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a b s t r a c t

Isotactic polycondensation of L-lactic acid (LLA) catalyzed by biogenic creatinine was carried out at
140e175 �C under sequentially reduced pressure (30e10 torr). The product poly-LLA (PLLA) possesses
high optical purity (e.e. 96.1e98.7%) as well as narrow molecular weight distribution (PDI 1.74e1.85). 13C
NMR follow-up monitor of the polymerization demonstrated that the isotacticity of PLLA formed in the
polymerization kept constant high values (isotacticity 97.8e99.5%) throughout the polymerization. The
1H NMR structural characterization of the growing polymeric species in progress of the polycondensation
revealed that the active catalytic species is a guanidinium formed in situ. A possible mechanism of the
creatinine-catalyzed polycondensation was proposed.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The increasing concerns with our eco-environment urge to
develop and utilize biodegradable materials made from renewable
resource [1e5]. Among the family of eco-friendly polymers PLA is
the most important synthetic polyester which finds significant
biomedical applications [6e9] and shows great potential to be an
alternative to petrochemical plastics [10]. The physical and
mechanical properties of PLA are critically dependent on its
stereochemistry. Isotactic PLLA, a semi-crystallinic polymer, has
a high melting transition temperature (Tm) and excellent
mechanical properties. Whereas the atactic poly-(D,L)-LA (PDLLA) is
an amorphous polymer with relatively low thermal transition
temperature and mechanical properties [11,12]. PLLA with high
isotacticity is predominately prepared by stereospecific ring-
opening polymerization (ROP) of L-lactide [13e20]. Poly-
condensation is of practical significance for the PLA synthesis
because, unlike the ROP method, it does not require high-purity
monomer. However, up to date the metal catalysts developed for
polycondensation of LLA cannot realize highly stereochemical-
controlled polymerization in the absence of an activator. For
example, polycondensation of LLA catalyzed by SnCl2$2H2O, well-
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known as the best metal catalyst, undergoes severe racemization
(up to 75%) [21] producing polymers with low optical purity [22].
Polymers used for medical applications should be free of any toxic
metals. Controlled synthesis of biodegradable polymers by organic
compound-catalyzed polymerization has thus attracted great
attention in the last decade [17,23e26]. Our research has focused
on the design and development of guanidine-based initiators/
catalysts for the controlled synthesis of biodegradable polymers
[24e30]. Creatinine is a biogenic organic base formed in arginine
metabolism in human body. Previously we reported living ROP of
lactide (LA) catalyzed by creatinine acetate [24]. Recently we
successfully conducted isotactic polycondensation of LLA catalyzed
by creatinine. Here we report the work. To the best of our knowl-
edge this is the first highly isotactic polycondensation of LLA with
a biogenic organic catalyst.
2. Experimental

2.1. Reagents and instrumentation

Creatinine (99%) was purchased from Aldrich Co. LLA (90wt%,
optical purity 99.5%) was purchased from Musashino Chemical
(China) Co., Ltd. 1H and 13C NMR spectra were recorded on a Bruker
DRX-500 spectrometer operating at 500 Hz (1H) and 100 Hz (13C)
with CDCl3 as a solvent and tetramethylsilane as an internal
reference. The molecular weight of the PLLA sample was measured
with GPC on a PL-GPC 120 chromatograph equipped with a refrac-
tive index detector, and a set of two gel columns. The columns were
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Fig. 1. The 13C NMR spectrum of PLLA.
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calibrated with polystyrene standards. Analysis was performed
with tetrahydrofuran as a solvent at a flow rate of 1.0 mL/min and
a temperature of 40 �C.

2.2. Polycondensation

A typical procedure was as follows. To a three-necked flask the
predetermined amount of LLA and creatinine (0.1 wt% relative to
LLA) were added. The flask equipped with a mechanical stirrer and
reflux condenser was connected to a vacuum-argon system. The
mixture was heated to 140 � 1 �C under successively reduced
pressure of atm-30 torr in 4 h. The reaction was maintained at this
condition for another 2 h, and a viscous liquid mixture of LLA
oligomer (OLLA) was obtained. The mixture was then heated to
175 � 1 �C while the pressure of the system was successively
reduced to 10 torr in 24 h. The reaction was conducted for a pre-
determined time under 10 torr. At the end of polymerization the
flask was cooled to room temperature. The contents were dissolved
in acetone, the solution was then poured into cold water. The
precipitate was collected, dried under vacuum for 48 h at 40 �C
yielding awhite solid. The solid product was then subjected to GPC,
1H NMR and 13C NMR analysis.
3. Results and discussion

3.1. Polymerization and product characterization

In the past decade polycondensation of LLA in the melt was
thoroughly investigated with different metal catalysts. Among
them tin(II) chloride dihydrate SnCl2$2H2O was recognized as the
most active one in the absence of any activator [21,22]. Some
obvious shortcomings, however, exist in the stannous salt catalyzed
polycondensation: (1) Racemization occurs severely in the poly-
merization, and as a result an atactic polymer with low optical
purity (e.e. 60%) was obtained [21]. (2) The yield of polymer was
considerable low (37% for a PLLAwith Mw 2.6� 104) [22]. This was,
to a large extent, due to that SnCl2$2H2O shows high depolymer-
ization activity leading to rapid lactide formation, a back-biting side
reaction [31]. (3) The potential cytotoxicity of the tin(II) salt arouses
increasing concern about the biosafety of the biomedical matrices/
devices, as well as the environmental hazard of the poison metal
leak during degradation of the disposable articles made from the
polymer [32,33]. With intent to overcome the above-mentioned
shortages, polycondensation of LLA with a biogenic creatinine
catalyst was successfully conducted (Scheme 1).

The polycondensation was followed and monitored by 1H NMR
and 13C NMR. Isotacticities of the polymers formed in the poly-
merization were estimated based on the 13C NMR spectra of the
methine carbon in the PLLA molecules [34,35]. The 13C NMR
spectra of the formed PLLA were shown in Fig. 1. The characteristic
peak signals corresponding to the isotactic sequence of PLLA
were shown in Fig. 2. These experimental results showed that
creatinine-catalyzed polycondensation of LLA proceeded in
a stereochemical-controlled way featuring the constant high values
Scheme 1. Isotactic polycondensation of LLA catalyzed by creatinine.
of isotacticity (97.8%e99.5%) and optical purity (e.e. 96.1e98.7%), as
well as narrow molecular weight distribution (PDI 1.78e1.85) of
product PLLA (Table 1).

Investigation into the polymerization kinetics was conducted by
following the variation of Xn (number average polymerization
degree) of formed PLLAwith time. Linear relationship of Xn vs time
was observed which indicated that the kinetics of the poly-
condensation was second order with respect to the reactive func-
tional groups attached to monomeric/polymeric species including
two first-order dependence to the concentration of carboxyl and
hydroxyl groups respectively [36].

3.2. Polymerization mechanism

To have a knowledge of the polymerization mechanism,
a growing polymeric species was carefully captured under argon
and subjected to 1H NMR characterization immediately. The 1H
NMR spectrum of the polymer (Fig. 3) revealed that the catalytic
species was a creatinine guanidinium (Gþ) which associated with
a terminal carboxylate group (HOePLLAeCOO�) of the growing
PLLA molecule. The guanidinium was reasonably postulated to
form in situ by the reaction of creatinine with a proton from the
Fig. 2. 13C NMR charaterization of the PLLA formed in the creatinine-catalyzed poly-
condensation of LLA.



Table 1
Polycondensation of LLA in the melt catalyzed by creatinine.a

Run Time
h

Mw
b

104
PDIb Isoc

%
½a�25D
deg.

OPd

%e.e.
Yielde

%
Tg

f

�C
TmL

f �C TmH
�C

Color

1 10 0.72 1.80 99.5 �154 98.7 90.0 47.7 135.7 148.1 wg

2 20 1.2 1.85 98.3 �152 97.4 88.7 52.6 144.2 152.7 w
3 45 2.2 1.74 98.2 �151 96.8 88.0 60.0 154.4 w
4 60 3.0 1.80 98.3 �152 97.4 87.6 60.7 156.4 162.1 w
5 76 3.8 1.81 98.8 �153 98.1 87.1 61.1 156.7 w
6 96 5.4 1.78 97.8 �150 96.1 85.0 62.3 156.4 161.8 Pbyh

a 175 � 1 �C, 10 torr, 0.1 wt% creatinine.
b Measured by GPC.
c Isotacticity.
d Optical purity.
e Isolated yield.
f Measured by DSC.
g White.
h Pale bright yellow.
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carboxyl (eCOOH) in LLA/PLLA molecules as we previously
demonstrated [24]. The creatinine-catalyzed polycondensationwas
hence postulated to follow the additioneelimination mechanism
[37]. The guanidinium forms a tight association with the carbonyl-
oxygen in the carboxyl of LLA/OLLA molecules so as to enhance the
electrophilicity of the carbonyl-carbon [38e40]. The attack of
a hydroxyl terminal of another LLA/OLLA molecule upon the
carbonyl-carbon followed by the elimination of H2O leads to the
ester bond formation. The proposed polymerization mechanism
was shown in Scheme 2. In the melt polycondensation of LLA, the
reaction medium is actually the melted PLLAwith low polarity. The
Fig. 3. 1H NMR spectrum of the growing polymeric molecule in creatinine-catalyzed
polycondensation of LLA (measured at 25 �C, 500 MHz, CDCl3 solvent).

Scheme 2. Proposed mechanism of creatinine-catalyzed polycondensation of LLA.
terminal carboxylate (eCOO�) in the PLA chain is a weak nucleo-
phile in the less-polar medium, at the same time, the steric
hindrance of the terminal carboxylate group in the PLLA chain is
very high. Thus, the possible racemization via a-proton abstraction
in SnCl2-catalyzed polycondensation [31] was greatly reduced in
the creatinine-catalyzed polycondensation of LLA.

4. Conclusion

In conclusion, isotactic polycondensation of LLA catalyzed by
biogenic creatinine was successfully conducted. Experimental
investigation demonstrated that the isotacticity of product PLLA
kept constant high value (97.8e99.5%) throughout the polymeri-
zation. To the best of our knowledge, this is the first report on
highly isotactic polycondensation of LLA with a biogenic organic
catalyst.
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