
of last section, the first term dominates. In fact, in many
real applications the second term is dropped [11] and the
problem reduces to finding the roots of

ype�y ¼ x ð5Þ

Besides, understanding the solution to (5) will help after-
ward in obtaining a solution for finite c.

Fig. 1 shows Eq. (5) graphically, and illustrate the
appearance of two roots: one to the left of the maximum
that corresponds to a lattice parameter smaller than a0,
and one to the right with lattice parameter larger than a0.
For intrinsic crystal defects (vacancies, divacancies, dislo-
cations, surfaces, steps) the real local density never
increases as compared with the perfect crystal and thus,
the physically acceptable root is the second one (y2 in the



Fig. 1. Intersection of the real reduced density x, and the equivalent
density for c ?1.

Fig. 2. Equivalent reduced lattice parameter y as a function of the reduced
local density x.

Fig. 3. Location of the maximum yM = X(c) of the density curve as a
function of c.
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figure). If we were treating interstitial defects, then the solu-
tion would be the smaller root and, in what follows we
would use the other branch of Lambert’s function.

Eq. (5) is equivalent to

� y
p

� �
e �

y
pð Þ ¼ � x

1
p

p
ð6Þ

and has the solution

y ¼ �pW �1 �
x

1
p

p

 !
ð7Þ

where W�1 is the Lambert function [12,13]. This solution is
plotted in Fig. 2. The sub index ‘‘�1” labels the branch: the
Lambert function has an infinite number of complex
branches, with only two purely real, the branches known
as ‘‘0” and ‘‘�1”. The branch ‘‘0” gives the root y1 in
Fig. 1, corresponding to increase in density due for exam-
ple to an interstitial.

4. Location of the maximum of the density curve

Call (yM,xM) the point corresponding to the maximum
attainable density (Fig. 1). We will show that yM � p and
moreover, we will find yM (and the corresponding xM from
Eq. (4)).

The location yM is found by setting dx
dy

h i
y¼yM

to zero from
Eq. (4) thus,

p � yM þ n21cpe�cyM ½p � ð1þ cÞyM � ¼ 0 ð8Þ

This provides an implicit function yM of c. Let us write the
solution to (8) as

yM ¼ XðcÞ ð9Þ

We will derive some properties of X(c) from Eq. (8). First,
if c = 0 then yM = p. Taylor-expansion of (8) to first order
in c and (yM � p) provides

XðcÞ � p � n21cp

1þ n21cp
pc for c � 0 ð10aÞ

Second, also from Eq. (8), when c ? +1, yM ? p�. In that
limit, the term in Eq. (8) containing the exponential is small
and can be treated perturbatively leading to

XðcÞ � p � n21cpe�cppc for c! þ1 ð10bÞ

A sketch of X(c) is shown in Fig. 3. That particular graph is
for FCC Ni or Cu, but the most important features are
general, namely: that Eq. (10) is satisfied; that there is a sin-
gle minimum; that dX

dc remains small for all values of c.
Next, we obtain cm and yMm as defined in Fig. 3. Eq. (8)

cannot be solved analytically for yM, but it can be solved
for c,

c � X�1ðymÞ ¼
1

yM

p � yM � W 0 �
ðp � yMÞep�yM

n21cp

� �� �
ð11Þ

The point yMm, can now be found from (11),

1
dX�1ðyM Þ

dyM

� 	
yM¼yMm

¼ 0 ð12Þ

And, explicitly,

ðp � yMmÞy2
Mm 1þ W 0

ðyMm � pÞep�yMm

n21cp

� �� �
¼ 0 ð13Þ



Table 3
Surface energy formation energy, and relative discrepancy between using
this algorithm and the standard one

Eeffective (eV/atom) ELambert�Enumerical

Enumerical

Al 0.73 3 � 10�6

Cu 0.98 5 � 10�7

Ag 0.84 1 � 10�7

Au 0.89 1 � 10�8

Ni 1.22 1 � 10�6

Pd 1.10 3 � 10�8

Pt 1.31 2 � 10�8
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Since yMm 6¼ 0, the only non-trivial solution is for
W0 () = �1. This happens when the argument of the
Lambert function is �1/e, then,

yMm ¼ p � W 0

n21cp

e

� �
ð14Þ

This value is the smallest possible y (we called it yminimum in
Section 2) and was used to evaluate the entries in Table 1.

5. Solution for finite c

When c ? +1 we already obtained,

y ¼ �pW �1 �
x

1
p

p

 !
c! þ1 ð7Þ

For any c, Eq. (4) is equivalent to

ð�y=pÞeð�y=pÞ ¼ � 1

p
x

1þ n21cpe�cy

� �1=p

ð15Þ

This does not render simply a solution in terms of the Lam-
bert function because y also appears on the right-hand side.
However, since n21cpecy� 1, Eq. (15) can be solved effi-
ciently by recurrence. In the physical cases of interest,
n21cpecy

6 0.04 and thus a first order solution should suf-
fice. Thus we use (7) on the right-hand side of (15) which
can then be readily solved for y

y ¼ �pW �1 �
1

p
x

1þ n21cp exp cpW �1 � x
1
p

p

� 	� 	
0
B@

1
CA

1=p2
64

3
75
ð16Þ

It is interesting to notice that the limit c ? 0 in Eq. (4) can
be solved exactly and provides

y ¼ �pW �1 �
1

p
x

1þ n21cp

� �1=p
 !

c! 0 ð17Þ

This solution is also included in (16) when c ? 0.
The two limiting solutions, for large and small c are

shown in Fig. 4. Eq. (16) then serves as an intermediate
solution between those two limits.
Fig. 4. Solutions y(x) for the two extreme cases, 0 and +1.
6. Benchmark: surface energies

We test the scheme developed here to find the surface
energy of (100) planes of various elements using Equiva-
lent Crystal Theory. We first solve Eq. (4) both numerically
(Newton–Raphson method) and by the evaluation of the
Lambert function as explained above. For the real density
of the (100) plane, we notice that a typical surface atom
loses 4 next near neighbors (out of 12 in bulk) and 1 s near

neighbor (out of 6). Then q ¼ 8Rp
0e�aR0 þ 5ðcR0Þpe�ðaþ

1
kÞcR0 ,

with R0 ¼ a0ffiffi
2
p . The solution to (4) gives y, which in turn

gives Req � aeqffiffi
2
p . The equivalent lattice parameter is given

in Table 2 with three significant figures, consistent with
the original ECT work. The discrepancy between the stan-
dard procedure for root finding and the use of the Lambert
function as proposed here is given in the same table, as a
relative difference. The difference remains well below one
part per million.

We use the Req just described to evaluate the surface
energy formation. As described in the original ECT paper,
this is done by evaluating the Universal Binding Energy
Relation in the surface-terminated bulk and in the reference
bulk, and then calculating their difference. The results are
given in Table 3. All values agree within 3 ppm.
7. Conclusions

We proposed in this paper a new computational algo-
rithm to obtain the equivalent lattice parameter in ECT.
The main result is the replacement of the time consuming
root-finding section for the direct evaluation of an analyt-
ical expression involving the Lambert function. The Lam-
bert function is today easily accessible through standard
mathematical packages [14]. We tested our algorithm
against the (10 0) surface energy for a variety of elements.
Both, the equivalent lattice parameter, and the surface
energy agree with the standard approach to within a few
parts per million, well above the discrimination needed in
ECT implementations.
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