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The principal purpose of this contribution is to illustrate the potential of compressed sensing electron
tomography for the characterisation of nanoparticulate materials that are vulnerable to electron beam
damage. Not only is there growing interest in nanoparticles of organic materials in medical and allied
contexts, there is also the need to investigate nanoparticles and nanoclusters of metals supported on bio-
logical macromolecular entities in the context of drug delivery. A qualitative account of the principles of
electron tomography is outlined with illustrations from the field of heterogeneous catalysis, where elec-
tron beam damage is less of an issue, and an appendix deals with more quantitative aspects of how com-
pressed sensing promises to expand the range of samples that have hitherto been accessible to

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The technique of tomography is currently applied widely for the
study of macro-objects in medicine and in engineering using X-
rays or positrons as the probing radiation. In essence, tomography
entails reconstructing the three-dimensional (3D) structure of an
object from a series of two-dimensional (2D) projection images.
Electron tomography (ET) is a relatively new tool for probing
nanoparticulate and other nano-structured materials, but its use
has grown rapidly in recent years, as may be gauged from Fig. 1.

Two of us (PAM and JMT) have hitherto exploited ET, which is
capable of resolutions of ca. 10 A, largely for the investigation of
the morphologies, spatially-discriminating chemical compositions
and defect properties of nanoclusters and nanoparticles of bimetal-
lic heterogeneous catalysts [1-4]; but our group has also identified
and demonstrated the power of the technique when allied to the
so-called approach of compressed sensing (CS) - which we discuss
below - for other kinds of investigation [5,6].

It is our conviction that ET allied to CS could contribute signif-
icantly to the now burgeoning field of nanoparticles in medicine
and pharmacy, in which fine particles of entirely organic or biolog-
ical materials - which are notoriously vulnerable to electron beam
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damage - are finding increasing use [7,8]. A very recent example
entails the use of aggregates of poly(lactic-co-glycolic acid) nano-
particles to which are attached tissue plasminogen activator
(tPA) for the treatment of atherosclerosis and the avoidance of
blood clot formation during a stroke [8].

2. Methods

ET may be recorded either by the use of conventional transmis-
sion electron microscopy (TEM) under so-called bright-field (BF)
illumination [9], or using high-angle annular dark-field scanning
transmission electron microscopy (HAADF-STEM), the technique
we favour. A diagrammatic summary is shown in Fig. 2. It has been
shown elsewhere [10] that there are distinct advantages in using
the HAADF mode in preference to the BF method. Moreover be-
cause the signal recorded under HAADF conditions directly reflects
the atomic number (Z) contrast of the specimen, there are addi-
tional analytical advantages to be gained by utilising this mode. In-
deed, Fig. 3 illustrates this point.

Qualitatively we may illustrate the essence of tomographic
reconstruction with the diagrams shown in Fig. 2, where inter alia,
the notion of back-projection is given, yielding a 3D reconstruction
or ‘tomogram.’ Because of the practical limitations imposed by the
relative disposition and size of the sample holder with respect to
the pole-piece of the microscope, a so-called ‘missing wedge’ of
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Fig. 1. The growing application of ET to the study of catalysts and nanoparticles, as
tracked by the annual number of publications. Source: I1SI Web of Knowledge, 02/08/
12. Search term: “(electron tomography AND (catalyst* OR nanoparticle®))”.

information is un-sampled by the tilt-series images and inevitably
affects the reconstruction process. Elsewhere we have shown how
quantitative ET may be carried out in the investigation of bimetal-
lic nanocluster catalysts distributed over the inner surface of mes-
oporous silica [11]. A summary of the kind of information that may
be retrieved is shown in Fig. 4.

We outline below (and explain in greater detail in the appendix)
how, with CS, it is possible to retrieve valuable information per-
taining to specimens that are vulnerable, to a greater or lesser ex-
tent, to electron beam damage, as well as specimens that, for other
reasons, are not amenable to investigation by conventional ET. The
actual examples of the use of CS-ET that we cite here are, in fact,
ones that are relatively stable in the electron beam, but they serve
as instructive proof-of-principle studies.

CS has arisen from information theorists and mathematicians
concerned with signal retrieval. CS techniques are particularly use-

e-beam
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ful in applications in which one cannot, for one reason or another,
record a large number of measurements of the signal that is to be
reconstructed. It has proven useful in magnetic resonance imaging
(MRI) [12,13], for instance, and several accounts have been given
detailing the essence of the ‘compressive’ measurement and recov-
ery procedures [12,14-17].

The aim of CS is to recover a signal from fewer measurements
than would normally be considered necessary, be it an angiogram
in MRI, a spectrum in nuclear magnetic resonance, an image in
astronomy, or a tomogram in ET. In order to reconstruct the signal
from a small number of measurements, it is necessary to introduce
some prior knowledge into the problem. In the case of CS, this prior
knowledge is that the signal of interest is ‘information limited’ or
‘sparse.’” Here, ‘information’ refers to the number and location of
non-zero elements in the signal. A signal is said to be ‘sparse’ if
the number of non-zero elements is significantly less than the total
number of elements comprising the signal. In the context of ET,
these non-zero elements would most readily correspond to voxels
(volume pixels) in the tomogram.

However, what makes CS so powerful is that it is not necessary
for the signal itself to be sparse; instead the signal can be trans-
formed into some other domain in which it is sparse. CS uses the
idea that signals can be represented sparsely to recover images
from incompletely sampled data by finding the sparsest solution
that is consistent with the measured data.

In order to apply CS it is essential that the measurements are
‘incoherent’ with respect to the basis in which the signal is sparsely
represented. This entails two aspects: (1) each data point mea-
sured must contain information about many of the elements that
comprise the final signal, and (2) any artefacts arising from incom-
plete measurements should appear noise-like (i.e. not be sparse) in
the domain in which the signal is represented sparsely. The first of
these two points is readily addressed by ET data sets, as each mea-
surement will comprise a projection through the sample and
therefore contain information about every part of the sample
through which the electron beam has passed. The second point is
more difficult to conceptualise, but essentially means that artefacts
that arise from incomplete sampling from any one part of a signal
should be spread throughout as much of the remainder of the
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Fig. 2. The essence of ET: an angular series of 2D projection images is recorded by tilting the specimen in the (scanning) transmission electron microscope. The ‘tilt-series’ of
images are then back-projected into space to obtain a 3D reconstruction. A variety of signals may be recorded, including bright-field (BF), annular dark-field (ADF) and high-
angle annular dark-field (HAADF) signals. The BF detector can be removed to allow the transmitted electrons to pass through to a spectrometer and form an energy-loss

spectrum.
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Fig. 3. An illustrative example of the efficacy of HAADF-STEM for the study of supported metallic nanoparticles. The (Pt,Ru) nanoparticles supported on mesoporous silica,

almost invisible in BF-TEM (a), are clearly seen in the HAADF image (b) [10].
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Fig. 4. (a) Surface rendering of an ET reconstruction of (Pt,Ru) nanocatalysts (red) supported on a disordered mesoporous silica (grey). (b) The reconstruction shown with the
support made partially transparent to reveal the internal distribution of the nanocatalysts. (c) A small part of the pore structure shown as a solid object. From the
reconstruction, the catalyst loading, overall porosity and surface area were determined. The surface dimension of the pore structure was found to be fractal in nature. (d) By
classifying the surface curvature of the support, the nanocatalysts were found to prefer to be anchored at saddle-points on the support surface [11].

image as possible. This means that the location of the true signal
will appear with a high intensity relative to any artefacts and
therefore can be recovered accurately during the reconstruction.
We illustrate the concepts underlying CS using an image of a
simple object shown in Fig. 5a. This image can be represented spar-
sely by transforming it into the gradient domain, via a spatial finite
differences transform. The gradient domain representation is
shown in Fig. 5b, where there are few non-zero pixels; only those

(a) (b)
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image domain sparse domain

Fig. 5. The concept of sparse representation: a sparse representation (b) of the
image (a) is obtained by the application of an appropriate sparsifying transform. In
this example, the information in the simple cartoon-like image (a) can be captured
by a small number of non-zero pixels in the gradient domain (b). The sparsifying
transform, is a spatial finite differences operator.

capturing the important information from the image in Fig. 5a -
the boundary of the object - being non-zero. The gradient domain
is suitable for sparse representation of cartoon-like images, such as
Fig. 5a, consisting of homogeneous regions with sharp boundaries,
and the overall gradient sparsity is often expressed via the so-
called ‘total variation’ (TV).

For more complex images, a wide variety of transforms exist,
such as the so-called discrete cosine and discrete wavelet trans-
forms, which form the basis of JPEG image compression algo-
rithms, familiar from digital photography. The effectiveness of
image compression algorithms lies in the fact that it is often only
necessary to retain the largest coefficients in the sparse domain,
a small fraction of the total, yet still recover the original image with
minimal loss of information when applying the inverse transform.

Given that it is possible to represent an image (or other signal of
interest) sparsely, capturing the information content of the image
in a reduced amount of data, it then follows that it should be pos-
sible to measure fewer data points than pixels in the image during
the initial acquisition. In other words, it should be possible to ac-
quire the image directly in compressed form. CS provides a math-
ematical foundation that proves when and how this is possible. By
applying these principles to reduce the number of projections that
need to be acquired in ET, it is clear that CS has the potential to
make a significant impact.
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Fig. 6. HAADF-STEM image of concave iron oxide nanoparticles from an ET tilt-series. (b) and (c) 3D voxel projection visualisations of SIRT and CS-ET reconstructions from the
tilt-series. The insets (bi) and (ci) are 2D orthoslices from the 3D reconstructions, taken from the positions indicated by the arrows, showing two closely spaced nanoparticles

[5].

The two distinct kinds of specimens that are reported here as
illustrative examples of ET are (i) specially-prepared iron oxide
nanoparticles with a deliberately introduced concavity (for poten-
tial use in drug-delivery [18]), and (ii) aggregates of unsupported
selective hydrogenation nanocatalysts [19], consisting of nanopar-
ticles in which there is some overlap and partial imbrication; the
stoichiometric composition being GaPd,. We also show tomograms
that have been obtained, via CS-ET, of cadmium selenide/telluride
‘tetrapods’ [20] associated with concave particles of iron oxide.
Preparative methods for these materials and further details of
the ET acquisition and post-processing have been given elsewhere
[5,18,20-23]. We note however, that all the HAADF-STEM tomog-
raphy reported here was performed on a standard FEI Tecnai F20
(S)TEM, and the subsequent processing performed using sophisti-
cated yet readily accessible software. Indeed, we emphasise, recall-
ing Fig. 1, ET is a widely accessible technique now practiced in
many laboratories.

3. Results and discussion
3.1. Concave iron oxide and cadmium selenide/telluride tetrapods

Colloidal iron oxide nanoparticles have attracted growing inter-
est in recent years for their unique performance as catalysts, drug

CS-ET
27 projs

SIRT
13 projs 27 projs

delivery carriers, mediators in hyperthermia treatments and con-
trast agents for MRI [18,24,25]. For all of these applications, the
structure of the nanoparticles has been demonstrated to be crucial
to determining the functional effect. For example, concave iron
oxide nanoparticles have been shown to destabilize gold nanocrys-
tals, provided that the size of the gold nanocrystal matches that of
the concavity [18].

These nanoparticles were recently used as a model system on
which to demonstrate CS-ET. An example HAADF-STEM image of
a group of concave iron oxide nanoparticles from an ET tilt-series
is shown in Fig. 6a. The tilt-series was recorded over the angular
range —70° to +60° with a 5° tilt increment. Using the full 27 pro-
jection tilt-series, a reconstruction obtained using the conventional
algorithm, known as the ‘simultaneous iterative reconstruction
technique’ (SIRT), can recover the overall morphology of the nano-
particles to a reasonable, qualitative, approximation. This is shown
in the 3D voxel projection visualisation of the reconstruction in
Fig. 6b (which provides a projected image analogous to that in
the (S)TEM, but with a sense of 3D perspective and visual enhance-
ment by the use of colour). However, quantitative analysis of the
structure is challenging owing to artefacts arising from the finite
and limited angular sampling. For example, Fig. 6bi shows a 2D
slice from the 3D reconstruction, of two nearby nanoparticles.
Streaking artefacts and blurring in the ‘missing wedge’ direction
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Fig. 7. (a) Surface rendered visualisation of CS-ET and SIRT reconstructions from the ET tilt-series of Fig. 6a, using the full 27 projection tilt-series, or 13 or 9 projection
subsets. (b) Quantification of the concavity volume of the reconstructions. The nanoparticle analysed is indicated by the arrow in the inset HAADF-STEM image in (b) [5].
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Fig. 8. (a) HAADF-STEM image of concave iron oxide nanoparticles interacting with cadmium selenide/telluride tetrapods from an ET tilt-series. (b—d) 3D voxel projection
visualisations of CS-ET reconstructions from (b) the full 27 projection tilt-series, as well as (c) 13 projection and (d) 9 projection subsets. (e) Colour map of the 3D voxel
projections, revealing atomic number (Z) contrast between the nanoparticles and tetrapods. The inset image accompanying each voxel projection is a 2D orthoslice from the

3D reconstruction, taken from the position indicated by the arrow, showing that the reconstruction fidelity in a complex area of the tomogram is largely maintained in the
reduced projection reconstructions [23].
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Fig. 9. (a) HAADF-STEM image of densely-packed GaPd, nanoparticles from an ET tilt-series. (b) Colour-coded 3D voxel-projection visualisation of the ET reconstruction after
segmentation, in which each nanoparticle or agglomerate has been given a colour that differs from those of its nearest neighbours. (c) Statistical size distribution and filtered
tomograms according to the equivalent diameter, d, of the nanoparticles and agglomerates [21].
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(the vertical direction in Fig. 6bi and ci) make it difficult to deter-
mine the boundary between the two nanoparticles. On the other
hand, since the nanoparticles are of uniform composition and
should have sharp boundaries, they can be represented sparsely
in the gradient domain, and the ET reconstruction can be
performed via a CS approach. Using CS-ET yields a high-fidelity
reconstruction in which the morphology of the nanoparticles is
well-defined, as shown in Fig. 6c¢i.

The real efficacy of CS is illustrated by performing reconstruc-
tions from even fewer projections. Fig. 7a shows 3D reconstruc-
tions of a selected nanoparticle (indicated by the arrow in the
inset image in Fig. 7b), obtained via both SIRT and CS-ET, and using
the full 27 projection tilt-series or just 13 or 9 projection subsets.
The volume of the concavity measured from the SIRT reconstruc-
tions (Fig. 7b) is seen to decrease as the number of projections is
reduced, correlating with the clear loss of reconstruction fidelity
seen in Fig. 7a. By contrast, the reconstructed morphology and con-
cavity volume measured from the CS-ET reconstructions is remark-
ably consistent, even when just 9 projections are used for
reconstruction.

In more recent work, we have used CS-ET to provide equally
high quality reconstructions of more complex samples, including
iron oxide nanoparticles interacting with cadmium selenide/tellu-
ride tetrapods (Fig. 8). The different chemical compositions of the
nanoparticles and tetrapods leads to atomic number contrast in
the HAADF signal, which should be reflected in a different recon-
structed intensity (image grey level) for each species. This informa-
tion is often lost using conventional reconstruction algorithms, but,
as shown in Fig. 8, is successfully recovered via CS-ET, even when
using just 9 projections. Importantly, CS does not require prior-
knowledge of the number of grey levels in the reconstruction, mak-
ing it applicable to a variety of specimens of unknown
composition.

3.2. Gallium-palladium selective hydrogenation catalysts

A fundamental difficulty in conventional electron microscopy
(TEM or STEM) is the analysis of agglomerates, mixtures and com-
posite structures containing densely-packed nanoparticles, be-
cause image interpretation is hampered by multiple particles
overlapping when viewed in projection. We illustrate the value
of ET in such scenarios by describing our recent analysis [21] of
densely-packed nanocrystalline GaPd, selective hydrogenation
catalysts [19], consisting of nanoparticles and aggregates ca. 1-
30 nm in diameter.

Fig. 9a shows an example HAADF-STEM image of the nanopar-
ticles from an ET tilt-series. Semi-automated segmentation (de-
fined below) procedures were applied to the obtained 3D
reconstruction, to identify the individual nanoparticles and
agglomerates of nanoparticles, which were then colour-coded.
(Segmentation of the reconstruction entails assigning each voxel
to a feature of interest, e.g. to a nanoparticle, the support or the
background. Until recently, segmentation in ET was carried out
manually, which is both laborious and prone to user error or bias).
The resulting 3D data set (Fig. 9b), in which each nanoparticle or
agglomerate of nanoparticles has been assigned a colour that dif-
fers from its nearest neighbours, revealed with far greater clarity
their 3D morphology and spatial distribution. Moreover, the seg-
mented tomogram could be analysed quantitatively. As an exam-
ple, Fig. 9c shows in histogram form the size distribution, as well
as pictorially the spatial location of nanoparticles and agglomer-
ates in different size ranges.

More recently [26] we have also applied CS-ET to the analysis of
these nanocatalysts, obtaining a higher fidelity and more readily
segmented reconstruction than when using the conventional SIRT
algorithm. We expect CS-ET to play a primary role in the develop-

ment of more robust and routine quantitative nano-metrological
studies of these and many other densely-populated nanocluster
and nanoparticle systems, including those of particular interest
to colloid and interface scientists.
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Appendix A.1. Compressed sensing and its application to
electron tomography

Rowan Leary and Daniel J. Holland.
Al.1. Introduction

Compressed sensing (CS) [27,28] is a theory that defines the
number of measurements required to faithfully reconstruct a sig-
nal. Further, it provides guidance as to how these measurements
should be obtained. In the following, we outline the key concepts
behind CS and its application in electron tomography (ET).

Al.2. Sparsity

The process of sparse approximation underlies common image
compression algorithms such as the JPEG and JPEG-2000 standards,
which employ the discrete cosine transform (DCT) and discrete
wavelet transform (DWT), respectively, as sparsifying transforms
[29]. In these compression schemes, an image is fully sampled
and the transform coefficients calculated. The large transform do-
main coefficients are stored, while the small coefficients are dis-
carded. There may be many more small coefficients than large
coefficients, and thus when the small coefficients are discarded,
the amount of information representing the image is reduced or
‘compressed.” An inverse transform of the compressed representa-
tion can recover the image with minimal loss of information.

Formally, we begin with a signal x (written as a column vector
with n entries or values). This signal could be a spectrum, an image,
or in the case of ET, a tomogram. We desire to compress X, that is,
describe x using only a small number of coefficients. To do this, we
can express X using a linear combination of basis functions ; (e.g.
sinusoids in the case of the DCT):

Ci = ZW:’J"J‘ (1)
=

where the set of basis functions \s; is chosen such that only s coef-
ficients of ¢ are non-zero. Eq. (1) can be expressed equivalently in
matrix form as:

c=¥x (2)

where each ;; are the elements of the matrix P.

If s < n, then X is said to be sparsely represented in the basis V.
Another way of describing this is to say that all of the information
in x is contained in only s coefficients in the basis . If x can be
well approximated by s < n non-zero coefficients, meaning that
there may be many small, negligible coefficients in ¢, which can
be set to zero, and only s significant coefficients, x is said to be
compressible in W. A compressible representation in the basis ¥
captures only the most important information about X in s
coefficients.
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CS theory uses these ideas of transform sparsity and compress-
ibility during the initial acquisition, aiming to acquire a small num-
ber of samples that capture just enough information about the
signal to be reconstructed. In essence, CS seeks to acquire the sig-
nal directly in compressed form.

Al.3. Sensing

In the CS framework the values of the signal of interest X are not
observed directly, but rather measurements are made against
some test function or sensing waveform ¢; Such a sensing method-
ology is already common in many practical acquisition schemes. In
a conventional imaging process, for example, the sensing wave-
forms are determined by how the lens maps the scene onto each
detector pixel, and the measurements are the intensities at each
pixel. In tomography, the sensing waveforms are the projected
lines through the sample and the measurements are the line inte-
grals; in magnetic resonance imaging (MRI), the sensing wave-
forms are sinusoids and the measured data are Fourier
coefficients. These measurements are non-adaptive, in that they
do not depend on the information content of the signal. Formally,
m correlations are measured between the signal of interest x and
sensing waveforms ¢; from another basis:

bi=> ¢ix, for i=1,..m 3)
=

which can be abbreviated as:
b = dx (4)

where each ¢; represents a row of ®. Incorporating the sparse basis
WV, Eq. (4) can be re-written as:

b =0x=0¥"c=0c (5)

where W* is the inverse transform converting from the sparse basis
to the native domain of the signal, and ® is also an m x n matrix.

A1.4. Compressed sensing (CS)

A common occurrence in many practical applications is that
there are far fewer measurements than unknowns, that is m < n,
and the system of equations is underdetermined, implying there
are an infinite number of solutions consistent with the measured
data.

CS demonstrates that it is possible to recover x in the underde-
termined scenario, provided that:

(1) x can be represented sparsely in the basis V.
(2) ® and ¥ are incoherent.

As stated previously, a signal is said to be sparse if it can be rep-
resented in a known basis by s < n non-zero coefficients. In the
practical application of CS, it is also important to consider signals
that are compressible. The condition of compressibility is more
general than the strict sparsity condition, enabling CS to be applied
to many different signals; in practice, most signals are compress-
ible in some basis, rather than strictly sparse. CS theory states that
x will be recovered at least as well as the s-sparse representation or
approximation of x in the chosen basis. Hence also in the case of
compressible signals, this provides a way of tailoring the recon-
struction to extract information about the signal at the desired le-
vel of complexity, as determined by the level or type of information
captured in the compressive representation.

Incoherence essentially entails that the sensing basis is not eas-
ily represented in the sparse basis. This ensures that the informa-
tion from many coefficients of x is contained in each

measurement b;, and the encoding of the coefficients of x is differ-
ent for each measurement. Another way of interpreting the inco-
herence condition is that in an incoherent sampling regime,
artefacts arising from undersampling add as noise-like interfer-
ence. This allows the true signal coefficients to be recovered as
they stand-out above the interferences. Since it can almost guaran-
tee very high incoherence, randomised sampling has played an
important role in the development of CS. (A simple intuitive exam-
ple of the importance of incoherence is provided in Fig. 2 of [12].)

While in image compression the original image can be recov-
ered simply by applying the inverse transform, CS requires an opti-
misation process to find the sparse coefficients from the
measurements. To achieve this task requires a non-linear algo-
rithm that promotes sparsity, subject to data fidelity. Seeking spar-
sity by directly minimising the number of non-zeros in the sparse
domain is intractable for most real problems. A salient achieve-
ment of CS theory has been to show that the minimisation can
be performed over the sum of the absolute values, known as the
¢1-norm, and defined by ||c||,, = >7icil-

As outlined in [12], ¢;-norm minimisation results in a sparse
solution because many small coefficients tend to be penalised
more than a few larger coefficients; the small coefficients are then
suppressed while the important larger coefficients carrying infor-
mation about the signal in the sparse domain are preserved. In con-
trast, the more established approach of least squares minimisation,
i.e. using the ¢,-norm (defined by ||c||,, = (Zl—|c,-\2)%) on the regula-
rising term, penalises large coefficients, resulting in smooth solu-
tions with many small coefficients.

The ‘standard’ CS approach is to solve:
minimise ||'PX||, subject to ||®x —b]|, <& (6)
where X is the reconstruction of the true signal x from the measured
data b, and ¢ characterises the standard deviation of the noise in the
data. In words, the above minimisation yields the sparsest signal in
the transform domain that is consistent with the acquired measure-
ments. Efficient methods have been developed to solve a minimisa-
tion over the ¢;-norm, such as described by Eq. (6), and there are
also other powerful approaches to sparse recovery that can be used,
including so-called ‘greedy’ algorithms and non-convex minimisa-
tion. We refer the reader to the recent review by Tropp and Wright
[30] for an appropriate overview.

A1.5. The application of compressed sensing to electron tomography

ET reconstruction can be readily considered in terms of the sys-
tem of linear equations b = ®x dealt with in CS. Specifically, it is
possible to consider ® as a real space projection operator, corre-
sponding to some discretized version of the Radon transform,
and the data vector b as the direct projection data [31]. Alterna-
tively, the Fourier slice theorem (see e.g. [32], chapter 3) may be
invoked, which permits the Fourier transform of the projection
data to be considered as radial samples of the object in the Fourier
domain. The sensing matrix ® can then effectively be considered as
an undersampled discrete Fourier operator [5]. In either case, a
number of theoretical and experimental papers have demonstrated
that CS theory is applicable to projection data such as that obtained
in ET [5,12,27,31,33]. However, it is important to note that recov-
ery expectations from experimental ET data should be somewhat
more modest than in many of the purely theoretical simulations
or other empirical contexts, in particular due to the ‘missing
wedge’ of un-sampled information in Fourier space.

Since a variety of different morphologies can be captured using
the various electron microscope imaging modes, it is important to
consider the most appropriate sparsifying transform(s) to be used
in a CS-ET approach. Owing to the widespread need for sparse
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image representation, there are now a range of transforms avail-
able for this task [34].

Many electron microscope images and ET reconstructions may
be sparse in the image domain itself. Correspondingly, imposing
sparsity in the image domain has been demonstrated to reduce
‘streaking’ artefacts and blurring of the object boundaries in ET
reconstructions, especially in the missing wedge direction [5]. It
is also common in CS to impose sparsity via spatial finite differ-
ences, characterised by the ‘total variation’ (TV) in the gradient do-
main, which is ideal for cartoon-like images that consist of
homogenous regions with sharp boundaries (Fig. 5), often referred
to as ‘piecewise constant’ images. Such a constraint would be suit-
able for ET reconstructions of many specimens in the physical sci-
ences that consist of one or a few constituent materials, such as
many nanoparticle systems [5,31]. More complex objects can be
sparsely represented using, for example, a DWT [35]. The suitabil-
ity of DWTs for sparsely representing ET data has been demon-
strated in DWT-based denoising of biological ET reconstructions
[36] and closely related single particle microscopy (SPM) projec-
tion images [37], as well as in projection image orientation deter-
mination in SPM [38]; and more recently in their CS-based
application to SPM 3D reconstruction [39].
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