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a b s t r a c t

Once damaged, cardiac muscle has little intrinsic repair capability due to the poor regeneration potential
of remaining cardiomyocytes. One method of overcoming this issue is to deliver functional cells to the
injured myocardium to promote repair. To address this limitation we sought to test the hypothesis that
electroactive carbon nanotubes (CNT) could be employed to direct mesenchymal stem cell (MSC)
differentiation towards a cardiomyocyte lineage. Using a two-pronged approach, MSCs exposed to
medium containing CNT and MSCs seeded on CNT based polylactic acid scaffolds were electrically
stimulated in an electrophysiological bioreactor. After electrical stimulation the cells reoriented
perpendicular to the direction of the current and adopted an elongated morphology. Using qPCR, an
upregulation in a range of cardiac markers was detected, the greatest of which was observed for cardiac
myosin heavy chain (CMHC), where a 40-fold increase was observed for the electrically stimulated cells
after 14 days, and a 12-fold increase was observed for the electrically stimulated cells seeded on the PLA
scaffolds after 10 days. Differentiation towards a cardioprogenitor cell was more evident from the
western blot analysis, where upregulation of Nkx2.5, GATA-4, cardiac troponin t (CTT) and connexin43
(C43) was seen to occur. This was echoed in immunofluorescent staining, where increased levels of CTT,
CMHC and C43 protein expression were observed after electrical stimulation for both cells and cell-
seeded scaffolds. More interestingly, there was evidence of increased cross talk between the cells as
shown by the pattern of C43 staining after electrical stimulation. These results establish a paradigm for
nanoscale biomimetic cues that can be readily translated to other electroactive tissue repair applications.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, CNT have attracted great interest in the field of
biomedical engineering for a range of applications including
biosensors, cell delivery agents and as supporting structures for
tissue engineering scaffolds [1e3]. Although potential cytotoxicity
of CNT remains a controversial issue, we have previously demon-
strated no adverse effects on MSC behaviour at low concentrations
of both single (SWNT) and multiwall nanotubes (MWNT) [4].
Furthermore, cellular uptake of these electroactive nanoparticles
[4,5] provides a platform for the manipulation of MSC differentia-
tion pathways using electrical stimulation. Previous studies have
arron).
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shown that electrical stimulation promotes a range of cell
responses including reorientation and angiogenesis [6], muscle cell
regeneration [7e9], myogenesis of fibroblasts [10,11], cardiomyo-
genesis of embryonic stem cells [12e14] and enhanced car-
diomyocyte phenotype [15e17].

Some of the initial attempts at promoting cardiomyogenesis
using mesenchymal stem cells (MSC) involved the use of the
controversial demethylating agent 5-azacytidine [18], which has
been shown to induce apoptosis in vivo [19]. Since then a variety of
different approaches have been attempted [20,21] many of which
have been the subjects of clinical trials in the past number of years.
However, evidence of MSC differentiation to a cardiomyogenic
phenotype in vivo has been controversial [22,23] leading to the
concept that functional benefits of MSCs are largely due to para-
crine mechanisms [24,25]. Moreover, recent advances in cell-based
therapies have suggested that cell fate can be manipulated by
internalising micron-sized particles with phenotype altering
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capabilities, without the use of genetic alteration or growth factor
manipulation [26e28]. Directional neurite growth has been
observed using carbon nanotube patterned structures as a biomi-
metic cue in other applications [29]. Indeed, cardiac muscle itself
has a complex structure with microscale to nanoscale organisation
and previous studies have suggested that small topographical cues
can affect cardiomyocyte attachment and tissue remodelling
[17,30,31]. The exploitation of the synergy between electrical
properties of CNT and the differentiation potential of stem cells
presents an opportunity to promote cardiomyogenesis in vitro. To
this end, we introduce a platform for creating cells of a car-
dioprogenitor phenotype that combines an electroactive nano-
particle as a biomimetic cue with electrical stimulation of human
MSCs. This study aimed to test the hypothesis by applying an
electrical stimulus using two approaches, 1) utilisation of CNT as an
internal conduit of the stimulus to elicit a biological response in
MSCs and 2) provision of an external promoter in the form of a CNT-
based randomly oriented nanofibre scaffold to induce MSC differ-
entiation towards a cardiomyocyte lineage in vitro.

2. Materials and methods

2.1. Screening CNT concentration for optimal electrical conductivity

As a first step, it was necessary to determine the optimum concentration of CNT
for electrical stimulation. As a follow up to a previous study [4], a range of CNT
concentrations from 0 to 0.16 mg/ml were screened in terms of electrical conduc-
tance. In brief, human MSCs were isolated, characterized and their phenotype
confirmed as previously described [4]. Subsequently, 3000 MSCs/cm2 were seeded
per well of a 6-well plate. After 24 h, the cells were exposed to aseptically prepared
CNT suspensions of 0.00128, 0.0064, 0.032, 0.16 and 0.8 mg/ml of COOH-
functionalized SWNT in MSC medium (DMEM-low glucose containing 10% foetal
bovine serum and 1% antibiotic-antimycotic). The electrical resistance was
measured continuously for 24 h using a UT70B data acquisition card connected to
a computer as described previously [4]. The resistance of beating neonatal rat car-
diomyocytes in cell culture medium was measured as a positive control. Neonatal
cardiomyocytes were isolated from 1 to 4 day old rats; rat hearts were removed,
homogenized and digested with trypsin overnight. Collagenase was added to digest
the extracellular matrix and cardiomyocytes were isolated by differential centrifu-
gation through a discontinuous Percoll gradient [32]. As described previously, it is
noted that above concentrations of 0.032 mg/ml CNT, the conductance of the cell
culture medium reached its percolation threshold (Fig. 1). Moreover, concentrations
of CNT above 0.032 mg/ml CNT were shown to adversely affect cell viability [4]. As
a result, a concentration of 0.032 mg/ml CNT was selected as the optimal concen-
tration for electrical stimulation in this study.

2.2. CNT/PLA nanofibre scaffold preparation

A 30-wt% solution of poly-L-lactide acid (PLA) (Sigma, UK) in a 70:30 mixture of
dichloromethane and dimethylformamide was created. As previously described
Fig. 1. The effect of CNT concentration on electrical conductance of MSC containing CNT in c
culture mediumwith MSC containing CNT was twice that of cell culture mediumwith MSC a
***P � 0.0001 between test groups and control neonatal rat cardiomyocytes. There was no
0.16 mg/ml. Error bars represent standard error of the mean (n ¼ 3).
[33], 2-wt% COOH-functionalized SWNT (Nanocyl, Belgium) were added to the PLA
solution and used to create the electrospun randomly oriented nanofibre scaffolds
using a voltage of 15 kV and a feed rate of 0.05 ml/min, with the collector screen
15 cm from the syringe needle. As a method of control electrospun randomly
oriented PLA nanofibre scaffolds were also produced without CNT.

2.3. Electrical stimulation of MSCs in the presence of CNT

As a first step, humanMSC s were seeded in T75 tissue culture flasks at a density
of 3000 cells/cm2 and cultured in MSC growth medium (aMEM, 10% FBS, 1% peni-
cillin/streptomycin). After 24 h, themediumwas replacedwithMSC growthmedium
containing 0.032 mg/ml CNT for a further 24 h as described previously [4]. CNT
containing mediumwas removed and cultures washed twice with growth medium.
Thereafter, cultures were allowed to grow for 4e5 days to approx. 80% confluence in
mediumwithout CNT. Control cultures were treated equivalently but not exposed to
CNT. Confluent cultures were trypsinised and replated at 5000 cells/cm2 in 4-well
tissue culture plates (Nunc Multidishes Nunclon�D). Each plate, with two wells
seeded with control MSCs and two wells with MSCs previously exposed to CNT
containing medium, were placed in a custom built chamber of an electrophysio-
logical bioreactor. Once approx. 60% confluency was reached to enable cells to
withstand the initial shock of the current, two wells with MSCs and two wells with
MSCs previously exposed to CNT on each plate were exposed to an electrical current
of 0.15 V/cm for 2 ms duration at a frequency of 1 Hz for a 14-day period with MSC
growth medium changed every 3 days. Additional plates were set up in the same
manner as unstimulated controls.

The CNT based scaffolds were seeded at a density of 20,000 cells/cm2 as
previously described [33], placed in the same tissue culture vessels, cultured in MSC
growth medium and exposed to the same electrical signal for 10 days; this time was
found to be optimal as cultures were over confluent on the scaffolds by 14 days. As
controls, MSCs were cultured in the absence of carbon nanotubes with and without
electrical stimulation.

2.4. Quantification of cell alignment

In order to quantify the orientation of cells after electrical stimulation, images
were taken from 4 independent experiments for 2 donors for the 4 experimental
conditions (32 images in total, with>1000 cells). Using ImageJ analysis as previously
described [34], images of the cells were thresholded and in some cases manually
edited to highlight cell boundaries. The particle analysis tool was used to give a best-
fit ellipse for each cell. 0� alignment was set perpendicular to the direction of the
current i.e., parallel to the electrodes. The degree of alignment was measured and
results were represented as a percentage of the total number of cells captured in the
field of view.

2.5. Gene expression analysis using quantitative real time polymerase chain reaction
(qPCR)

Changes in gene expressionwere investigated using semi-quantitative real time
polymerase chain reaction (qPCR) for a range of cardiac markers including the early
cardiac muscle marker myocyte-specific enhancer factor 2C (MEF2C), cardiac
troponin t (CTT) and the later marker cardiac myosin heavy chain (CMHC), as they
are known to be involved in morphogenesis, myogenesis, the assembly of muscle
proteins and the coordination of contractile response in the developingmyocardium
after mid-foetal development [35e37]. Therefore, the presence of these markers
ulture medium. Control was neonatal rat cardiomyocytes. Electrical conductance of cell
lone, *P � 0.05 between 0 and 0.0064 mg/ml, 0 and 0.032 mg/ml and 0 and 0.16 mg/ml
significant difference (ns) in electrical conductance between the 0.032 mg/ml and the
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would provide evidence of differentiation towards a cardiac genotype [16,20].
Moreover, to determine whether there was direct communication between the cells
connexin43 (C43), a gap junction protein found in myocardium, was also investi-
gated. RNA was isolated from MSCs directly after electrical stimulation using TRIzol
reagent and transcribed to cDNA using reverse transcriptase. GAPDH was used as
a housekeeping control and all cultures were normalized to unstimulated MSCs.

2.5.1. Protein expression using Western blot analysis
Changes in MSC phenotype were examined by Western blot analysis and

immunofluorescent staining for a range of cardiac-associated proteins, including,
NKx2.5, GATA-4, CTT, CMHC and connexin43. NKx2.5 is one of the earliest markers of
cardiogenesis and is thought to work in combination with GATA-4, an early marker
shown to regulate some of the genes involved in cardiac muscle differentiation and
function during embryonic development [38]; hence the expression of these cardiac
transcription factors would indicate early cardiomyogenesis. For western blot
analysis 50 mg of protein was separated by SDS-PAGE and transferred to PVDF-
membrane for detection of the cardiac markers NKx2.5, GATA-4, cardiac troponin
T, and connexin43. CMHC was not used, as the size of the protein was too large for
western blot analysis. Densitometry was performed using the Fluor Chem analysis
tool with the background value subtracted from individual values and bands
normalized to housekeeping CuZn SOD (Copper Zinc Superoxide Dismutase) values.
Fold change was calculated with respect to protein from control MSCs cultured in
MSC growth medium.

2.5.2. Immunofluorescence staining
As it was not possible to collect enough protein from the MSCs seeded on the

CNT scaffolds, protein expressionwas examined using immunofluorescence staining
for both the cell cultures and the cell-seeded scaffolds. The medium was removed
from the 4-well plate and the cultures were washed twice in D-PBS. Cells were fixed
in 4% paraformaldehyde for 20 min and the cell membrane permeabilized with 0.5%
Triton-X100 for 15 min. After intensive washing with D-PBS, the cultures were
blockedwith 10% normal goat serum and 0.5% bovine serum albumin (BSA) for 1 h to
prevent non-specific binding of antibodies. Cells were incubated overnight at 4 �C
with the following mouse monoclonal primary antibodies at a 1:100 dilution in 1%
normal goat serum and 0.5% BSA; GATA-4 (Santa Cruz), cardiac troponin T (Abcam),
cardiac myosin heavy chain (Abcam) or connexin43 (Santa Cruz). Following
4 � 5 min washes with D-PBS; cells were incubated with Alex Fluor 488-conjugated
Goat Anti-Mouse secondary antibody (Molecular Probes) at a dilution of 1 in 500 for
1 h in the dark at room temperature. Cell nuclei were stained with 40-6-Diamidino-
2-phenylindole (DAPI) at a dilution of 1:1000 in D-PBS. Following further intensive
washing, cells were covered with D-PBS and imaged using the fluorescent Olympus
1X71 microscope.

2.6. Statistical analysis

Differences between the test groups for the electrical conductance were
assessed for significance using a one-way ANOVA and Tukey post hoc analysis using
the software programme GraphPad Prism. A P value of <0.05 was considered
statistically significant.

3. Results

3.1. Electrical conductance

As seen in Fig. 1, there appeared to be a correlation between the
concentration of CNT in the medium containing MSCs and the
electrical conductivity. Moreover, the electrical conductivity of cell
culture medium containing MSCs exposed to a concentration of
0.032mg/ml CNTwas approximately twice that of mediumwithout
CNT (Fig. 1), while there was no significant difference between the
electrical conductivity of medium alone when compared to
medium plus MSCs.

3.2. Cell morphology and orientation

After electrical stimulation the unstimulated MSCs either
exposed to the medium containing CNT or seeded on the CNT/PLA
scaffolds maintained a typical fibroblast-like morphology, while
the electrically stimulated MSCs, MSCs exposed to medium con-
taining CNT and MSCs seeded on the CNT based scaffolds appeared
to elongate and became more spindle-like (Fig. 2A and B). With
respect to cell alignment, it can be seen that the electrically stim-
ulated cells reorient perpendicular to the direction of the current,
while the unstimulated cells retain a random orientation. This is
especially evident for the electrically stimulated MSCs exposed to
medium containing CNT. Using ImageJ analysis, this observation
was quantified, where it was revealed that 49% of the electrically
stimulated MSCs exposed to medium containing CNT realigned
between 0 and 10�. This trend was also observed for the MSCs
seeded on the CNT/PLA scaffolds and electrically stimulated for 10
days, where 30% of the cells reoriented between 0 and 10� (Fig. 3B).

3.3. MSC gene expression

As shown in Fig. 4A, an upregulation in a range of cardiac
markers was observed for MSCs exposed to medium containing
CNT and electrically stimulated MSCs. Although gene expression
was examined 14 days after treatment, there was still evidence of
an upregulation in the early marker MEF2C, with a 4.8 fold increase
observed for MSCs exposed to medium containing CNT and a 5 fold
increase seen for electrically stimulated MSCs. When the electrical
stimulus and the CNT were combined the affect was diminished
with a 2.1 fold increase in expression observed. In terms of cardiac
function, there was no trend revealed between the test groups for
SMA expression, however, CTT was upregulated by 2.8 fold and 3.1
fold for the electrically stimulated MSCs and electrically stimulated
MSCs exposed to medium containing CNT, respectively. The
greatest increase in cardiac marker expression was observed for
CMHC, a later cardiac marker, where a 36 fold increase in gene
expression was observed after 14 days electrical stimulation
consistent with a change in MSC genotype. In terms of cell-to-cell
communication, an increase in C43 was observed for MSCs
exposed tomedium containing CNTand after electrical stimulation.

With respect to the cell-seeded scaffolds, although the presence
of the early markers was detected, there was no dramatic change in
expression as a result of electrical stimulation, either with or
without the presence of CNT (Fig. 4B). As in the case of the cells, the
greatest increase in cardiac marker gene expression was observed
for CMHC, whereby a 5.6 fold increase was observed when cells
were seeded on the CNT based scaffold, a factor of 12 when the
MSCs were electrically stimulated on the PLA and a factor of 2.7
when electrically stimulated on the CNT/PLA scaffold, suggesting
that the presence of the CNT or electrical stimulation are important
regulators of gene expression. Interestingly, when CNT and elec-
trical stimulation were combined, the resulting change in gene
expression was reduced, suggesting that maximal differentiation
has been reached and a more mature cardioprogenitor cell is
observed.

3.4. Protein expression of MSCs

After 14 days electrical stimulation, protein was isolated from
the MSCs exposed to medium containing CNT for western blot
analysis. Electrically stimulated MSCs exposed to medium con-
taining CNT showed positive bands for NKx2.5, GATA-4, CTT and
connexin43 (Fig. 5Ai), with over 4 times more NKx2.5, twice more
GATA-4, and 2.4 times more CTT present compared to unstimulated
MSCs (Fig. 5Aii). Electrically stimulated MSCs also revealed
evidence of cardiomyogenesis with a 4 fold increase in NKx2.5, a 1.4
fold increase in GATA-4 and a 1.2 fold increase in CTT (Fig. 5Aii).
With respect to the gap junction protein C43, there was an increase
observed for both electrically stimulated cultures with over 3.5
times more protein present for the stimulated MSCs and 1.4 times
more protein present in the MSCs exposed to medium containing
CNT when compared to the unstimulated MSC control.

Electrically stimulated MSCs exposed to medium containing
CNT stained positive for CTT, CMHC and connexin43 (Fig. 5Bi). MSCs
and MSCs exposed to medium containing CNT controls also stained



Fig. 2. Effect of CNT and/or electrical stimulation on MSC morphology in (A) monolayer of MSC containing CNT after 14 days electrical stimulation (Magnification 10�).
Stimulated MSC appeared elongated in shape after 14 days compared to the fibroblastic morphology of the unstimulated control cultures and (B) MSC seeded on CNT
scaffolds after 10 days electrical stimulation. Electrically stimulated MSC appeared to have an elongated morphology similar to that of the electrically stimulated MSC
containing CNT.
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positive for connexin43. However, staining in these cultures had
a punctuate appearance with little or no evidence of cell-to-cell
cross talk. Electrical stimulation resulted in significantly induced
levels of connexin43 and, more importantly, evidence of cross talk
with neighbouring cells, as highlighted in Fig. 5Bi. This cell-to-cell
communication appeared to be more pronounced after electrical
stimulation of MSCs exposed to medium containing CNT. A similar
observation was made for the scaffolds, where increased levels of
CTT and CMHC fluorescent staining were observed for the electri-
cally stimulated MSCs (Fig. 5Bii).

4. Discussion

Cardiac muscle is an electroactive tissue capable of transferring
electrical signals and allowing the heart to beat. In an effort to
develop a repair modality for damaged cardiac muscle, electro-
active carbon nanotubes were employed as an electrical stimulus to
provide a pathway to promote MSC differentiation towards a car-
dioprogenitor phenotype. At present, there are few reports
assessing the conductivity of cells containing CNT, however,
a recent study by Ateh revealed that the conductivity of CNT was
stable in biological microenvironments [39]. We examined the
affect of CNT concentration on MSC conductance in cell culture
medium and found a positive correlation in electrical properties
without adversely affecting the biological properties of the MSCs,
thereby confirming the findings of Ateh [39].

Electroactive CNT based scaffolds with following the materials
properties; Tg of 63 �C, Tm of 172 �C, percentage crystallinity of
44%, tensile strength of 2.3 MPa, an elastic modulus of 159 MPa,
a percentage elongation of 110% and an electrical resistance of
7 � 10�6 U were also employed [33] to provide an electrical
stimulus for MSC manipulation. Although, CNT based scaffolds
have been employed for bone, cartilage and neural tissue repair
[2,40e46], this is the first study to show the potential of CNT
based scaffolds for MSC differentiation towards a car-
dioprogenitor cell. Nonetheless, the results compare favourably
with these other studies, in that they highlight the importance of
electrical properties in the design of biomaterials for electro-
active tissue repair.

As mentioned previously, it is well known that mechanical and
electrical stimulation alters cell morphology and cell alignment
[7,17,47e50]; herein the MSCs are elongated in shape after
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Fig. 4. (A) Detection of cardiac genes for MSC exposed to medium containing CNT
after electrical stimulation for 14 days in culture using qPCR. Graph represents
expression of cardiac genes in samples normalized to MSC cultured in MSC growth
medium. (B) Detection of cardiac genes for MSC seeded on CNT scaffolds after elec-
trical stimulation for 10 days in culture using qPCR. In both cases there was an
upregulation in gene expression of cardiac myosin heavy chain in the presence of CNT
and after electrical stimulation. Results are representative of 2 independent experi-
ments for 2 donors.

A

B

Fig. 3. Cell reorientation after electrical stimulation. Quantification of cell orientation
using ImageJ analysis for (A) MSC exposed to medium containing CNT and (B) MSC
seeded on CNT scaffolds. Electrical stimulation of MSC exposed to medium containing
CNT or MSC seeded on CNT scaffolds resulted in cell reorientation perpendicular to the
direction of the current between 0 and 10� . Results are representative of 4 indepen-
dent experiments for 2 donors.
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electrical stimulation both in the presence or absence of CNT.
However, it is interesting to note that the majority of cells exposed
to medium containing CNT or seeded on the CNT based scaffolds
reorient perpendicular to the electrical current at an angle between
0 and 10�. This correlates with previous studies by Robinson [51]
suggesting that cells align perpendicular to the direction of the
current to minimize the voltage drop across the cells. With respect
to electrical stimulation of MSCs for cardiac muscle applications,
these changes in cell alignment comparewell with previous studies
by Guan [47] and Genovese [54] where changes in cell alignment
were observed after electrical stimulation.

The effect of electrical stimulation on cardiac marker gene
expression was examined for cells exposed to medium containing
CNT and cells seeded on electrospun randomly oriented nanofibre
CNT based PLA scaffolds. Although the presence of range of cardiac
markers was detected for all conditions, the levels of expression
remained largely unaffected for smooth muscle alpha actin or
cardiac troponin t. However, changes were observed for MEF2C
and CMHC mRNA levels. These genes were upregulated approx. 5
fold in MSCs previously exposed to medium containing CNT at 14
days. Electrical stimulation also resulted in increased levels of
MEF2C (5 fold) and CMHC (40 fold) mRNA at this time point.
Paradoxically, the combination of CNT and electrical stimulation
had no impact on expression of these genes, a pattern that was
repeated for expression of CMHC on cell-seeded scaffolds. To
resolve this issue and the higher levels of CMHC protein levels
detected in both systems after exposure to a combination of CNT
and electrical stimulation we briefly examined gene expression at
7 days. Preliminary data in one donor indicated that expression of
MEF2C and CMHC in MSCs was not increased in response to
electrical stimulation at 7 days, however, exposure to CNT alone
result in increased expression of MEF2C (8 fold) and CMHC (11
fold). Electrical stimulation synergised with exposure to CNT
resulting in a slight increase of MEF2C mRNA levels to 10 fold over
that in MSCs alone and a significant increase in CMHC mRNA
levels (>8000 fold; results not shown). This data correlates with
other studies [54e56] and in particular with the findings of Guan
and co-workers who reported that cells achieving a higher degree
of cell alignment had a greater expression of the cardiac markers
MEF2C, Nkx2.5 and GATA-4 [47].

Of more interest, protein expression of cardiac-associated
markers was increased in the presence of CNT after electrical
stimulation. In particular, the immunofluorescent staining for
CTT and CMHC expression showed a synergistic effect, suggest-
ing that the CNT are providing a biomimetic stimulus for MSC
differentiation. Initially, this may seem at odds, but can be
explained, by suggesting that the combination of CNT and elec-
trical stimulation may lead to a more rapid differentiation to
a cardioprogenitor phenotype with maximal effect achieved at
the times used, resulting in downregulation of gene expression.
These findings compare with other studies where micron-sized
particles, biomaterials and carbon nanotubes have been shown
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to provide cellular cues for promoting MSC differentiation or
altering cell fate [26,28e31,52,53]. These data suggest that the
synergy between electrical stimulation and carbon nanotubes
offers a different approach for the pre-differentiation of MSCs to
create cardioprogenitor cells. In addition to agreeing with
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5. Conclusions

Using a two-pronged carbon nanotube approach, these data
show that by providing a biomimetic electroactive cue, manipula-
tion of the MSC differentiation pathway can be achieved by har-
nessing the electrical properties of a carbon nanotube based
medium or scaffold. Since proof of principle has been established
herein, the biomimetic properties of such a platform can be now
exploited even further and tailored for other electroactive envi-
ronments in the heart, the brain or the spinal cord. Ultimately, this
strategy provides an opportunity for future studies in the quest to
use CNT and MSCs to promote electroactive tissue repair.
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