NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO₂ nanocomposites

Sun-Hwa Seo^a, Bo-Mi Kim^a, Ara Joe^a, Hyo-Won Han^a, Xiaoyuan Chen^b, Zhen Cheng^c, Eue-Soon Jang^a,*

^aDepartment of Applied Chemistry, Kumoh National Institute of Technology, Gyeongbuk 730-701, Republic of Korea
^bNational Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
^cMolecular Imaging Program at Stanford (MIPS) and Bio-X Program, Department of Radiology, Stanford University, 1201 Welch Rd, Stanford, CA 94305, USA

A B S T R A C T

Methylene blue-loaded gold nanorod@SiO₂ (MB-GNR@SiO₂) core@shell nanoparticles are synthesized for use in cancer imaging and photothermal/photodynamic dual therapy. For the preparation of GNR@SiO₂ nanoparticles, we found that the silica coating rate of hexadecylcetyltrimethylammonium bromide (CTAB)-capped GNRs is much slower than that of PEGylated GNRs due to the densely coated CTAB bilayer. Encapsulated MB molecules have both monomer and dimer forms that result in an increase in the photosensitizing effect through different photochemical pathways. As a consequence of the excellent plasmonic properties of GNRs at near-infrared (NIR) light, the embedded MB molecules showed NIR light-induced SERS performance with a Raman enhancement factor of 3.0 × 10¹⁰, which is enough for the detection of a single cancer cell. Moreover, the MB-GNR@SiO₂ nanoparticles exhibit a synergistic effect of photodynamic and photothermal therapies of cancer under single-wavelength NIR laser irradiation.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

According to cancer statistics published by the American Cancer Society, 580,350 Americans will die by cancer in 2013, which corresponds to approximately 1600 cancer deaths per day [1]. Fortunately, cancer death rates have continuously decreased by 1.7% per year owing to the rapid evolution of diagnostic instruments, biomedical technology, and nanoscience [1]. Early diagnosis of cancer, in particular, plays a crucial role in increasing the chances of survival, and molecular imaging technology based on nanoscience has emerged as a new paradigm for cancer diagnosis [2]. Typically, fluorescent semiconducting quantum dots (QDs) have received much attention as molecular imaging cancer biomarkers over the past two decades since fluorescence microscopy is a rapid and economical procedure as compared to other non-invasive imaging methods such as magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET) [3]. However, the dissolution of the heavy metal ions of QDs through the metabolism process could induce serious problems in human health, in spite of the excellent fluorescence properties of QDs. Therefore, non-cytotoxic materials such as gold, iron oxide, and silica nanoparticles are becoming the materials of choice for biomedical applications [4,5]. Among them, plasmonic gold nanoparticles have been one of the most promising materials for nanomedicine owing to their high biocompatibility and well-defined optical properties [6–8]. Especially, surface-enhanced Raman scattering (SERS) technology based on gold nanostructures has been recognized as an alternative to QD-based fluorescence imaging method because gold nanoparticles can induce enhancement of the Raman signal by a factor of 10⁸–10¹⁴, narrow the Raman peak width more than fluorescence peaks by 1–2 orders of magnitude, and little photobleaching effect [9,10]. As a result, numerous studies on gold nanoparticle-based SERS imaging have been reported [6,8–10]. This SERS effect of metal nanostructures is associated with surface plasmon resonance (SPR), which is the collective free electron oscillation driven by resonant electromagnetic radiation, and the wavelength used for the SPR is strongly related to their shape and size. [7,11,12] As compared to spherical gold nanoparticles, which exhibit SPR at wavelengths in the visible light range, anisotropically grown gold nanorods (GNRs) have a strong longitudinal SPR (LSMR) mode along the elongated [001] direction under near-infrared (NIR) light and their absorption...
wavelength can be finely tuned by controlling the aspect ratio of the GNR [11,12]. NIR light is well-known for providing a “therapeutic window” into biological tissue due to its much longer penetration depth than visible or infrared light [13]. For that reason, GNRs have drawn more attention for biomedical applications than other gold nanostructures.

In addition to excellent SERS performance, the longitudinal plasmonic response of GNRs can be rapidly converted into thermal energy as a result of lattice oscillation through electron–phonon coupling [14]. This photothermal conversion of the plasmonic response of GNRs could offer an extraordinary therapeutic approach for various malignant and nonmalignant diseases [8,15]. Consequently, GNRs have potential in terms of developing therapeutics without complicated hybridization procedures to fabricate nanoparticles with different physicochemical properties [16]. However, photothermal therapy may sometimes fail to completely annihilate solid tumors because it can trigger a cytotoxic response in cancer cells in response to physicochemical stresses, e.g., the expression of heat-shock proteins (HSPs) [17]. The surviving cancer cells could exhibit thermo-tolerance and chemotherapy resistance and thus become more difficult to eradicate. Therefore, development of a complementary therapeutic method based on the GNR system is strongly recommended to achieve increasing anticancer efficacy.

Photodynamic therapy (PDT) is another photon-induced therapeutic method that uses a photosensitizer, but one of the major drawbacks in current PDT therapy is caused by resonant light wavelengths below 700 nm and the difficulty in preparing a water-soluble photosensitizer due to the hydrophobic structure of the photosensitizer [18]. Methylene blue (MB) is not only a water-soluble phenothiazine photosensitizer with a high quantum yield of singlet oxygen (1O_2) generation ($\Phi_S \sim 0.5$), but it is also a popular cationic dye for histological and bacteriologic staining owing to its prominent blue color [19]. Moreover, MB is very useful as an FDA-approved drug to treat methemoglobinemia, as an antimicrobial agent for treating urinary tract infections, and as an anti-parasitic agent for treating malaria infection [20,21]. Additionally, recent studies have suggested that MB could be used as an antagonist against heat-shock response gene expression in cancer cells [22]. From an economic point of view, its low price also facilitates its use in practical applications.

In the present study, the positive charge of MB is easy to make a complex with the negatively charged GNR through electrostatic interactions. However, the PDT efficacy of MB could be restricted by using visible excitation light, as explained above. In this regard, converting the visible wavelength to NIR light is mandatory for PDT using MB. Nevertheless, relatively little research has been conducted in this direction, in contrast to the voluminous existing database on photosensitizer-incorporated multifunctional nanoparticles for cancer theranostics [23,24]. Hybridization with GNRs could solve the limitations of MB-based PDT therapy because the NIR light facilitates electron transfer from the GNRs to the MB molecules. Moreover, the synergistic effect of photothermal therapy and PDT could allow us to make considerable advances in fighting against cancer.

Herein, we demonstrate the feasibility of MB-embedded GNR@SiO$_2$ (MB-GNR@SiO$_2$) nanocomposites as a theranostic platform for SERS cancer imaging and a NIR light-induced synergistic cancer therapy combining PDT and photothermal therapy. Unlike conventional PDT techniques, one of the most promising advantages of the present MB-GNR@SiO$_2$ nanoparticles is the photosensitizing response of the incorporated MB molecules via the NIR light through plasmonic electron transfer from the GNRs. Therefore, the cancer-killing efficacy of the present MB-GNR@SiO$_2$ nanocomposites could be significantly enhanced as compared to that of bare GNRs. To the best of our knowledge, the present study provides empirical evidence of the enhanced SERS and cancer-killing effect of the MB-GNR@SiO$_2$ nanostucture.

2. Materials and methods

2.1. Synthesis of GNR solution

The GNRs were prepared by following the seed-mediated procedure developed by Murphy and coworkers [25]. The seed solution was synthesized by mixing 5 mL of 0.25 mM hexadecyltrimethylammonium bromide (CTAB) aqueous solution with 5 mL of a 1 mM hydrogen tetrachloroaurate(III) tetrahydrate (HAuCl$_4$·4H$_2$O) after which 0.6 mL of ice-cold 0.01 M NaCl$_4$ was added with vortex mixing for 2 min. The resulting seed solution became brownish yellow, which was then aged for 30 min at room temperature before use. For the GNR growth solution, 100 mL of 1 mM HAuCl$_4$·4H$_2$O (50 mL) was mixed with 100 mL of 0.2 M CTAB solution. Then, 4 mL of AgNO$_3$ (5 mL) and 7.9 mL of ascorbic acid aqueous solution (1.4 mL) were subsequently added under mild stirring, which changed the color from dark yellow to colorless. As the final step, 240 mL of the seed solution was added into the growth solution with gentle stirring, which changed the color to dark red within 1 h. The excess CTAB surfactant was discarded from the final product by centrifugation at 15,000 rpm for 30 min and then the precipitate was re-dispersed in 20 mL of distilled and de-ionized (DI) water with a resistivity of 18 MΩ cm. The final Au concentration of the GNR solution was measured to be 92.7 µg/mL by inductively coupled plasma optical emission spectrometry (ICP-OES, Varian/720-ES, USA) analysis.

2.2. Preparation of MB-GNR@SiO$_2$ core@shell nanoparticles

A mesoporous silica coating on GNR was achieved by the Gorelikov and Mat-suura protocol [26]. Two hundred microliters (200 µL) of 0.1 M NaOH solution was added to 30 mL of the as-prepared GNR solution. Then, 20 µL of 20% tetraethylhydroxosilicate (TEOS) in methanol solution was injected into the DI water and was injected three times in 30 min intervals under gentle stirring. Growth of the mesoporous silica layer was allowed to continue with vigorous stirring at 600 rpm for 3 days at 30 °C. The remaining excess reagents in the resulting product were removed by centrifugation and washing three times with methanol. The purified GNR@SiO$_2$ was dispersed in DI water and then PEGylated by using poly(ethylene glycol) methyl ether thiol (mPEG-SH, MW: 10,000, Sigma–Aldrich) to enhance the stability. The resulting GNR@SiO$_2$ solution was mixed with excess MB (0.2 g) under stirring for 3 days at room temperature. In order to completely eliminate the physically adsorbed MB molecules, the MB-loaded GNR@SiO$_2$ solution was repeatedly centrifuged and washed with DI water until the supernatant solution changed color from dark blue to colorless. From the ICP-OES analysis, Au concentration of the MB-GNR@SiO$_2$ solution was determined to be 54.8 µg Au/mL.

2.3. Characterization

The morphology of the prepared nanoparticles was confirmed by using a JEM 2100 (JEOL, Japan) transmission electron microscope (TEM) operating at 200 kV. The UV–Vis absorption spectra of the nanoparticle solution were acquired using an Epoch 2 (Biotek). Micro-Raman spectra with 514 nm (10 mW, 1 cm spot size) and 785 nm (0.05 mW, 1 µm spot size) excitation were obtained by an inVia Raman microscope system (Renishaw, UK) equipped with a Leica DM 2500 microscope (Leica, Germany) using a 1200 g/mm grating.

2.4. Cell culture and cellular uptake of nanoparticles

CT-26 mouse colon cancer cells from Korean Cell Line Bank (KCLB) were cultured in maintenance medium consisting of Dulbecco’s Modified Eagle Medium (DMEM) (1000 mg/l glucose, Gibco), 10% fetal bovine serum (FBS, Invitrogen), and 100 U/mL penicillin–streptomycin salt (Wegene) at 37 °C in a humidified atmosphere with 5% CO$_2$. The CT-26 cancer cells (7 × 105 cells/well) were seeded in a 48-well plate and cultured overnight. After adding the MB-GNR@SiO$_2$ nanoparticles (3.3 µg Au to each well), the resulting CT-26 cells were maintained for 2 h in a 3% CO$_2$ incubator at 37 °C. The cells were then washed three times with phosphate-buffered saline (PBS, pH 7.4). The nanoparticle-labeled CT-26 cells were observed by a dark-field inverted microscope (Ti–S, Nikon).

2.5. Cellular toxicity of the MB-GNR@SiO$_2$ nanoparticles

To examine the biological effects of the MB-GNR@SiO$_2$ nanoparticles and GNRs on the CT-26 cancer cells in terms of cell viability, we performed the colorimetric MTT [3-(4,5)-dimethylthiahiazo-2-yl-2,5-diphenyltetrazolium bromide] metabolic activity assay using an Epoch™ microplate spectrophotometer (BioTek, USA).

2.6. Photothermal and photodynamic experiment

A continuous wave laser (Changchun New Industries Optoelectronics Tech., China) with a wavelength of 780 nm and power density of 1 W/cm2 was irradiated upon MB (20 µg/well), GNR (3.3 µg Au/well), and MB-GNR@SiO$_2$ (3.3 µg Au/well) transfected CT-26 cells. Upon laser irradiation, real-time detection of increasing
temperature in the cancer cells was recorded by an IR-thermo camera (SE/A325, FLIR systems Inc.) controlled with a PC program. The cellular viability of the resulting cancer cells was confirmed by MTT assay. The reactive oxygen species (ROS) level in the NIR laser-irradiated cancer cells was measured through ROS staining with DCF-DA dye by dark-field inverted fluorescence microscope (Eclipse Ti-S, Nikon).

3. Results and discussion

3.1. Characterization of materials

Fig. 1(a) shows a TEM image of the as-prepared GNRs, which have an aspect ratio of approximately 3–4. Based on recent crystallographic studies, the GNRs prepared via the seed-mediated growth method have rounded rectangular ends with (250) side facets because of the surface reconstruction process that takes place in order to minimize the growth of the thermodynamically unfavorable (110) facets [27]. The high-resolution TEM image shown in the inset of Fig. 1(a) illustrates the typical round-ended morphology of the current GNRs. As shown in Fig. 1(b), a silica layer with a thickness of approximately 10 nm homogeneously coated the GNRs through the modified Stöber method developed by Gorelikov and Matsuura [26]. Typically, the Stöber method is a well-known procedure for preparing silica-coated nanoparticles under a hydrophilic solvent (e.g. ethanol), but this method is difficult to apply directly in CTAB-coated GNPs [28]. Because weakly bonded CTAB molecules can be easily removed from the GNR surface under an ethanol solvent, severe aggregation of the GNPs usually occurs [29]. Substitution of CTAB molecules with a stabilizing ligand such as thiolated polyethylene glycol (mPEG-SH) could result in ethanol-dispersed GNPs [30]. However, such an intermediary surfactant-coating step was not needed in the present modified Stöber process. Moreover, the CTAB-covered GNPs have a different site-selective silica coating pathway with mPEG-SH-covered ones as documented by Wang et al. [31]. Namely, the silica layer on a CTAB-stabilized GNR surface was selectively coated at the GNR ends densely covered by the CTAB bilayer; however, the silica coated the side surface prior to the end facets for the CTAB-stabilized GNR@SiO2 nanoparticles. Fig. 1(b) shows a strong LSPR peak centered at approximately 845 nm, which corresponds to GNRs with an aspect ratio of 3–4 [30]; this result is highly congruent with the TEM results. On the other hand, the LSPR peak of GNR@SiO2 was slightly red-shifted to 856 nm, as shown in Fig. 2(b). This is consistent with the Mie–Gans theory, in which the plasmon wavelength of GNPs is sensitively changed by the surrounding dielectric environment (εm), as shown in the following equation. [7,32]
Scheme 1. Schematic illustration of photochemical reaction of methylene blue, where MB+ is the singlet ground state; "MB+" the excited singlet state; "MB+*" the excited triplet state; ISC the intersystem crossing; MB• the semi-reduced radical; MB•* the semi-oxidized radical; O2 the ground state triplet oxygen; 'O2 the excited singlet oxygen; and O2• the semi-reduced oxygen radical. Reactions (1)–(4) represent the deactivation process of the excited triplet state ("MB+"*) and the radical species (MB•*), where reaction (1) is the spontaneous decay of "MB+*"; (2) the oxidation decay of "MB+*" by triplet oxygen; (3) the reduction decay of "MB+*" by MB or a reducing agent (e.g., GNR); and (4) the superoxide generation through oxidation decay of MB•* by triplet oxygen. Reaction (5) is a self-dimerization process of the ground state MB+ and (6) is the self-decomposition process of exciting ground state dimers. Adapted from Ref. [21] by permission from Elsevier.

\[
\lambda_{GNR} = \lambda_p \sqrt{\varepsilon_0 + \left(\frac{1}{L} - 1\right) \varepsilon_m} \tag{1}
\]

Here, \(\varepsilon_0\) is the high-frequency dielectric constant of gold, L is the depolarization factor along the longitudinal direction of the GNR, and \(\varepsilon_m\) is the dielectric constant of the surrounding medium. In eq. (1), \(\lambda_p\) is the plasma wavelength, which is determined from the electron density (N) and the effective mass of electrons (\(m^*\)) in gold, as represented in eq. (2).

\[
\lambda_p = \sqrt{\frac{4\pi^2 c^2 m^*}{Ne^2}} \tag{2}
\]

Namely, the increasing dielectric constant or the refractive index via the silica layer coating enhances the \(\lambda_{GNR}\) of the GNRs and eventually results in a red-shift in the LSPR wavelength for the GNR@SiO2. For the MB-GNR@SiO2 nanocomposites, the LSPR peak was significantly red-shifted to 892 nm from 856 nm of GNR@SiO2, as shown in Fig. 2(c). It can be easily understood from eq. (2) that the electron transfer from the GNRs to the MB molecules leads to a decrease in the electron density of the GNRs and thus the value of \(\lambda_p\) increases compared to \(\lambda_p\) of the GNR@SiO2 system. Such an LSPR shift of GNRs as a function of the surrounding medium has been systematically studied and described in previous reports [33,34]. On the other hand, the typical MB absorption peaks at 664 nm and 615 nm were clearly observed for the MB-GNR@SiO2 suspension. The former and the latter absorption peaks are related to the MB monomer and dimer species, and their absorption intensity ratio (\(A_{664/615}\)) could provide a qualitative estimate of the relative concentration of dimers to monomers [19,35]. From the change of UV–Vis absorption spectra of the MB solution with increasing concentration from 10 µM to 1 mM, we found that the value of \(A_{664/615}\) systematically decreased from 1.95 for 10 µM to 1.05 for 125 µM (please see Fig. S2(a) in the Supporting Information). Eventually, a new absorption peak was observed at 555 nm for the 250 µM concentration, which corresponds to a trimer and a more aggregated MB form (Fig. S2(a)-(ix)) [35]. At 1 mM, the peak was significantly red-shifted to 517 nm, as shown in Fig. 2(S) (b)-(xii). It is a well-known fact that a homogenous MB solution with a low concentration (<20 µM) has an almost monomeric form (>93%) [19].

For the present MB-GNR@SiO2, the \(A_{664/615}\) value of 1.30 is comparable to that of 1.35 of the 40 µM MB solution even though the concentration of the loaded MB molecules was as low as 8 µM, which was determined by using a standard fitting curve from the absorption intensity observed at 664 nm of MB solutions with various concentrations (please see Fig. S2(b) in the Supporting Information). This indicates that dimer species were present among the MB molecules loaded into the GNR@SiO2 nanoparticles. One possible reason for the dimer formation in the MB-GNR@SiO2 may be the locally increased concentration of the MB molecules around the GNRs coated with a SiO2 layer as compared to the concentration of free molecules in the aqueous solution. In addition, as reported by Severino et al., the MB dimer formation could be facilitated by a negatively charged interface through electrostatic interaction even at a low concentration of the MB solution [36]. Namely, the negatively charged GNR surface leads to stabilization of the MB dimer species around the GNRs.

The MB monomers and dimers have distinct photochemical reactions, as has been reported by Tardivo et al., and this could affect the cancer-killing efficacy [19]. After optical pumping, the monomers generally correspond to the type I photochemical pathway, in which photoexcited MB molecules in a singlet state undergo intersystem crossing (ISC) to a metastable triplet state with high quantum yield. Then, singlet oxygen molecules (\(^1\)O2) could be generated by the triplet MB molecules through exchange energy transfer, as represented by reaction (2) in Scheme 1. By contrast, the MB dimers can produce MB free radicals as a result of self-dissociation, as shown in reaction (6) of Scheme 1. The chemical reaction between MB radicals and oxygen produces a superoxide (reaction (4)). Also, the residual MB radicals can lead to the formation of various ROS species, including a highly reactive hydroxyl radical through a Fenton reaction [37]. Therefore, MB dimers may be more effective than monomers in eliminating hypoxic tumors, which is a characteristic feature of outgrowing solid tumors as a consequence of the disproportion between oxygen supply and consumption, without photoexcitation. However, a high concentration of MB solution is usually required in order to obtain the necessary dimers, which could induce chemical toxicity in normal cells. For that reason, it is worthwhile to confirm the presence of MB dimers or more aggregated forms in the MB-GNR@SiO2 nanocomposites in order to overcome the above mentioned drawback in conventional MB treatment.
Higher aggregated forms of MB could facilitate type II photoreaction and they have an absorption maximum around 570 nm (Fig. S2(a)–(vii)–(xi)), but the relevant absorption peak was not observed for the present MB–GNR@SiO2. In order to further confirm the presence of higher aggregated MB molecules, micro-Raman experiments were carried out on the MB–GNR@SiO2 suspension and the solid MB film by using a He laser source with a wavelength of 514 nm (d_{\text{spot}} = 1 \mu m). It is noted that the MB monomers and dimers have no absorption at 514 nm and thus we can ignore their contributions in the resonant Raman spectrum. As shown in Fig. 3(a–c), Raman peaks observed from the MB–GNR@SiO2 solution were nearly the same as that of the MB solid film. This indicates that some of the MB molecules in the MB–GNR@SiO2 nanoparticles have highly aggregated forms similar to a MB solid film. Typical Raman band assignments are summarized in Table 1 [38,39]. On the contrary, Raman peaks from the solid MB film under an excitation laser at 785 nm are shown in Fig. 3(d–f). A laser wavelength of 785 nm is far away from the absorption peak of the MB molecule but close to the LSPR absorption peak of the GNR. Therefore, there are no Raman modes from the solid MB film, but strong SERS peaks were observed from the MB–GNR@SiO2 nanoparticles by irradiation with a 785 nm laser. Especially, the intensity of the C–N–C skeletal deformation mode (\(\delta(C-N-C)\)) at 439 cm\(^{-1}\) (Fig. 3(d)) and the C–N symmetric stretching mode (\(\nu(C-N)\)) at 1386 cm\(^{-1}\) (Fig. 3(e)) were remarkably enhanced as compared to normal Raman peaks obtained from the solid MB film under a 514 nm excitation laser (Fig. 3(a)). Moreover, the Au–N stretching mode (\(\nu(Au-N)\)) newly appeared at 238 cm\(^{-1}\) from the MB–GNR@SiO2 nanocomposites, as shown in Fig. 3(d) [39]. This is clear evidence that the loaded MB molecules were bonded to the GNR surface through nitrogen atoms, resulting in an SERS effect by transferring the plasmonic free electrons from the GNRs to the MB molecules. To estimate the SERS enhancement, we calculated the Raman enhancement factor (\(R_E\))

\[
\frac{\nu(\text{MB})}{\nu(\text{MB-GNR})} = \frac{\nu(\text{MB})}{\nu(\text{MB-SiO})} \times \frac{\nu(\text{MB-SiO})}{\nu(\text{MB-GNR})}
\]

Table 1 Raman frequencies and corresponding assignments of the main bands observed from the MB solid film and MB-GNR@SiO2 solution by excitation at 514 nm and 785 nm.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Solid MB</th>
<th>MB-GNR@SiO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu(Au-N))</td>
<td>238</td>
<td>238</td>
</tr>
<tr>
<td>(\delta(C-N-C))</td>
<td>446, 450</td>
<td>439, 500</td>
</tr>
<tr>
<td>(\delta(C-N-C))</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>535</td>
<td>540</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>535</td>
<td>560</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>535</td>
<td>581</td>
</tr>
<tr>
<td>(\gamma(C-S-C))</td>
<td>593</td>
<td>596</td>
</tr>
<tr>
<td>(\nu(C-N))</td>
<td>670, 671</td>
<td>659</td>
</tr>
<tr>
<td>(\nu(C-N))</td>
<td>670</td>
<td>760</td>
</tr>
<tr>
<td>(\nu(C-N))</td>
<td>670</td>
<td>875</td>
</tr>
<tr>
<td>(\nu(C-N))</td>
<td>950</td>
<td>944</td>
</tr>
<tr>
<td>(\beta(C-H))</td>
<td>1037, 1037</td>
<td>1034</td>
</tr>
<tr>
<td>(\beta(C-H))</td>
<td>1071</td>
<td>1069</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>1153, 1150</td>
<td>1144</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>1184</td>
<td>1173</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>1223, 1223</td>
<td>1222</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>1301, 1301</td>
<td>1295</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>1362</td>
<td>1359</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>1396</td>
<td>1393</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>1438</td>
<td>1438</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>1470</td>
<td>1447</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>1494</td>
<td>1494</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>1624</td>
<td>1621</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>1624</td>
<td>1613</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>2074</td>
<td>2074</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>2107</td>
<td>2369</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>2383</td>
<td>2475</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>2475</td>
<td>2475</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>2775</td>
<td>2777</td>
</tr>
<tr>
<td>(\gamma(C-H))</td>
<td>2880</td>
<td>2875</td>
</tr>
</tbody>
</table>

Fig. 3. Micro-Raman spectra of MB solid film and MB–GNR@SiO2 solution excited by (a–c) 514 nm (10 mW, d_{\text{spot}} = 1 \mu m) and (d–f) 785 nm (0.05 mW, d_{\text{spot}} = 1 \mu m). Schematic illustration shows loaded MB dimers and monomers excited at 514 nm and 785 nm, respectively, in which plasmon damping electrons along the longitudinal direction transfer from the GNRs to the MB monomers by NIR resonant light pumping.
per MB molecule as the ratio of the intensity of the $\tilde{\nu}(C=\text{N}C)$ mode obtained from the MB-GNR@SiO$_2$ nanoparticles and the solid MB film under excitation at 785 nm and 514 nm, respectively. The R_{EF} of SERS is defined as

$$R_{\text{EF}} = \frac{N_{\text{Bulk}}}{N_{\text{Ads}}} \times \frac{I_{\text{SERS}}}{I_{\text{Raman}}}$$

(3)

In eq. (3), N_{Bulk} is the number of MB molecules for the solid MB film and N_{Ads} is the number of MB molecules adsorbed on the GNR surfaces for MB-GNR@SiO$_2$ nanoparticles in the laser-activated volume. I_{SERS} and I_{Raman} are the intensities of the vibrational mode in SERS and normal Raman spectrum, respectively [40]. For the present study, the $\tilde{\nu}(C=\text{N}C)$ mode at 439 cm$^{-1}$ was utilized to estimate the R_{EF} and it was calculated to be around 3.0×10^{10}. As reported by Le Ru et al., an R_{EF} of 10^7 is sufficient to observe a single-molecule SERS signal but that of the present MB-GNR@SiO$_2$ nanoparticles is strongly enhanced by 1000 times [41]. Further detailed calculations are presented in the Supporting Information. In fact, we postulated that the laser penetration depth for SERS and normal Raman experiments is the same. However, the penetration depth is expected to be less for SERS conditions excited at 785 nm with a laser power of 0.05 mW as compared to normal Raman conditions excited at 514 nm with a laser power of 10 mW due to the remarkably low power density. For that reason, the real R_{EF} value of the SERS spectrum for the MB-GNR@SiO$_2$ nanoparticles may be higher than the above calculated values.

3.2. Determination of optimum MB-GNR@SiO$_2$ concentration for cancer treatment

An MTT assay was accomplished in order to determine the concentration of the MB-GNR@SiO$_2$ nanoparticles needed for cancer treatment while minimizing the chemical toxicity of the nanocomposites. From the ICP-OES analyses, the gold concentration of the MB-GNR@SiO$_2$ solution was determined to be 94.8 μg Au/mL and various volumes (0–150 μL) of the nanoparticles were added to the CT-26 cancer cells, which had a density of 7×10^4 per well. The resulting cancer cells were maintained for 2 h in a 5% CO$_2$ incubator at 37°C and then further incubated for 12 h in order to investigate accurately the cellular toxicity of the MB-GNR@SiO$_2$-transfected CT-26 cancer cells after washing the remaining nanoparticles in the media. As shown in Fig. 4(a), cancer cell viability decreased to 52% upon increasing the dose of the MB-GNR@SiO$_2$ nanocomposites from 0 to 150 μL (0–14.2 μg Au). Usually, cell viability above 80% is reasonable for excluding the chemical toxicity of the transfected nanoparticles, and thus the concentration of the MB-GNR@SiO$_2$ nanoparticles was determined to be 3.3 μg Au per well (35 μL per well) for treatment of the CT-26 cancer cells. Namely, the chemical toxicity of the MB-GNR@SiO$_2$ nanoparticles is insignificant at the above concentration and therefore we can consider just the pure photothermal and photosensitizing effects of the MB-GNR@SiO$_2$ nanocomposites on the cancer-killing efficiency upon a resonant laser irradiation. Fig. 4(b) shows a dark-field image of the MB-GNR@SiO$_2$-nanoparticle-transfected CT-26 cells after incubation for 2 h. The bright yellow color indicates that the nanoparticles were loaded into the cytoplasmic membrane of the cancer cells.

3.3. SERS Spectra of MB-GNR@SiO$_2$-transfected cancer cell

Fig. 5 shows bright-field images and SERS spectra corresponding to the control and MB-GNR@SiO$_2$-transfected cancer cells under excitation laser at 785 nm. The red cross in the cancer cell photos indicates the laser-activated area. For the control cancer cells without nanoparticle treatment, a broad background originating from the DMEM cell culture media was observed (Fig. 5(a)). For the MB-GNR@SiO$_2$ nanoparticle-treated cancer cells, shown in Fig. 5(b), the typical $\tilde{\nu}(C=\text{N}C)$, $\nu_{\text{sym}}(C=\text{N})$, and $\nu(C=\text{C})_{\text{ring}}$ modes of the MB molecules were clearly observed at 446, 1380, and 1605 cm$^{-1}$, respectively, but their intensities were weak due to the low concentration of MB detected from the single cancer cell. One the other hand, the intensities of the above three modes were remarkably enhanced by the overlapped cancer cells, as shown in Fig. 5(c). Although we did not carry out in vivo experiments, these results indicate that the SERS intensity of the MB-GNR@SiO$_2$ nanoparticles is enough to achieve an early cancer diagnosis because malignant tumors consist of a lot more cancer cells and therefore the SERS
intensity will be significantly enhanced as compared to *in vitro* cancer cell SERS imaging.

3.4. Therapeutic efficiency of MB-GNR@SiO2 nanoparticles for cancer cells

The photothermal efficiency of the MB-GNR@SiO2 nanoparticles was compared to that of bare GNRs without a silica coating layer and the results are shown in Fig. 6. After NIR laser irradiation ($\lambda = 780$ nm, 1 W/cm2) for 800 s, the temperature of the MB-GNR@SiO2 solution increased from 24 to 41°C. This photothermal efficiency was nearly the same as that of the bare gold nanorod solution due to the thin silica thickness of 10 nm. These results indicate that the outcome through photothermal therapy using MB-GNR@SiO2 nanoparticles is nearly the same as that using bare GNRs.

After 780 nm NIR laser irradiation, time-dependent cell viability of the bare GNR- and MB-GNR@SiO2-transfected cancer cells was investigated by MTT assay. As shown in Fig. 7(a,b), the decrease in cell viability for the MB-GNR@SiO2 nanoparticle-loaded cancer cells was greater than that for the bare GNR-treated cancer cells. The cell viability decreased to 31% for the GNR cells and 11% for the MB-GNR@SiO2 cells after NIR laser irradiation for 50 min. This fact clearly implies that a synergistic combination of the photothermal and photosensitizing effects of the MB-GNR@SiO2 nanoparticles appeared to increase cancer cell death. As compared to the bare gold nanorod-treated cancer cells (Fig. 8(b–f)), the live cell population of the MB-GNR@SiO2 nanoparticle-transfected cancer cells quickly decreased upon increasing NIR laser irradiation time from 0 to 50 min (Fig. 8(g–i)). This result is well consistent with the above MTT assay results.

Fig. 6. Temperature variation of DMEM, GNR, and MB-GNR@SiO2 solutions upon NIR laser irradiation ($\lambda = 780$ nm, power density $= 1$ W/cm2).
3.5. ROS Generation of MB-GNR@SiO$_2$-transfected cancer cells

In order to detect the ROS level in living cancer cells through the photosensitizing effect, ROS staining was carried out for the GNR-, MB-GNR@SiO$_2$-, and MB-transfected cancer cells upon NIR laser irradiation ($\lambda = 780$ nm, 1 W/cm2) by using DCFH-DA as the green fluorescence dye. For the GNR-transfected cancer cells, the ROS level increased very slowly even at an irradiation time of 50 min, which seems to be a result of mitochondria degradation in response to thermal stress via the photothermal effect of the GNR, as shown in Fig. 9(a–d). However, for the MB-GNR@SiO$_2$ nanoparticle-transfected cancer cells, the ROS level was significantly enhanced with increasing NIR laser irradiation time, as shown in Fig. 9(e–h). This is clear evidence that the MB-GNR@SiO$_2$ nanoparticles have not only a photothermal effect but also a photosensitizing one. Moreover, the most important difference between the GNR- and MB-GNR@SiO$_2$ nanoparticle-loaded cancer cells is ROS generation in dark conditions, such that the green fluorescence intensity for the latter was much stronger than that for the former, as shown in Fig. 9(a,e). Such a difference in the ROS level was also observed for the cancer cells treated with MB solutions with concentrations of 10 μm and 40 μm under dark conditions, as shown in Fig. 9(i,m), respectively. This fact implies that the MB-GNR@SiO$_2$ nanoparticles operated according to the direct oxidation process of the MB dimers through a type II photoreaction pathway, as represented in Scheme 1. Nevertheless, the ROS signal intensity for the cancer cells treated with MB solutions with concentrations of 10 μm (Fig. 9(i,l)) and 40 μm (Fig. 9(m,p)) did not change upon increasing laser irradiation time since the wavelength of the excitation laser was far away from the absorption wavelength of the MB molecules. Therefore, for the MB-GNR@SiO$_2$-transfected cancer cells, it seems reasonable to assume that movement of the plasmon-induced electrons from the

![Fig. 7. Cellular viability of (a) GNR and (b) MB-GNR@SiO$_2$ loaded CT-26 cancer cells upon laser ($\lambda = 780$ nm, power density = 1 W/cm2) irradiation time.](image-url)

![Fig. 8. Double immuno-fluorescence staining images of (a) control, (b–f) GNR (3.3 μg Au per well), (g) MB (20 μM), and (i–l) MB-GNR@SiO$_2$-treated CT-26 cancer cells (3.3 μg Au per well) as a function of NIR laser irradiation time ($\lambda = 780$ nm, power density = 1 W/cm2).](image-url)
GNRs to the MB molecules could accelerate the ROS generation through the type I photochemical pathway, as mentioned earlier.

4. Conclusions

We successfully synthesized MB-GNR@SiO₂ nanoparticles, which showed excellent SERS performance, with a Raman enhancement factor above 3.0×10^10. This SERS enhancement was enough to detect both agglomerated and single cancer cells. In addition, the resulting MB-GNR@SiO₂ nanocomposites had a photon-induced dual modality of photothermal and photosensitizing effects for cancer therapy, and thus the cancer-killing efficacy was remarkably enhanced by the present nanocomposites as compared to GNRs or MB treatment. Especially, we found that the embedded MB molecules in the GNR@SiO₂ nanoparticles had both monomers and dimers, even at a low concentration of 8 μM. Consequently, ROS generation was induced from the MB-GNR@SiO₂-transfected cancer cells by the type I and type II pathways related to the photoreaction of the MB molecules. Therefore, we believe that the present study provides empirical evidence to substantiate the promising potential of MB-GNR@SiO₂ nanoparticles to significantly advance the field of cancer theranostics.

Acknowledgments

This work was supported by research fund of the Korean Ministry of Education, Science & Technology (2013-0024700) and Small & Medium Business Administration of Korea (S2072168).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.biomaterials.2013.12.066.

References

