
at SciVerse ScienceDirect

Polymer 53 (2012) 3409e3415
Contents lists available
Polymer

journal homepage: www.elsevier .com/locate/polymer
Structures and interactions between two colloidal particles in adsorptive polymer
solutions

Wenwu Li a, Xingkun Man a, Dong Qiu a, Xinghua Zhang b, Dadong Yan b,*

aBeijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
bDepartment of Physics, Beijing Normal University, Beijing 100875, China
a r t i c l e i n f o

Article history:
Received 21 October 2011
Received in revised form
8 May 2012
Accepted 9 May 2012
Available online 17 May 2012

Keywords:
Adsorption
Bridge structure
Self-consistent field theory (SCFT)
* Corresponding author.
E-mail addresses: dqiu@iccas.ac.cn (D. Qiu), yandd

0032-3861/$ e see front matter � 2012 Elsevier Ltd.
doi:10.1016/j.polymer.2012.05.017
a b s t r a c t

The role of weak adsorptive polymer chains in the colloidal particles solution is studied by self-consistent
field theory (SCFT). The numerical results show the potential between colloids are attractive interaction.
Besides the depletion effects the chain conformations such as loop, tail and bridge between two spherical
colloidal particles play important roles. The quantitative polymer concentration dependent chain
conformations and then the effective potential are also addressed.
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1. Introduction

Two phenomena are very important in polymer physics study
which are adsorption and depletion. Adsorption effect of colloid-
polymer mixtures is widely studied in industrial and biological
applications [1,2], such as adhension, lubrication, improvement of
the rheological and mechanical properties of a system, and so on.
The adsorption is quite common in colloid-polymer mixtures.
Usually, the polymer systems demonstrate distinctive phenomena
due to the rich chain conformation. The conformation of an
adsorbed polymer chain can be described in terms of loops and tails
[3]. Moreover, if the chain is long enough, there exists another
structure, bridge, which links different colloidal particles. In
Ref. [4], the authors studied the loop and tail structures of
adsorptive polymers on a single colloidal particle.

On the other hand, the depletion effect, also plays an important
role in applications, such as wastewater treatment and protein
crystallization. It is theresultof theconformationalentropydrivingof
polymer chains [5]. The depletion effect has been investigated
extensively, as for two-plate [3,6e10]. However, the case of two
sphere is verydifferent, and less intensive than the two-plate case [5].

In the recent years, more and more people paid close attention
to the studies of the so-called polymer-grafted particles, and many
@bnu.edu.cn (D. Yan).
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theoretical methods are presented, such as scaling, the description
of a colloidal particle clothed with polymers [11], and the interac-
tion between polymer-grafted particles [12]. In these studies, the
number of the polymer chains of the grafting surface, which
describes by grafting density, is fixed. The chains can move on the
grafting surface freely, but cannot escape from the surface. This
corresponds to a strong-adsorptive case. In the present study, we
focus on the system inwhich the polymers are fillers and physically
are adsorbed on the colloids by using SCFTwhich is commonly used
in polymer system [13e15].

In certain situations, it is interesting to investigate other struc-
tures, such as bridge, besides loop and tail. In Ref. [16], bridging and
looping were studied in multiblock copolymer melts. The loop is
defined by the configurations of which both ends of the block
reside on the same interface, while the bridging is defined by the
configurations of which connects one interface with another. At the
same time, the author defined the fraction of the bridging.
However, it is hard to generalize to other cases. In this paper, we
investigate the structures mentioned above by dividing the prop-
agator. There is of course another structure, namely, train structure.
However, this structure will not be considered in the present case,
since its physical effects are not important. We focus on the
distributions of these three structures by employing SCFT in
bispherical coordinate systems. The adsorption makes the colloidal
particle clothed with polymers. But the number of polymers which
cloth the colloidal particle is not fixed, it varies with the changes of
the spacing of the two colloidal particles and some form the
bridges, which is different from that in Ref. [12]. At the same time,
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we investigate the potential between the two spheres. It is different
from that in Ref. [5], which is nonadsorptive polymer solution, and
also different from that in Ref. [4], which is strong-adsorptive and in
a single spherical coordinate system. Thus the present case can fill
the gap between Ref. [5] and Ref. [12].

This paper is organized as follows. In Section 2, we outline the
SCFT for a polymer solution in the grand canonical ensemble, and
describe the three kinds of structures. Also we develop the
numerical method to solve the self-consistent field equations in the
bispherical coordinate. In Section 3, we give the results and
discussions. In Section 4, we present the conclusions.
2. Theory and numerical methods

2.1. Theory

In this paper, we consider an absorptive polymer solution with
colloidal particles, which have the same radius, R. The statistical
segment length b, and the factor of kBT are taken as the units of
length and energy, respectively. For an incompressible polymer
solution in volume of V, its grand potential in equilibrium with
a bulk reservoir is given by [20,21].

G
kBT

¼
Z
V

dr
h
cfpðrÞfsðrÞ�upðrÞfpðrÞ�usðrÞfsðrÞ

i
�eDmpQp

�eDmsQs; (1)

where c is the FloryeHuggins parameter, which characterizes the
effective interaction between solvent molecules and polymer
segments; fjðrÞ is the volume fraction, and Sjfj(r) ¼ 1; uj(r) is the
corresponding self-consistent field; Dmj is the exchange chemical
potential, where all the above j¼ p for polymer or s for solvent;Qs is
the partition function for the solvent molecule in the field of us(r),
given by Qs ¼

R
dre�usðrÞ; Qp is the single chain partition function in

field of up(r), given by Qp ¼
R
drqpðr;NÞ, where qp(r,N) is the prop-

agator of the chain with the degree of polymerization N and one
end at the spatial position r. Propagator qp(r,N) is determined by the
modified diffusion equation.

v

vt
qpðr; tÞ ¼ b2

6
V2qpðr; tÞ � upðrÞqpðr; tÞ; (2)

where t is the arc length along polymer chain. In the following
discussions, we omit the subscript “p” for convenience. The initial
condition is q(r,0) ¼ 1. As the boundary condition, there is
a boundary condition vq/vx þ kq ¼ 0 at x ¼ 0 suggested by de
Gennes in his famous book [7], and this is a 1-dimensional equa-
tion. In our case, it is difficult to define a similar adsorbed layer
profile such as in Ref. [4], because the bispherical coordinate is
a non-uniformmesh. Considering the calculability for our cases, we
use the boundary condition, Vqðr; tÞ$n̂þ kqðr; tÞ ¼ 0, instead of
defining an adsorbed layer profile [4], where the unit vector n̂ is the
exterior normal vector of the spherical surface, while k is the
parameter which characterizes the adsorptive interaction. This is
a 3-dimensional equation which is similar to the 1-dimensional
case. According to de Gennes, when k$x�1, it is called weakly
adsorbed [7], where x is the range of interaction, which is assumed
to be small of order of Kuhn length. By the way, as in many studies,
the interaction between two colloidal particles is ignored in our
study. Moreover, q(r,t) equals the value of the bulk phase at infinity.

The density profiles fp(r) and fs(r) and the corresponding
auxiliary fields up(r) and us(r) can be obtained from the following
self-consistent field equations:
upðrÞ � usðrÞ ¼ c
h
1� 2fpðrÞ

i
; (3)

fpðrÞ ¼ eDmp

ZN
0

dtqpðr; tÞqpðr;N � tÞ; (4)

fsðrÞ ¼ eDms e�usðrÞ: (5)

The choices of Dmp and Dms are the same as in Ref. [5].
After obtaining the density profiles and the self-consistent

fields, we calculate the excess free energy with respect to the
homogenous state,

DFðdÞ ¼ GðdÞ � G0; (6)

where d ¼ D � 2R, which is the separation between the surfaces
along the line of centers of two spheres with radius R and
centerecenter distance D; G0 is the grand potential of bulk phase in
V given in Ref. [5].

The potential U(d) between the two spheres is given by,

UðdÞ ¼ DFðdÞ � DFðNÞ: (7)

2.2. Sketch of the bispherical coordinate systems

It is appropriate to adopt the bispherical coordinate system for
the present case. So let us recall it briefly at first, the reader who
interests in it can find the detailed description in Refs. [17e19].

The relations between bispherical coordinates (h,q,4) and
Cartesian coordinates (x,y,z) are given by,

x ¼ a sin q cos4
coshh�cos q

; y ¼ a sin q sin4

coshh�cos q
; z ¼ a sinhh

coshh�cos q
; (8)

where a is the distance from the origin, which is defined by h ¼ 0
and q ¼ p, to the poles, of which h ¼ �N. In this paper, we take hþ
and h� as the h coordinates of the spherical surfaces. We have
hþ ¼ (1/2) ln [(b2 � 2)/2 þ b4 � 4b2/2], and obviously h� ¼ �hþ,
where b¼ D/R. Henceforth, we call one sphere as hþ and another as
h�. The constant-q surfaces are perpendicular to the constant-h
surfaces.

Using the transformation of the integral measures in different
coordinate systems, we obtain the metric coefficients associated
with the bispherical coordinates hh ¼ hq ¼ a/Q(h,q) and h4 ¼ a sin q/
Q(h,q), where Q(h,q) ¼ cosh h� cos q. In the discussions, 4 will be
omitted because of the symmetry. We use a uniform mesh to
discrete the (h,q) space as follows,

hi ¼
i
Nh

hþ; i ¼ �Nh;.;Nh; (9)

qj ¼
jp
Nq

; j ¼ 0;1;/;Nq: (10)

The point (0,0) represents the infinity.

2.3. Theory continued

To study the distributions of different conformation structures
of the polymer chains, we divide the propagator q(r,t) into four
parts,

qðr; tÞ ¼ qaþðr; tÞ þ qa�ðr; tÞ þ qf ðr; tÞ þ qa�ðr; tÞ; (11)
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where qaþ(r,t) and qa�(r,t) denote the propagators which adsorb on
the constant-h surfaces of hþ and h�, respectively; qf(r,t) is the free
part, namely adsorbs neither on hþ nor on h�; qa�(r,t) denotes the
propagator which adsorbs both on hþ and on h�. With these four
propagators, we define the distributions of volume fraction of
segments in the spatial point r which coming from free, loop, tail,
bridge chains, respectively, given by,

ffreeðrÞ ¼ eDmp

Z
dt qf ðr; tÞqf ðr;N � tÞ; (12)

floopðrÞ ¼ eDmp

Z
dt
h
qaþðr; tÞqaþðr;N � tÞ

þ qa�ðr; tÞqa�ðr;N � tÞ
i
; (13)

ftailðrÞ ¼ 2eDmp

Z
dt qf ðr; tÞ

h
qaþðr;N � tÞ þ qa�ðr;N � tÞ

þ qa�ðr;N � tÞ
i
; (14)

fbridgeðrÞ ¼ 1� ffreeðrÞ � floopðrÞ � ftailðrÞ: (15)

By the way, when we talking about the distribution of volume
fraction of segments, we fix the spatial point r. In other words, we
consider the contribution belongs to which configuration in the
fixed spatial point r.

Furthermore, we can obtain the average tail length ltail in
bispherical coordinates. For hþ sphere, it is given by,

lhþ
tailðqÞ ¼ lim

h/hþ

Z
tqf ðh; q; tÞqaðh; q;N � tÞdtZ
qf ðh; q; tÞqaðh; q;N � tÞdt

: (16)

Obviously, the average tail length of h� sphere is the same as that of
hþ for symmetry.
2.4. Further discussions of the initial and boundary conditions

In the bispherical coordinate system, the propagator can be
rewritten as follows,

qðh; q; tÞ ¼ qaþðh; q; tÞ þ qa�ðh; q; tÞ þ qf ðh; q; tÞ þ qa�ðh; q; tÞ;
(17)

where q(h,q;t) is the total propagator, which satisfies the initial
condition q(h,q;0) ¼ 1, and the boundary conditions,

½Vqðh; q; tÞ$n̂þ kqðh; q; tÞ�jh¼hþ;h�
¼ 0; (18)

v

vq
qðh; q; tÞ

����
q¼0;p

¼ 0: (19)

Here, the meanings of n̂ and k can be found in the above discus-
sions, and the detailed derivation of above boundary conditions in
bispherical coordinates is provided in the Appendix. The propa-
gator qaþ(h,q;t) denotes the propagator which adsorbs on hþ, which
satisfies the initial condition qaþ(h,q;0) ¼ 1, and the boundary
conditions,

h
Vqaþðh;q;tÞ$n̂þkqaþðh;q;tÞ

i���
h¼hþ

¼ �Vqf ðh;q;tÞ$n̂
���
h¼hþ

; (20)
v

vq
qaþðh; q; tÞ

����
q¼0;p

¼ 0; (21)

qaþðh; q; tÞ
���
h¼h�

¼ 0: (22)

Similarly, we have the definition for the propagator qa�(h,q;t) if we
use h� instead of hþ in the above three equations. The propagator
qf(h,q;t) is the free part with the initial condition qf(h,q;0) ¼ 1, and
the boundary condition

qf ðh; q; tÞ
���
h¼hþ;h�

¼ 0: (23)

The propagator qa�(h,q;t) can be obtained by the above other four
propagators.

2.5. Numerical methods for solving the modified diffusion equation

Now we employ the finite difference method and alternating
direction implicit (ADI) method to solve the modified diffusion
equation. Themodified diffusion equation in the bispherical system
is given by [5,19],

vqðh; q; tÞ
vt

¼ b2

6
Q2

a2

"
v2

vh2
qðh; q; tÞ � sinh h

Q
v

vh
qðh; q; tÞ

þ v2

vq2
qðh; q; tÞ þ 1

Q
cosh h cos q� 1

sin q

v

vq
qðh; q; tÞ

#

� uðh; qÞqðh; q; tÞ:
(24)

The initial condition of propagator q(h,q;t) is q(h,q;0)¼ 1 for all (h,q),
but the boundary conditions here are different from those in
Ref. [5]. Instead, we use Vqðh; q; tÞ$n̂þ kqðh; q; tÞ ¼ 0 for h ¼ hþ or
h ¼ h�, and vq(h,q;t)/vq ¼ 0 for q ¼ 0 or q ¼ p. However, when we
take q/0 and q/p, we must be careful, for,

lim
q/0;p

cosh h cos q� 1
Q sin q

v

vq
qðh; q; tÞ ¼ v2

vq2
qðh; q; tÞ; (25)

which makes the modified diffusion equation to reduce to those
in Ref. [5,19],

vqðh; q; tÞ
vt

¼ b2

6
Q2

a2

"
v2

vh2
qðh; q; tÞ � sinh h

Q
v

vh
qðh; q; tÞ

þ 2
v2

vq2
qðh; q; tÞ

#
� uðh; qÞqðh; q; tÞ: (26)

The steps of discretizing the modified diffusion equation in the
uniform mesh of the space (h,q) using the finite difference method
are the same as those in Ref. [5], and the derivatives of any function
f(h,q) at point (hi,qj) are replaced by,

v

vh
fi;j ¼

fiþ1;j � fi�1;j

2Dh
; (27)

v

vq
fi;j ¼

fi;jþ1 � fi;j�1

2Dq
; (28)

v2

vh2
fi;j ¼

fiþ1;j þ fi�1;j � 2fi;j
ðDhÞ2

; (29)
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v2

vq2
fi;j ¼

fi;jþ1 þ fi;j�1 � 2fi;j
ðDqÞ2

; (30)

whereDh andDq are the step sizes of the uniformmesh,Dh¼ hþ/Nh,
and Dq ¼ p/Nq. Thus we obtain the discretized modified diffusion
equation,

v

vt
qi;j ¼

b2

6

Q2
i;j

a2

"
qiþ1;jþqi�1;j�2qi;j

ðDhÞ2
�sinhhi

Qi;j

qiþ1;j�qi�1;j

2Dh

þ 1
Qi;j

coshhicosqj�1
sinqj

qi;jþ1�qi;j�1

2Dq
þqi;jþ1þqi;j�1�2qi;j

ðDqÞ2
#

�ui;jqi;j:

(31)

The cases q ¼ 0 and p are the same as the above treatments.
We discretized the so-called “time” variable t as t ¼ kDt, where

k ¼ 0,1,.,Nt, Dt ¼ N/Nt is the “time” step. All above discretized
equations can be solved by the method of solving band diagonal
equations implicitly along alternating directions [22] within the
framework of ADI method. In order to obtain the propagator qkþ1

i;j at
next “time”, (kþ1)Dt, from the propagator qki;j at any initial “time”,
kDt, we introduce the function q�i;j at the middle “time”, kDt/2.
Firstly, we calculate q�i;j from qki;j in the h-direction, given by

q�i;j�qki;j
Dt=2

¼ b2

6

Q2
i;j

a2

"
q�iþ1;jþq�i�1;j�2q�i;j

ðDhÞ2
�sinhhi

Qi;j

q�iþ1;j�q�i�1;j

2Dh

þ 1
Qi;j

coshhicosqj�1
sinqj

qki;jþ1�qki;j�1

2Dq

þ
qki;jþ1þqki;j�1�2qki;j

ðDqÞ2
#
�ui;jq

k
i;j: (32)

For each j line we can obtain q�i;j by solving the tridiagonal equation
from the above equation with the corresponding boundary condi-
tions. After obtaining q�i;j, we can obtain the propagator qkþ1

i;j in the
q-direction as follows,

qkþ1
i;j � q�i;j
Dt=2

¼ b2

6

Q2
i;j

a2

"
qkþ1
iþ1;j þ qkþ1

i�1;j � 2qkþ1
i;j

ðDhÞ2

� sinh hi
Qi;j

qkþ1
iþ1;j � qkþ1

i�1;j

2Dh

þ 1
Qi;j

cosh hicos qj � 1
sin qj

q�i;jþ1 � q�i;j�1

2Dq

þ
q�i;jþ1 þ q�i;j�1 � 2q�i;j

ðDqÞ2
#
� ui;jq

�
i;j: (33)

And qkþ1
i;j can be obtained similarly for each i row. The finite

difference format is the same as that in Ref. [5].
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Fig. 1. Contour plots of the loop distributions for d ¼ 10 (d, in the unit of the statistical
segment length b, is the separation between the two particles) and d ¼ 4, respectively.
The horizontal axis is the line which connects with two centers of the particles. The
distribution values of the button bars are in unit of the polymer bulk concentration.
The other parameters are the same for both cases: R ¼ 10, f0 ¼ 0.1, c ¼ 0.5, k ¼ 0.5,
N ¼ 100 and Rg w 4.1.
3. Results and discussions

3.1. The density distributions of three structures

As we know, the geometrical confinement effects of polymer
chains can be studied by investigating their configurations. Just by
the distributions of these configurations dowe know the properties
of polymer solutions. These studies are also helpful for us whenwe
deal with the industrial and other applications. In the followings,
we will discuss the density distributions of loop, tail and bridge.
Fig. 1 shows the loop distributions. The loop structure distrib-
utes, which being about the range of 1w2b, around the surfaces of
the particles symmetrically, and decreases gradually to zero far
away from the surface. When d ¼ 10, the loops distribute mainly
around the surfaces of the two spheres. These behaviors are similar
to the result of the case of one sphere, which is in Fig. 2 of Ref. [4].
But if we take d ¼ 4, namely decreasing the distance of the two
spheres, we can see the loop distribution near the surface of
spheres decreases greatly. This is a result of spatial confinement,
since the chains must gain more entropy. Obviously, this
phenomenon of the bispherical system does not presented in the
case of one sphere. By the way, this plot includes the configurations
that the same polymer is adsorbed asymmetrically to the two
colloidal particles. In one case, more polymers are adsorbed on one
particle which denoted by particle 1 than another by particle 2.
However, there is another case that more polymers are adsorbed on
particle 2 than particle 1. And the probability is the same for these
two cases. The distributions of Fig. 1 are the mean results in our
paper.

Fig. 2 is the distributions of the tail structures. Comparing to the
loop structure, the tail distribution dominates in a larger region
away from the particle surface. Like the loop structure, as the
separation between the two particles is diminishing, from d¼ 10 to
d¼ 4, the tail structure in the middle region decreases. It also arises
from the spatial confinement. Thus we can conclude that in the
domain nearby the surface of the sphere, there is mainly loop
distribution. In a larger region, tail distribution dominates. While in
a further region, it is mostly free chain distributions. Thus we can
conclude that the tail plays an important role in determining the
properties of the polymer-colloid mixtures. The bispherical coor-
dinate calculation can tell us new phenomenon which we cannot
find in the sphere-symmetrical coordinate [4].

Fig. 3 shows the distributions of the bridge structure. We can
find that the bridge structure mainly distributes around the middle
region of the two spheres. When one particle is approaching to
another, or, from d ¼ 10 to d ¼ 4, the density profile increases
greatly, from about 0.02 to 0.4, which has a magnitude order in
difference. Obviously, it cannot be ignored and this is a new
phenomenon. From this new phenomenon we can find that the
bridge structure plays an important role in determining the



Fig. 2. Contour plots of the tail distributions for d ¼ 10 and d ¼ 4, respectively. The
other parameters are the same as Fig. 1.
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properties of the polymer-colloid mixtures. As we know that when
adding nanoparticles into the polymer solutions or polymer melts,
the tails will entangle each other. The bridge will contribute to the
entanglement as we can see from its definition. Thus the bridge
structure affect the excess entanglements of the polymer solution
in addition tail structure. In the case of one sphere [4], the authors
did not discuss the bridge structure, since there is no bridge
structure for one sphere.

Likewise, the surface curvature of particle is an important
ingredient in the study of structures. By the similar analysis as the
above, we can also draw the conclusion that the bridge structures
play important effects when changing the radius of the
nanoparticle.

3.2. Potential between the two spheres

The potential is a key physical quantity which dominates the
property of the colloid-polymer mixtures. Since the polymer chains
have some configurations, and every different configuration
contributes differently to the potential. Both loop and tail
contribute repulsive potentials. However, free and bridge structures
contribute adsorptive potentials as they decrease the configuration
entropy. So whether or not certain configuration arising maybe
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Fig. 3. Contour plots of the bridge distributions for d ¼ 10 and d ¼ 4, respectively. The
other parameters are the same as Fig. 1.
affect the potential greatly. There are many quantitative studies
about the contributions to the potential of different configurations,
such as, the study of polymer-grafted system by Matsen, depletion
potential between two colloidal particles in non-adsorbing poly-
mer solutions in Ref. [5]. In these studies, the free and adsorbed
propagators are well defined. Therefore the definitions of many
physical quantities, for example, contribution to the potential of
each configuration become quite clear. Especially, the tail fraction
and the loop fraction can be well defined in the case of one sphere
in Ref. [4], thus they can give individual contribution of each
structure to the potential. In this subsection we will investigate the
potential between two spheres.

Fig. 4 shows the potential U between the two spheres as
a function of the separation d under the polymer bulk concentra-
tions f0 ¼ 0.01, 0.02, 0.04, 0.06, when the other parameters are
taken as k ¼ 0.1, R ¼ 10, c ¼ 0.5 and N ¼ 100. From f0 ¼ 0.01, 0.02
and 0.04, we find that the potential depth increases with increasing
polymer concentration. When the distance of the two nano-
particles are greater than 10, the potential nearly vanishes, once the
distance is smaller than 10, then the potential will change. But the
change of U is very small, it is about �0.05. Obviously this is an
attractive potential.

We know that the tails which absorbed on two different nano-
particles repel each other, and this will contribute an effective
repulsive potential if we diminish the spacing of the two nano-
particles. Also do the loops, though they distribute mainly around
the surface of the nanoparticle. However, the contributions of the
bridge configurations are different. The bridge connects with two
nanoparticles, according to classical physics, this configuration will
give an effective adsorptive potential to the system. The potential is
the total effect of the effective adsorptive potential and the effective
repultive ones, and the two effective potentials compete with each
other.

Therefore, we can interpret the results of Fig. 4 as follows. When
the spacing of two nanoparticles diminishes, the concentration of
the tail structure will decrease. On the contrary, the concentration
of the bridge structure will increase, and the total effect of these
two ones makes the potential curve very flat. When increasing the
polymer concentration, more polymer chains have chance to form
bridge. Therefore, when two nanoparticles approaching, the higher
the concentration is, the deeper the potential depth is.

In the present case, the interaction is always attractive. This is
different from that in Ref. [12], which is always repulsive. Because
in Ref. [12], the number of the polymer chains on the surface is
fixed, which represents a repulsive interaction. While in the
present case, the number of the polymer chains is changeable.
When the separation is very small, the number of the polymer
Fig. 4. Relations of the potential U between the two spheres and the separation d (in
unit of b) in dilute solutions with the polymer bulk concentrations f0 ¼ 0.01, 0.02, 0.04,
0.06, respectively, when k ¼ 0.1. The other parameters are R ¼ 10, c ¼ 0.5, N ¼ 100.



Fig. 5. The average tail length Ltail(q) (in unit of Kuhn length b) when q ¼ p as the
function of particle radius (normalized by Rg) under f0 ¼ 0.1. The other parameters are
taken as c ¼ 0.5, d ¼ 4, N ¼ 100, Rg ¼ 4.1, k ¼ 0.5.
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chains diminishes, and at the same time, the bridging increases, the
adsorption could not resist the spatial confinement. Thus, an
attractive interaction dominates now.

3.3. The average tail length

Entanglements of polymer chains are very important in
studying polymer solutions. Generally speaking, the most impor-
tant physical quantity is the average tail length in the study of
entanglements of polymer solutions [4]. However, in addition the
tail structure, the bridge structure has an important contribution to
the entanglement effect in the present case. In this subsection, we
would like to consider the average tail length Ltail(q) when q¼ p, for
Ltail(p) changes considerably and can reflect the behavior of
bispherical system well.

Fig. 5 shows Ltail(p) as functions of sphere radius R (normalized
by Rg) when bulk concentrations is taken 0.1. We find that the
average tail length is a decreasing function of the sphere radius,
which is similar to that in Ref. [4]. As the sphere becomes larger,
Ltail(p) becomes smaller. When the spheres become very large, they
can be considered as two plates. As a result of entropy penalty,
there are few polymer coils in the gap, and this leads Ltail(p) to
become very small.

Fig. 6 shows how Ltail(p) varies with separation d of two nano-
particles under f0 ¼ 0.1. In this diagram, one can find that Ltail(p)
increase as separation d increasing.When the separation is a few Rg,
the curves become quite flat. This is because when one sphere is
awaying from another, the effect of confinement diminishes, and
Fig. 6. The average tail length Ltail(q ¼ p) (in unit of b) as the function of d (normalized
by Rg) under f0 ¼ 0.1. The other parameters are taken as c ¼ 0.5, R ¼ 4, N ¼ 100,
k ¼ 0.5.
the polymer chain can stay more and more freely in the gap. The
average length of the tails does not increase any more.
4. Conclusions

In this paper, we employ the SCFT to study the density distri-
butions of the loop, tail and bridge in an adsorptive polymer
solution under the bispherical coordinates. We find that the bridge
structure has an important contribution in the present case. In
addition, we also discuss the separation dependent potential
between two colloidal particles. The results show that the inter-
action is always attractive, whose depth is smaller than that of the
pure depletion interaction. Finally, we find that the average tail
length decrease as the radius of the colloidal particle increase, but
the average tail length increases as two colloidal particles are
awaying from each other.
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Appendix

The boundary condition Vqðr; tÞ$n̂þ kqðr; tÞ ¼ 0 can be refor-
mulated in bispherical coordinates, where the unit vector n̂ is
the exterior normal vector of the spherical surface, while k is
the parameter which characterizes the adsorptive interaction.
The infinitesimal line element in Cartesian coordinates (x,y,z) is
given by

ds2 ¼ dx2 þ dy2 þ dz2; (34)

while in a general curvelinear coordinate system (x1,x2,x3) it is,

ds2 ¼
X

i¼1;2;3

h2i dx
2
i ; (35)

and,

h2i ¼
�
vx
vxi

�2
þ
�
vy
vxi

�2
þ
�
vz
vxi

�2
; (36)

where hi, i ¼ 1, 2, 3, is called the scalar factor of coordinate system
(x1,x2,x3), in particular, i ¼ h, q, 4 for bispherical coordinates.

Let (i,j,k) and (eh,eq,e4) are the unit vectors for Cartesian coor-
dinate and the general curvelinear coordinate system respectively.
For a scalar function q, its gradient can be written as follows,

Vq ¼ vq
vx

iþ vq
vy

jþ vq
vz
k; ¼ 1

hh

vq
vh

eh þ 1
hq

vq
vq
eq þ

1
h4

vq
v4

e4: (37)

By the relations between bispherical coordinates (h,q,4) and
Cartesian coordinates (x,y,z), we can obtain,

eh ¼
vx
vh

iþ vy
vh

jþ vz
vh

kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vx
vh

�2

þ
�
vy
vh

�2

þ
�
vz
vh

�2
s ; (38)
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vx
vh

¼ �a sin q cos 4 sinh h

ðcosh h� cos qÞ2
;

vy
vh

¼ �a sin q sin 4 sinh h

ðcosh h� cos qÞ2
;

vz
vh

¼ að1� cos q cosh hÞ
ðcosh h� cos qÞ2

; ð39Þ

hh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vx
vh

�2

þ
�
vy
vh

�2

þ
�
vz
vh

�2
s

¼ a
cosh h� cos q

; (40)

for h; and,

eq ¼
vx
vq
iþ vy

vq
jþ vz

vq
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

vx
vq

�2
þ
�
vy
vq

�2
þ
�
vz
vq

�2
s ; (41)

vx
vq

¼ a cos 4ðcos q cosh h� 1Þ
ðcosh h� cos qÞ2

;
vy
vq

¼ a sin 4ðcos q cosh h� 1Þ
ðcosh h� cos qÞ2

;

vz
vq

¼ � a sin q sinh q

ðcosh h� cos qÞ2
; ð42Þ

hq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vx
vq

�2

þ
�
vy
vq

�2

þ
�
vz
vq

�2
s

¼ a
cosh h� cos q

; (43)

for q; and,

e4 ¼
vx
v4

iþ vy
v4

jþ vz
v4

kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vx
v4

�2

þ
�
vy
v4

�2

þ
�
vz
v4

�2
s ; (44)

vx
v4

¼� asinqsin4
coshh�cosq

;
vy
v4

¼ asinqcos4
coshh�cosq

;
vz
v4

¼ 0; (45)

h4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vx
v4

�2

þ
�
vy
v4

�2

þ
�
vz
v4

�2
s

; (46)

for4. Surfaceh¼ h0 is a sphere x2þ y2þ (z� a cothh0)2¼ (a/sinhh0)2

[19], and its exterior normal unit vector is given by,
n̂ ¼ ðx; y; z� a coth hÞ
ja=sinh hj : (47)

Then we can obtain,

�cosh h� cos q
sinh h

v

vh
qþ

���� a
sinh h

����kq ¼ 0: (48)

For surface hþ, sinh hþ > 0, the boundary condition is given by,

v

vh
q� ak

cosh h� cos q
q ¼ 0; (49)

while for surface h�, sinh h� < 0, and the boundary condition is
given by,

v

vh
qþ ak

cosh h� cos q
q ¼ 0: (50)
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