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H I G H L I G H T S
c There are important distinctions between feedback in process control and in biology.
c Negative, positive, and combined feedback exhibit unique properties.
c Feedback can be readily applied to advance the construction of biological systems.
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a b s t r a c t

Synthetic biology employs traditional engineering concepts in the construction of cells and organisms.

One of the most fundamental concepts is feedback, where the activity of a system is influenced by its

output. Feedback can imbue the system with a range of desirable properties such as reducing the rise

time or exhibiting an ultrasensitive response. Feedback is also commonly found in nature, further

supporting the incorporation of feedback into synthetic biological systems. In this review, we discuss

the common attributes of negative and positive feedback loops in gene regulatory networks, whether

alone or in combination, and describe recent applications of feedback in metabolic engineering,

population control, and the development of advanced biosensors. The examples principally come from

synthetic systems in the bacterium Escherichia coli and in the budding yeast Saccharomyces cerevisiae,

the two major workhorses of synthetic biology. Through this review, we argue that biological feedback

represents a powerful yet underutilized tool that can advance the construction of biological systems.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The field of synthetic biology aims to construct biological
systems in order to better understand nature and to address
pressing challenges facing society. However, the inherent com-
plexity of biology impedes the construction of predictable and
robust systems. Fortunately, concepts in traditional engineering
disciplines offer approaches to reduce biological complexity and
subsequently advance biological design.

One engineering discipline that has strongly influenced syn-
thetic biology is process control. This discipline seeks to automate
industrial processes in order to maintain system specifications
with limited oversight. One prevalent tool in process control is
feedback. Feedback serves multiple purposes, including driving
the output of a system toward a desired setpoint, countering
disturbances in system inputs, filtering measurement noise, and
decoupling relationships between multiple inputs and multiple
outputs. The physical link between system inputs and outputs is
ll rights reserved.
called a feedback loop. Process control principally focuses on
negative feedback loops that drive the system output toward the
setpoint. Positive feedback loops, which drive the system output
away from the setpoint, are adopted less frequently (Horowitz
and Hill, 1989).

Both negative and positive feedback loops can be found
throughout the architecture of gene regulatory networks. Exten-
sive studies, particularly in the field of systems biology, have
revealed that these biological feedback loops shape the dynamics,
variability, and steady-state response of the system. These influ-
ences in turn have been implicated in the adaptability and
robustness of biological systems. The mechanisms of feedback
vary widely and can be combined, resulting in overlaid negative
and positive feedback loops with unique properties.

Despite the many benefits of feedback in biology and its
prevalence in other engineering disciplines, synthetic biology
has been slow to implement feedback in the design of biological
systems. Arguably, the field is still grappling with how to
construct large-scale systems that behave predictably and has
not yet advanced to the point of including additional layers of
control. As a result, recent work has centered on the construction
of logic gates with either higher-order processing or the ability
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to interpret multiple signals (Rinaudo et al., 2007; Friedland et al.,
2009; Tamsir et al., 2011; Moon et al., 2012). Feedback has been
integrated into a handful of synthetic biological systems, but
often only in the cases in which feedback was essential for the
desired system behavior (e.g. genetic oscillators (Elowitz and
Leibler, 2000; Atkinson et al., 2003; Fung et al., 2005; Stricker
et al., 2008)). However, feedback offers a wealth of attributes that
can generate more desirable behaviors and improve the robust-
ness of biological systems.

In this review, we discuss the known properties of negative
and positive feedback loops – both in isolation and in combina-
tion – in biological systems. Examples principally are drawn from
bacteria and yeast, the current workhorses of synthetic biology.
Many of the insights into feedback were drawn from synthetic
systems, demonstrating how synthetic biology informs our
understanding of nature. We then discuss recent applications
of feedback loops in synthetic biology. Finally, we conclude by
describing how feedback can be further implemented to advance
current applications in the field.
2. Modes of feedback

Feedback can occur at multiple steps of gene expression or
through the interactions between organisms. Fig. 1 illustrates
representative mechanisms through which feedback can be intro-
duced. We touch on many of these mechanisms in discussing the
properties and application of feedback in biology. Note that even
simpler examples of feedback often engage multiple mechanisms
at one time.

2.1. Transcriptional regulation

In the first step of gene expression, messenger RNA is tran-
scribed from the DNA of a gene. This step begins with transcrip-
tion factors recruiting RNA polymerase to the gene’s promoter
and ends with termination and release of the polymerase. Both
steps offer opportunities for both negative and positive feedback,
Fig. 1. Modes of feedback in microorganisms. Feedback can be introduced at the differe
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transcription activator that inhibits DNA binding. (D) and (E) Cell–cell interactions, as

expression of the synthesis enzyme (D), and for a mutualistic interaction where on

(For interpretation of the references to color in this figure legend, the reader is referre
by controlling the accessibility or methylation of the DNA (Lim
and Van Oudenaarden, 2007; Octavio et al., 2009), the availability
of RNA polymerase or transcription factors, or transcriptional
termination (Winkler et al., 2002; Lucks et al., 2011). The simplest
form of transcriptional feedback, called auto-regulation, involves
a transcription factor regulating its own transcription. Auto-
regulation is one of the most common transcriptional architec-
tures found in bacteria (Shen-Orr et al., 2002) and has undergone
the most extensive characterization out of all modes of feedback.

2.2. Post-transcriptional regulation

Following transcription, the messenger RNA is translated into
protein. In microorganisms, this step can be regulated by mod-
ulating RNA stability and translation. In most cases, the respon-
sible mechanisms involve the interaction of a trans-acting factor.
This factor could be a protein, such as a ribonuclease or the RNA
binding protein CsrA; an RNA, such as Hfq-binding small RNAs or
synthetic riboregulators; or a small molecule, such as cofactors
recognized by translational riboswitches (Waters and Storz,
2009). Many of the RNA-based mechanisms are still undergoing
characterization and have not been quantitatively studied in the
context of feedback.

2.3. Post-translational regulation

Once a protein is formed, feedback can be introduced by
modulating the protein’s stability, localization, or activity. Stabi-
lity can be modulated by attaching a degradation tag or altering
protease activity, influencing protein levels. Next, localization can
be modulated by targeting the protein to the cell membrane or to
an organelle, affecting whether the protein can access its target.
Finally, protein activity can be modulated through chemical
modifications or reversible binding of small molecules, RNAs, or
proteins ((Liu et al., 1997; Wassarman and Storz, 2000; Buchler
and Cross, 2009; Hunsicker et al., 2009), altering the ability of the
protein to carry out its normal functions. Modulating protein
activity is the most common post-translational mechanism of
P
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feedback. One prominent example involves a small molecule
reversibly binding to a transcription regulator, altering the ability
of the regulator to bind DNA. Small-molecule responsive regula-
tors, such as TetR, LacI, and AraC, are the most common compo-
nents used in the construction of synthetic biological systems and
are featured prominently in this review. Regardless of the exact
mechanism, the protein inevitably influences its own activity or
abundance. For instance, tetracycline binding to the transcription
repressor TetR de-represses the expression of the TetA transpor-
ter protein, which reduces the intracellular concentration of
tetracycline by pumping it out of the cell.

2.4. Cell–cell interactions

The final mode of feedback occurs between cells, influencing gene
expression and/or cell growth. One common means of cell–cell
interactions is through the secretion of diffusible factors. The secreted
factors, either small molecules or peptides, interact with a surface
receptor or an intracellular transcription regulator. In natural sys-
tems, one of these genes often is responsible for the synthesis of the
signaling molecule, forming a positive feedback loop formed between
all members of the population (Waters and Bassler, 2005). Induction
and feedback only occur at high cell densities, granting cells a way to
coordinate gene expression with their neighbors. This phenomenon is
called quorum sensing (Ng and Bassler, 2009).

Quorum sensing is a standard tool in synthetic biology to elicit
communication between engineered cells. The most common
quorum sensing system, adapted from the marine bacterium
Vibrio fischeri, combines the LuxI enzyme that synthesizes the
N-acyl homoserine lactone (AHL) signaling molecule and the LuxR
regulator that activates gene expression when bound to AHL. This
system and other similar systems have been employed in a range
of synthetic biology applications, including spatial patterning
(Basu et al., 2005; Sohka et al., 2009), controlling the cell density
of a bacterial culture (You et al., 2004), and engineering commu-
nication between bacteria and eukaryotes (Weber et al., 2007;
Biliouris et al., 2012). As discussed later in this review, quorum
sensing also offers a unique opportunity to introduce feedback
across length scales well beyond that of a single cell.

Cell–cell interactions also can elicit feedback by modulating
cellular health and survival. The interactions can be beneficial,
such as complementary metabolic pathways, or harmful, such as
predator-prey relationships. Many of these interactions can be
readily engineered into a population of otherwise non-interacting
organisms. Examples include linking quorum sensing to the activa-
tion or repression of a toxin (You et al., 2004; Balagaddé et al., 2008)
and overproducing an essential metabolite that cannot be synthe-
sized in other cells (Shou et al., 2007). The interacting cells form key
components of feedback by ensuring the survival or death of their
neighbors. This stands in contrast to the other modes of feedback
that begin and end with gene expression.
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Fig. 2. Contrasting characteristics of negative and positive feedback. These

characteristics are also discussed in (Alon, 2007a). (A) Comparing direct regulation

(gray), negative feedback (red), and positive feedback (green) according to

(B) response dynamics, (C) input-output relationship at steady-state, and (D)

cell–cell variability for an intermediate input value. In comparison to direct

regulation, negative feedback and positive feedback exhibit opposite behaviors.

The only exception is the settling time, where all three are predicted to exhibit

similar responses times. The indicated Hill coefficients assume no cooperativity in

the feedback loop. The Hill coefficient and K in (C) are part of the Hill Eq. (1).

Adapted from (Alon, 2007b). (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
3. Properties of negative feedback

Process control commonly employs negative feedback among
other control strategies to maintain chemical processes. A feedback
controller calculates the difference between the measured output and
a desired output of the system, the setpoint, such as product purity or
temperature. The controller then adjusts the process to minimize this
difference (proportional control). Aside from using the deviation from
setpoint, the controller can take into account how long the difference
has persisted (integral control) and how quickly the difference is
changing (differential control). These different modes of feedback can
be used depending on the required speed and stability by which the
controller responds to setpoint deviations (Seborg et al., 2011).
Natural biological systems also implement negative feedback,
but in ways that can differ from negative feedback in process
control. First, in process control, negative feedback is often
separate from the process itself through the actions and program-
ming of an installed control system. In biological systems, the
feedback is imbedded within the genetics and biochemistry of the
process. Second, in process control, the principal goal of negative
feedback is to maintain the system output within desired speci-
fications. In biology, this goal can be more varied. Negative
feedback alters the dynamics, steady-state behavior, and cell–
cell variability of biological systems (Fig. 2), where the benefit of
each contribution likely depends on the cellular context (Thomas
et al., 1995; Wall et al., 2003). Fortunately, we can exploit these
attributes in the rational design of synthetic biological systems as
discussed below. Note that all of the attributes we describe were
observed for negative auto-regulation (Alon, 2007a), although
other regulatory mechanisms have been shown to exhibit similar
properties (Bashor et al., 2008).
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3.1. Dynamics: Shorter response time

Microorganisms constantly face unpredictable and fluctuating
environments. How quickly microorganisms adapt to new envir-
onmental conditions could mean the difference between life and
death. Negative feedback offers one approach to influence the
overall dynamics by shortening the rise time (Savageau, 1974).
Rise time can be defined as the time required for the gene product
to proceed halfway between an initial steady-state concentration
and a final, elevated steady-state concentration. Rosenfeld et al.
(2002) experimentally demonstrated the shorter rise time with a
synthetic auto-repression circuit in Escherichia coli. They tested
two genetic circuits: one composed of the TetR transcription
repressor controlling the expression of the GFP fluorescent
reporter protein (direct regulation), and a second circuit com-
posed of a TetR–GFP fusion that represses its own expression
(auto-repression). Time course experiments following addition of
the inducer, anhydrotetracycline (aTc), demonstrated that the rise
time was up to five times smaller for auto-repression than for
direct regulation. The reason for the decrease in the rise time is
the following: for promoters of equal strength, both GFP and the
TetR–GFP fusion accumulate at the same rate. However, the TetR–
GFP fusion begins repressing its own synthesis, lowering the final
steady-state concentration. The result is an apparent acceleration
toward the final steady-state. Accordingly, use of lower aTc
concentrations further reduced the response time, because TetR
still can repress its own expression. Note that the settling time,
the time required for the gene product to proceed halfway
between an initial steady-state concentration and a final, lowered
steady-state concentration (e.g. through the removal of aTc), is
expected to be similar for auto-repression and for direct regula-
tion. Despite this, the shorter response time afforded to negative
feedback may be beneficial in the design of synthetic systems that
must act rapidly, such as medical diagnostics.

3.2. Steady-state: Linearized response

The steady-state relationship between the input and output
values of a negative feedback loop is just as important as the
approach to steady state. This relationship can be illustrated for
the bacterial transcription regulator TetR, which represses the
expression of itself and the tetracycline exporter TetA. The
antibiotic tetracycline binds TetR, relieving repression of both
TetR expression and TetA expression. TetA then exports tetracy-
cline, alleviating the inhibitory effect of this antibiotic on protein
translation (Biliouris et al., 2011). While negative feedback should
shorten the response time of the system to tetracycline, negative
feedback also impacts the relationship between TetA levels
and tetracycline concentrations. This relationship is important
because it determines how well cells can negate the deleterious
effects of tetracycline without investing too many resources in
TetA production.

Nevozhay et al. (2009) investigated the steady-state attributes of
negative feedback through the construction of two synthetic gene
circuits in the model yeast S. cerevisiae. One circuit constitutively
expressed TetR (direct regulation) while the other circuit auto-
repressed TetR (auto-repression). Each circuit was tested by incu-
bating the cells in varying concentrations of the tetracycline analog
doxycycline and by measuring GFP under the control of a TetR-
repressible promoter. They found that auto-repression extended
the range of doxycycline concentrations that yield intermediate
levels of GFP. In other words, auto-repression linearized the steady-
state response to doxycycline. An accompanying mathematical
model predicted this behavior, where negative feedback dampened
the induction of the repressor. Madar et al. (2011) made similar
observations for auto-repression of the AraC transcription regulator
as part of L-arabinose utilization in E. coli. The benefit of lineariza-
tion is that it allows the output to be finely tuned by varying the
input signal. The ability to fine tune expression would be extremely
useful in synthetic biology, such as when optimizing enzyme levels
in an engineered metabolic pathway or when accurately predicting
the concentration of a measured analyte with engineered
biosensors.

3.3. Cell–cell variability: Noise reduction

Biological systems are inherently noisy (Balázsi et al., 2011).
Noise, as measured by cell–cell variability in protein levels, arises
from the small number of molecules involved in gene expression
(intrinsic noise) and variation in the abundance and activity of the
gene expression machinery (extrinsic noise). The result of such
noise is large variations in protein levels between genetically
identical cells in the same environment. These differences can
interfere with the reliable processing of biological signals. In
addition, these differences can introduce heterogeneity that pro-
motes survival of a fraction of a cell population even in unpredict-
able and changing environments. Correspondingly, gene circuits
have been shown to suppress or enhance noise, which will be
critical for the future design of synthetic biological systems.

The impact of negative feedback on noise was first assessed
experimentally by Becskei and Serrano (2000). They evaluated a
synthetic system in E. coli in which a TetR-repressed promoter
controlled the expression of a TetR–GFP fusion. Using fluorescence
microscopy to measure GFP levels in individual cells, they found
that the variability of GFP levels across the population was two to
three times higher for direct regulation than for auto-repression.
Nevozhay et al. (2009) further confirmed this finding in yeast. The
physical explanation is that auto-repression drives GFP levels to the
same average value. When repressor levels are below this value,
expression increases due to reduced feedback; when repressor
levels are above this value, expression decreases due to enhanced
feedback. Implementing negative feedback to reduce noise would
be critical for any synthetic system that must faithfully convert an
input signal into a defined output value. Reducing noise would be
especially important when developing devices composed of only a
few engineered cells, such as those for in vivo disease diagnostics in
which population averaging cannot be applied.

One critical feature of negative feedback is the inherent delay
between the altered input signal and the change in the system
output (Seborg et al., 2011). Substantial delays in feedback, such
as from the slow loss of a stable protein or from a cascade of
regulators, can cause the system output to oscillate (Thomas,
1978; Bratsun et al., 2005). Stricker et al. (2008) experimentally
demonstrated that even auto-repression, the simplest form of
negative feedback, can exhibit sufficient delays in gene expression
to cause oscillations in the measured output. Maithreye et al.
(2008) separately demonstrated that a delay in feedback
increases instability of the system output, although systems with
or without delayed feedback eventually converged on the same
output value. The impact of delays begs the question: what is the
propensity of feedback in an experimental biological system to
exhibit oscillations and how much effort must be exerted to
either avoid or promote this behavior? Further investigations will
help clarify when engineers need to be concerned about the
potential for oscillatory behavior while introducing feedback into
a biological system.
4. Properties of positive feedback

While process control inherently employs negative feedback, it
tends to avoid positive feedback because of its destabilizing effect
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on the system output. The most common example in chemical
processes is thermal runaway, where heat emitted by an exother-
mic reaction increases the reaction rate, releasing more heat.
Thermal runaway poses a major safety threat in the chemical
industry, and, when left uncontrolled, has led to numerous
instances of catastrophic explosions and the release of chemical
pollutants and toxins into the environment (Stoessel, 2008).

In contrast, positive feedback is widely employed in biology.
For instance, bacteria employ positive feedback in sugar utiliza-
tion, where the imported sugar induces the expression of sugar-
specific transporters, leading to further sugar import. What
distinguishes positive feedback in process control and in biologi-
cal systems is that the latter always has an upper limit, prevent-
ing the biological equivalent of thermal runaway. Below we
discuss the properties of positive feedback in biological systems
in the same contexts as negative feedback: dynamics, steady-
state behavior, and cell–cell variability (Alon, 2007a). Overall, the
properties of positive feedback and negative feedback are oppo-
sites (Kaufman and Thomas, 2003), offering contrasting tools in
the construction of synthetic biological systems (Fig. 2).

4.1. Dynamics: Longer response time

In contrast to negative feedback, positive feedback exhibits a
longer rise time in comparison to direct regulation (Savageau,
1974). The extended rise time was first demonstrated experimen-
tally in E. coli using the transcription activator cI, which is involved
in the lysis-lysogeny decision in lambda bacteriophage (Maeda and
Sano, 2006). To generate positive feedback, Maeda and Sano (2006)
tested a gene encoding a cI–GFP fusion under the control of a cI-
activated promoter. Binding by the LacI repressor downstream of
the promoter prevented initial auto-activation, which could be
relieved with the addition of the LacI inducer IPTG. For direct
regulation, GFP was expressed from a LacI-repressed promoter. The
rise time following the addition of IPTG was up to four times
greater for positive feedback than for direct regulation. The expla-
nation, as supported by mathematical modeling, was that positive
feedback increased the steady-state output because more cI leads to
greater transcription. Note that the settling times for direct regula-
tion and auto-activation (e.g. removal of IPTG) are expected to
be similar, paralleling deactivation of a negative feedback loop.
A delayed response could be useful in the construction of synthetic
systems that require a sustained input signal or a timed series of
cellular events (Temme et al., 2008), although other genetic circuits
can generate delays following circuit activation or deactivation
(Mangan and Alon, 2003). Furthermore, positive feedback imbues
a system with other critical behaviors as described below. The
availability of other delay-generating circuits and the additional
properties of positive feedback argue against the use of positive
feedback in biological design with the sole intent of altering the
response dynamics.

4.2. Steady-state: Ultrasensitivity

While negative feedback linearizes the response of a system
to its input, positive feedback can give rise to an ultrasensitive
response. Under this type of response, a small change in the input
signal results in a much larger change in the output. This
relationship is captured by the Hill coefficient (n), a constant in
the following empirical equation relating the system input (I) and
the system output (O)

O¼OminþðOmax�OminÞ
In

Kn
þ In , ð1Þ

where K is the input value yielding an output halfway between
the maximal output (Omax) and the minimal output (Omin). This
equation can be fit to experimental data in order to estimate a
value of the Hill coefficient. For a system lacking any feedback or
cooperativity, the Hill coefficient is one. For Hill coefficient values
greater than one, the response curve becomes steeper, indicating
that the response has become more sensitive.

One of the best-studied examples of ultrasensitivity in positive
feedback is the lactose utilization pathway. This pathway exhibits
positive feedback when induced with the lactose analog IPTG.
IPTG relieves repression by the transcription repressor LacI, which
induces expression of the lactose transporter LacY and leads to
the further import of IPTG. Jensen et al. (1993) first demonstrated
a sharp response of the activity of a LacI-repressed promoter to
IPTG, which became shallower in the absence of lacY. A Hill
coefficient of 4.5 later was measured for this same system,
compared to 2.6 in the absence of lacY (Kuhlman et al., 2007).
To put this into perspective, for a Hill coefficient of one, the IPTG
concentration must increase by a factor of 81 to go from 10% to
90% of the maximal output. For a Hill coefficient of 4.5, the IPTG
concentration must increase by a factor of 2.7 to achieve the same
relative change in output, underscoring how positive feedback
can render the relationship between the system input and output
more switch-like. The reason for this behavior is that positive
feedback amplifies the input signal, further increasing the system
output.

Positive feedback may be beneficial for a range of synthetic
biology applications requiring switch-like responses, such as the
development of digital cellular devices or the threshold detection
of disease biomarkers. It is worth noting that other circuit
configurations and modes of regulation can produce ultrasensi-
tivity, such as protein allostery (Koshland et al., 1966), regulatory
cascades (Huang and Ferrell, 1996; Hooshangi et al., 2005), or
sequestration or stoichiometric action of a regulator (Levine et al.,
2007; Buchler and Cross, 2009). However, none of these other
configurations have a propensity for bistability as described next
for positive feedback.

4.3. Cell–cell variability: Increased noise and bistability

Positive feedback increases cell–cell variability in a similar
fashion to other circuit configurations exhibiting ultrasensitivity
(Hooshangi et al., 2005; Mehta et al., 2008). The increased
variability emerges from noise in the input leading to large
changes in the output. However, in the presence of strong positive
feedback, a biological system can become bistable (Guespin-
Michel and Kaufman, 2001). Bistability was observed experimen-
tally over fifty years ago in the lactose utilization pathway
(Novick and Weiner, 1957). Intermediate concentrations of the
lactose analog thio-methylgalactoside (TMG) induced the path-
way either fully or negligibly, a phenomenon that has been called
an ‘all-or-none’ response. The ‘all-or-none’ response emerges
from the import of TMG inducing the expression of the transpor-
ter LacY, which drives further TMG import and LacY expression.
This cycle of import and induction continues until LacY levels are
maximized. Similar bistable behavior was observed in a natural
MAPK signaling cascade that induces the expression of the MAPK
components (Ferrell and Machleder, 1998) and in synthetic
transcriptional auto-activation systems in E. coli (Isaacs et al.,
2003) and in budding yeast (Becskei et al., 2001; Ajo-Franklin
et al., 2007).

One common feature of bistable systems with rare exception is
hysteresis (Guidi and Goldbeter, 1997). Hysteresis represents a
phenomenon where the input–output relationship is influenced
by the history of the system. In the case of the lactose utilization
pathway, pre-incubating the cells with TMG lowered the TMG
concentration associated with the transition between induced
and uninduced states (Novick and Weiner, 1957; Ozbudak et al.,
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2004). The basis of hysteresis is that positive feedback maintains
the induced state even at lower inducer levels. Only through
stochastic fluctuations do the cells switch states (Choi et al.,
2008). When positive feedback is sufficiently strong, the cell can
be ‘locked’ into the induced state even upon complete loss of the
input signal. Members of the Silver laboratory exploited this
feature to generate synthetic ‘memory’ devices that capture a
transient cellular state such as DNA damage (Ajo-Franklin et al.,
2007; Burrill and Silver, 2011).

Mathematical modeling has shown that non-linearity in the
positive feedback loop—whether through non-linear kinetics or
regulator cooperativity—is essential for bistability and hysteresis
(Keller, 1995; Ozbudak et al., 2004). However, there are exceptions
to this rule. To and Maheshri (2010) demonstrated in yeast that
auto-activation by a non-cooperative regulator can generate a
steady-state bimodal response as long as the regulator is unstable
and expressed stochastically. However, hysteresis was not explored,
leaving the unanswered question of whether their system exhibits
bistability. Separately, Tan et al. (2009) demonstrated in bacteria
that auto-activation of a non-cooperative regulator can generate
bistability and hysteresis as long as overexpression of the regulator
slows cellular growth. Note that the decreased cellular growth
introduced an additional positive feedback loop, which improved
the robustness of bistability as discussed in Section 5.2.

Bistability is arguably the most advantageous attribute of
positive feedback for synthetic biology because it ensures that
biological systems either are fully induced or uninduced—a
digital readout of an input signal. The ability to establish one of
two fixed states would benefit a wide range of synthetic biology
applications, including programmed cell differentiation, analog-
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to-digital conversions for cellular computing, and generation of
synthetic microbial consortia from a single starter strain.
5. Properties of combined negative and positive feedback

While negative feedback and positive feedback offer contrasting
attributes, combining these forms of feedback can augment these
attributes or introduce entirely new ones (Demongeot et al., 2000).
We next discuss the ramifications and potential applications of
combining feedback loops in biology. Our focus is on the most
salient features of each combination. Fig. 3 illustrates features of
representative loops. Overall, each combination can offer improved
properties over a single positive or negative feedback loop, although
the improvements come at the cost of additional system compo-
nents and the potential for additional emergent behaviors.

5.1. Multi-negative feedback loops

In the two seminal examples of synthetic genetic circuits,
negative regulatory events were combined in series into a single
feedback loop. In the first example, Gardner et al. (2000) con-
structed a double-negative feedback loop in E. coli. This ‘toggle
switch’ was comprised of the transcription repressors LacI and
TetR, where LacI repressed the expression of TetR and TetR
repressed the expression of LacI. Because a double-negative
feedback loop is equivalent to a single positive feedback loop,
the toggle switch similarly exhibited ultrasensitivity, bistability,
and hysteresis. However, unlike positive feedback, the toggle
switch could fix each stable state—in this case either high LacI
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levels or high TetR levels. Furthermore, a pulse of inducer, either
IPTG or aTc, was sufficient to drive the system into the opposite
state. The ability to drive the system irreversibly into either state
offers a clear advantage over auto-activation, where only the
induced state is reinforced.

In the second example, Elowitz and Leibler constructed and
tested a triple-negative feedback loop in E. coli that has been
dubbed the ‘repressilator’ (Elowitz and Leibler, 2000). This loop
was comprised of three transcription regulators, TetR, cI, and LacI,
where TetR repressed the expression of cI, cI repressed the expres-
sion of LacI, and LacI repressed the expression of TetR. This loop
resembles a single-negative feedback loop with a delay in feedback.
Accordingly, mathematical modeling predicted that this circuit
would exhibit oscillations under a broad parameter range
(Elowitz and Leibler, 2000). While the circuit did exhibit oscilla-
tions, the oscillations were short-lived with ranging amplitudes and
periods. This unsatisfactory performance was attributed to noise in
gene expression. The properties of the ‘repressilator’ argue against
the use of triple-negative feedback loops to generate oscillations,
especially in comparison to other oscillatory circuits that combine
negative and positive feedback (see Section 5.3).

5.2. Layered positive feedback loops

Unlike multi-negative feedback loops, any number of positive
regulatory steps results in positive feedback. The properties
described above for a single positive feedback loop thus apply to
multiple positive feedback loops. The notable difference is that the
presence of multiple positive feedback loops can improve the
robustness of these properties. Shah and Sarkar (2011) comprehen-
sively investigated the properties of multiple feedback loops by
modeling the behavior of all possible interactions between two or
three regulators. In particular, they evaluated the extent to which
each possible circuit exhibits ultrasensitivity and bistability across a
range of parameter values, which can be described as the robust-
ness of the behavior. Both enzyme and transcription regulators
were included in the analysis to account for differences in the
regulatory properties. Modeling revealed that the presence of
multiple positive feedback loops increased the robustness in both
ultrasensitivity and bistability. Furthermore, the most robust cir-
cuits were hybrid circuits of both enzyme regulators and transcrip-
tion regulators. Part of the rationale for the improved robustness
was that enzyme regulators such as kinases and phosphatases can
exhibit zero-order ultrasensitivity (Goldbeter and Koshland, 1981)
that contributes to both ultrasensitivity and bistability.

It is worth noting that regulatory cascades, regulator seques-
tration, and stoichiometric action by a regulator can also generate
ultrasensitive responses. When coupled with positive feedback,
these mechanisms have been shown to enhance the robustness
of bistability (Ferrell and Machleder, 1998; Bashor et al., 2008;
Levine and Hwa, 2008). Chen and Arkin (2012) most recently
demonstrated this effect in E. coli using a repressor (the anti-sigma
factor rsiW from Bacillus subtilis) that sequesters an auto-activated
regulator (the sigma factor sigW from the same bacterium expressed
from a SigW-activated promoter). Titrating the anti-sigma factor
tuned the input threshold that separates the induced and uninduced
states, offering a means to readily tailor the quantitative properties of
this system. These characteristics would be beneficial in synthetic
biology for the construction of bistable systems without exhaustive
component optimization.

5.3. Nested negative and positive feedback loops

Combining both negative and positive feedback intertwines
otherwise opposing attributes, potentially creating altogether
unique and flexible responses. One response is oscillations, where
competition between negative and positive feedback forces the
system to oscillate between induced and uninduced states. The
oscillations are more stable than those associated with a multi-
negative feedback loop (e.g. the ‘repressilator’), arguing for one
utility of nested negative and positive feedbacks. Atkinson et al.
(2003) first demonstrated this behavior in E. coli by combining
positive feedback (auto-activation by the transcription regulator
NtrC) and negative feedback (NtrC-activated expression of LacI
that represses the expression of NtrC). The resulting synthetic
circuit exhibited oscillations, although these oscillations dam-
pened within a few cycles. Fung et al. (2005) demonstrated that
similar oscillations could be generated by combining transcrip-
tional and metabolic regulation in E. coli. In their system, dubbed
the ‘metabolator,’ the conversion between two metabolic pools
was controlled by two enzymes that were regulated either
positively or negatively by one of the metabolites. This system
also exhibited oscillations, although the amplitude and persis-
tence of the oscillations varied.

Advancing on these previous efforts, Stricker et al. (2008)
generated stable oscillations in E. coli using the transcription
activator AraC and the transcription repressor LacI. Specifically,
they designed a system with one positive feedback loop (AraC
auto-activation) and two negative feedback loops (LacI auto-
repression and AraC-activated expression of LacI that represses
the AraC expression). Their design showed remarkable consis-
tency in the amplitude and period of the oscillations, where the
period could be tuned by changing temperature, media condi-
tions, or the concentration of the inducers L-arabinose and IPTG.
The improved persistence and uniformity of the oscillations may
be attributed to the additional feedback loops built into the
circuit. As an extension of this design, members of the same
research group constructed a similar circuit using quorum sensing
(Danino et al., 2010). This system also contained both positive
feedback (activation of the AHL synthase LuxI by AHL) and
negative feedback (activation of the AHL-degrading enzyme AiiA
by AHL) in a similar configuration to the previous design. The new
design synchronized oscillations across the entire population,
resulting in macroscopic oscillations in otherwise microscopic
cells.

Coupling positive and negative feedback loops can also lead
to excitability, a distinct response not observed for positive or
negative feedback loops in isolation. In this response, the system
undergoes stochastic and transient induction. Stochastic fluctua-
tions in the mediator of positive feedback drive induction until
negative feedback returns the system to the uninduced state.
Excitable behavior was observed directly in DNA uptake in B.

subtilis during nutrient starvation (Süel et al., 2006). Two feedback
loops control ComK, the master regulator of the uptake machin-
ery. ComK undergoes auto-activation (positive feedback) and also
represses ComS, which otherwise inhibits the degradation of
ComK (negative feedback). In roughly 4% of the population of
starved cells, stochastic fluctuations in ComK led to an increase in
ComK levels driven by auto-activation. Eventually, reduction in
ComS levels caused the increased degradation of ComK, returning
ComK levels to the original uninduced state. Through the con-
struction of synthetic circuits, Cağatay et al. (2009) revealed that
other regulatory configurations of the same components exhibit
excitability, although the natural circuit exhibited the greatest
and most variable duration of induction. The distinct induction
characteristics of the natural circuit allowed for greater variability
in the uptake of DNA between cells, perceivably balancing the
risk and reward of random DNA uptake (Cağatay et al., 2009).
Synthetic biology could benefit from stochastic and transient
induction in the development of altruistic biological systems
(Lee et al., 2010) or of systems requiring a consistent subpopula-
tion regardless of growth conditions.
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The combination of negative and positive feedback can lead to
a range of behaviors depending on the exact circuit configuration
and system parameters. Tian et al. (2009) performed modeling to
assess how the relative strength of negative and positive feedback
impact the resulting response. They found that the relative
strength of negative and positive feedback is the predominant
determinant of the observed response. Bistability emerges when
positive feedback dominates, whereas a graded, unimodal
response emerges when negative feedback dominates—exactly
paralleling what was observed for each type of feedback in
isolation. When the strengths of feedback are balanced, the
system can exhibit excitability or oscillations. The varied
responses demonstrate that coupling negative and positive feed-
back offers a flexible motif for system design and may be the best
approach for generating stable oscillations or excitability.
6. Current applications of feedback in synthetic biology

Clearly, negative feedback and positive feedback offer diverse
advantages in the construction of synthetic biological systems.
However, there are only a few examples of feedback being applied
in synthetic biology to address scientific or technological chal-
lenges. We discuss representative examples below, which fall into
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6.1. Metabolic control

Metabolic engineering has overwhelmingly relied on static
control for the expression of heterologous pathways (Tyo et al.,
2007). Static control tunes the levels of each enzyme to maximize
product yields, although the levels can be changed only through
further genetic manipulations. In contrast, cells are dynamical
systems that undergo constant perturbations even in a well-
controlled environment, similar to chemical processes. Perturba-
tions such as variability in enzyme levels or in metabolite levels
can have a detrimental impact on the overall yield of the final
product. Typically, these perturbations result in the diversion of
too much metabolic flux away from cellular growth or in the
build-up of toxic intermediates in the culture medium. One
solution is the use of metabolic feedback to dynamically regulate
enzyme levels. Farmer and Liao (2000) first demonstrated the
benefits of metabolic feedback in E. coli in order to regulate the
microbial conversion of glucose to the carotenoid lycopene. They
employed the transcription activator NtrC, which is phosphory-
lated by the metabolic intermediate acetyl phosphate. Because
acetyl phosphate levels increase as excess flux from glucose
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catabolism is directed toward acetate production, NtrC activity
could be employed to divert excess metabolic flux from acetate
production to product synthesis. To create this link, Farmer and
Liao placed genes involved in lycopene synthesis under an NtrC-
activated promoter. This genetic manipulation created a negative
feedback loop that reduced lycopene production when too much
metabolic flux was diverted away from cell growth and increased
lycopene production when metabolic flux was being wasted
through acetate production. Introduction of this loop improved
cell growth and increased the yield of lycopene by at least 10-fold,
offering a generalized approach to balance growth demands and
product synthesis in a wide range of metabolic engineering
applications.

Zhang et al. (2012) adopted a different approach to introduce
dynamic metabolic control into microbial chemical synthesis,
specifically for the conversion of glucose to fatty acid ethyl esters
in E. coli. Rather than balancing cell growth and product synthesis,
they controlled two convergent branches of the fatty acid ethyl
ester synthesis pathway with fatty acid, a key pathway inter-
mediate. The genes encoding the pathway branches were placed
under the control of the transcription repressor FadR, which
is deactivated when bound to fatty acids or fatty acyl–CoA. The
result was a negative feedback loop that increased fatty acid
conversion when the concentration of fatty acid was elevated.
This loop increased the yield of fatty acid ethyl esters by 3-fold
and improved the stability of pathway genes. It is worth noting
that one of the inhibitors of FadR, fatty acyl–CoA, is synthetized
from fatty acid, inadvertently introducing a positive feedback loop
that may generate bistability or oscillations. Observing these
behaviors would require single-cell analyses, which are rarely
performed in metabolic engineering. Overall, these studies
demonstrate the utility of negative feedback in the dynamic
control of heterologous metabolic pathways. Because metabolite-
responsive transcription regulators and riboswitches are available
in nature and can be engineered, dynamic control could be
applied broadly in metabolic engineering (Tang et al., 2008;
Carothers et al., 2011; Michener et al., 2012). Applying these
regulators for metabolic control will advance metabolic engineer-
ing by consistently improving product yields and making micro-
bial chemical synthesis a more competitive alternative to
traditional routes of industrial chemical synthesis.

6.2. Biosensor design

Feedback was an essential feature of the next category of
applications. Building on previous work from the Hasty group,
Prindle et al. (2012) developed a biosensor that modulates
its oscillatory frequency in response to a sensed molecule. The
underlying genetic circuit coupled negative and positive feedback
through two diffusible signaling molecules: AHL and hydrogen
peroxide. AHL induced the expression of the AHL synthase LuxI
(positive feedback) and the AHL-degrading enzyme AiiA (negative
feedback). Hydrogen peroxide activated the expression of NADH
dehydrogenase II responsible for hydrogen peroxide production
(positive feedback). A hybrid promoter controlled by both AHL
and hydrogen peroxide regulated the circuit output GFP. E. coli

cells harboring the engineered circuit were grown in a micro-
fluidic device that collected individual micro-colonies or ‘biopix-
els.’ A permeable wall and gas-filled cavity separated adjacent
micro-colonies. AHL coordinated oscillations within the micro-
colony, while hydrogen peroxide coordinated oscillations between
adjacent micro-colonies by diffusing through the cavity. This setup
synchronized oscillations between cells in the same micro-colony
as well as adjacent colonies, leading to synchronous oscillations
over millimeter-length scales—over 1000 times the size of an
individual bacterial cell.
Prindle and coworkers expanded this engineered circuit to
sense arsenic. An additional copy of the luxI gene was placed
under the control of an arsenic-responsive promoter, which is
activated when soluble arsenite binds the transcription regulator
ArsR. The inducible expression of additional LuxI modulated the
period of the oscillations from 68 min in the absence of arsenite to
80 min in the presence of 1 mM arsenite. Importantly, the period
closely correlated with intermediate arsenite concentrations,
offering a macroscopic, frequency-based readout of toxin concen-
trations. The range of periods admittedly was limited, although
insights from the group’s previous work (Stricker et al., 2008)
coupled with riboswitches or other post-transcriptional regula-
tory mechanisms (Liang et al., 2011) could expand the observed
range, thereby improving the accuracy and sensitivity of
frequency-based biosensors.

6.3. Population control

In the final category of applications, feedback was applied to
engineer interactions between cells that impact growth and
viability. This category can be split into two types: antagonistic
interactions, which restrain population growth, and mutualistic
interactions, which promote population growth. In the simplest
example of antagonistic interactions, You et al. (2004) engineered
a negative feedback loop in E. coli that induces cell death at high
cell densities. The loop connected quorum sensing to the expres-
sion of the toxic protein CcdB. At low cell densities, the expression
of the ccdB gene was low and growth rate of the cells was
unperturbed. At high cell densities, the expression of the ccdB

gene was activated, preventing the further accumulation of cells.
The plateau in cell density exhibited damped oscillations in line
with a mathematical model and could be tuned by modulating
the stability of AHL.

Balagaddé et al. (2008) extended this work to construct a
synthetic predator-prey system composed of two engineered
strains of E. coli. This system combined two orthogonal quorum
sensing systems and either induction or repression of the ccdB

gene. The engineered ‘predator’ E. coli cells secreted one AHL
molecule and repressed the expression of ccdB in the presence of
a different AHL signaling molecule. The engineered ‘prey’ E. coli

cells secreted the second AHL molecule and activated the expres-
sion of ccdB in the presence of the first AHL signaling molecule.
This configuration generated a negative feedback loop composed
of two cells where the prey increased the growth of the predator,
while the predator reduced the growth of the prey. The synthetic
circuit replicated common behaviors associated with natural
predator-prey systems, including coexistence, oscillations, and
extinction, that depended on the experimental conditions. Aside
from providing insights into natural systems, the two antagonistic
circuits conferred control over the density of an isogenic or mixed
population. The major limitation is that the antagonistic interac-
tions exert selective pressure on the cells, potentially driving the
loss of the ccdB gene in the above examples (Balagaddé et al.,
2005). This limitation would pose challenges for the long-term
maintenance of a population density.

Mutualistic interactions offer a distinct approach to control
cellular populations. These interactions promote the growth of
all participating members of the population, which is a common
attribute of microbial consortia found in nature (Wintermute and
Silver, 2010). In one example of an engineered mutualistic
system, Shou et al. (2007) engineered two yeast strains to form
a positive feedback loop through cross-feeding. One strain was
engineered to overproduce the nucleobase adenine and to not
produce the essential amino acid lysine, while the other strain
was engineered to overproduce lysine and to not produce ade-
nine. Engineering each strain to produce one metabolite and not



T. Afroz, C.L. Beisel / Chemical Engineering Science 103 (2013) 79–9088
the other interlinked their growth. Following inoculation of the
two strains into a single culture, the cell density of both strains
showed large initial swings. Interrogation of the large swings
revealed that each strain had to undergo lysis in order to release
the essential metabolite, an intriguing feature of the system.
Following the swings in cell density, the systems showed persis-
tent stability even after large dilutions, which the authors
attributed to the selection of beneficial mutations in either strain.

In a more recent example of engineered mutualistic interac-
tions, Kerner et al. (2012) generated two strains of E. coli that
excrete a metabolite required by the opposing strain. In contrast
to the circuit developed by Shou and coworkers, excretion of the
metabolites did not require cell killing and was under inducible
control. Growth of the strains with different concentrations of the
exogenous inducers tuned the growth rate of the co-culture and
the ratio of the two strains. The resulting relationship was highly
non-linear and did not lend to a simple mathematical model.
We attribute this relationship to the competing benefits (utilizing
the essential metabolite) and costs (gene over-expression and
metabolite shedding) of the mutualistic interactions, potentially
imparting nested positive and negative feedback loops.

These two circuits demonstrate that positive feedback,
through mutualistic interactions can stabilize the ratios of parti-
cipating strains. These interactions are expected to be more stable
than antagonistic interactions by promoting rather than restrain-
ing growth. The limitation to this approach is that participating
strains will continue growing until the resources in the medium
are depleted. Future work within this application could focus
on combining both mutualistic and antagonistic interactions to
control population density and composition and to achieve novel
population dynamics afforded to coupling positive and negative
feedback loops. The design of engineered communities undoubt-
edly will become a central thrust of synthetic biology with
widespread applications in metabolic engineering, human health,
and biomanufacturing.
7. Future directions

The above examples illustrate how feedback has been inte-
grated into the design of biological systems. However, feedback
has been absent in one of the largest thrusts of synthetic biology:
the design of logic devices. These devices are being pursued with
the goal of constructing increasingly large genetic circuits that
perform more complex logic operations. Recent examples have
marked major milestones in engineering biology, including the
development of circuits that count (Friedland et al., 2009), circuits
that process up to four different input signals (Moon et al., 2012),
and circuits that detect edges separating regions in the light and
in the dark (Tabor et al., 2009). These circuits can be described as
first-pass ‘prototypes,’ where more advanced versions perceivably
would integrate control strategies, fail-safes, and other more
complex operations. However, the prototypes tended to require
extensive optimization to function properly even under defined
laboratory conditions. Some of the optimization may be attrib-
uted to typical complications such as poor expression, which can
be relieved through recently developed approaches (Salis et al.,
2009; Lou et al., 2012; Qi et al., 2012). However, the need for
optimization could be relaxed through the integration of feedback
in the initial design. For instance, logic devices could be con-
structed with multiple positive feedback loops to introduce
robust and tunable bistability or with negative feedback loops
to reduce cell–cell variability in the sensory components (Fig. 4D).
Integration of feedback may even reduce the optimization time,
leading to the faster development of a functional system. To
facilitate the widespread use of feedback, a library of portable
feedback modules could be developed that exhibit a range of
feedback properties and can readily be inserted into existing
genetic circuits (Nistala et al., 2010). These modules could be as
simple as auto-repression or as complex as layered positive
feedback. Modules also could offer a range of feedback properties
through genetic modifications or use of allosteric regulators that
can be tuned exogenously (Kerner et al., 2012). Finally, these
modules could be extended to feature other modes of feedback,
such as allosteric enzymes used in the optimization of metabolic
pathway design. The resulting collection of modules could be
broadly utilized for the construction of biological systems with
relaxed design requirements.

Another potential hurdle to integrating feedback is the
predominant use of transcriptional regulation in logic devices.
Promoters have a limited capacity for regulator binding sites,
restricting how many inputs a single promoter can receive. This
restriction could be alleviated through the further development of
post-transcriptional regulators such as regulatory RNAs. Ongoing
work in the design and construction of synthetic regulatory RNAs
should contribute significantly to the construction of large-scale
circuits and the accompanying ability to introduce feedback (Win
and Smolke, 2008; Lucks et al., 2011). For this idea to be fully
realized, we must better understand how regulatory RNAs shape
the properties of feedback. Recent work has highlighted how
regulatory RNAs and transcription regulators can display different
regulatory properties, even in the context of genetic circuits
(Levine and Hwa, 2008; Mehta et al., 2008; Beisel and Storz,
2011). Further efforts to understand the properties of both
synthetic and natural RNA-based genetic circuits will lay the
foundation to engineer feedback with diverse mechanisms of
regulation.
8. Conclusions

Biological feedback offers numerous advantages for synthetic
biology that extend beyond the typical use of feedback in process
control. Many of these advantages were elucidated through the
characterization of synthetic biological systems. Even though
synthetic biology has lent critical insight into the attributes of
feedback, the field has been slow to adopt these attributes. As
constructed systems become larger and more complex, feedback
will become an essential feature that must be integrated even in
the prototype stage. Doing so will facilitate future efforts in
biological design, potentially matching or even surpassing the
prevalence of feedback in nature.
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