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Abstract 

We present a detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calcula- 
tions using pseudopotentials and a plane-wave basis set. We will discuss: (a) partial occupancies within the framework of the 
linear tetrahedron method and the finite temperature density-functional theory, (b) iterative methods for the diagonalization 
of the Kohn-Sham Hamiltonian and a discussion of an efficient iterative method based on the ideas of Pulay’s residual 
minimization, which is close to an order N&m scaling even for relatively large systems, (c) efficient Broyden-like and 
Pulay-like mixing methods for the charge density including a new special ‘preconditioning’ optimized for a plane-wave basis 
set, (d) conjugate gradient methods for minimizing the electronic free energy with respect to all degrees of freedom 
simultaneously. We have implemented these algorithms within a powerful package called VAMP (Vienna ab-initio 
molecular-dynamics package). The program and the techniques have been used successfully for a large number of different 
systems (liquid and amorphous semiconductors, liquid simple and transition metals, metallic and semi-conducting surfaces, 
phonons in simple metals, transition metals and semiconductors) and turned out to be very reliable. 

1. Introduction 

1 .I. General 

In recent years, ab-initio calculations have made a 
profound impact on the investigation of material 
properties. The main reason for the enormous suc- 
cess of ab-initio methods lies in the fact that they are 
parameter-free and require no other input than the 
atomic number. In addition, improvements in com- 
puter performance and algorithms allow to apply 
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these methods to a steadily increasing number of 
physical and chemical phenomena. Probably, the 
most successful method currently tractable is the 
local density functional (LDF) theory proposed by 
Kohn and Sham [l]. In conjunction with the Hell- 
mann-Feynman theorem [2] forces can be evaluated 
easily, allowing the simultaneous investigation of 
structural, electronic and dynamic properties. The 
first successful ab initio calculation in this context 
goes back to a seminal paper written by Car and 
Paninello (CP) [3]. In their work Car and Parrinello 
proposed a simulated annealing approach in which 
electrons and ions are treated on the same footing via 
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a Quasi-Newton equation of motion. This approach 
allows for an efficient simultaneous update of elec- 
trons and ions, but also possesses some serious 
restrictions: The time step for the CP technique is 
limited by the requirement that the electrons are 
always close to the exact electronic groundstate. 
Indeed, it can be shown that this is only the case if 
the typical excitation frequencies of the electronic 
subsystem are much higher than that of the ionic 
system [4] (in this case electrons and ions decouple 
adiabatically, and the electrons oscillate around the 
real electronic groundstate). This also implies that 
the time step in a CP simulation is determined by the 
electronic degrees of freedom, and usually the time 
step is an order of magnitude smaller than that 
necessary to simulate the ionic subsystem. 

A straightforward alternative to the simultaneous 
update of electrons and ions is the exact calculation 
of the electronic groundstate after each ionic move. 
This is possible if the algorithms for calculating the 
electronic groundstate are sufficiently efficient. Re- 
cently several approaches have been proposed and 
most of these methods differ significantly from the 
standard original CP implementation, except for one 
aspect: For a plane-wave basis set, CP introduced an 
efficient way to calculate the action of the Hamilto- 
nian onto the electronic wavefunctions. They used 
the fact that the local potential part of the Hamilto- 
nian is diagonal in real space and that the kinetic 
energy part of the Hamiltonian is diagonal in recip- 
rocal space. Therefore, the evaluation of the action 
of the Hamiltonian is very fast if the wavefunctions 
are transformed from reciprocal to real space and 
backwards using fast Fourier transformations. In ad- 
dition, it is easy to evaluate the nonlocal part of the 
Hamiltonian using separable factorized pseudopoten- 
tials [5]. These features make all ‘iterative’ algo- 
rithms for calculating the electronic groundstate 
tremendously more efficient than the previously used 
schemes based on an exact diagonalization of the 
Kohn-Sham (KS) Hamiltonian. Here, the term ‘iter- 
ative’ refers to any technique requiring the repeated 
evaluation of the action of the Hamiltonian onto the 
wavefunctions as a key step. In general two different 
techniques can be distinguished: 

(i) Methods for determining the minimum of the 
KS energy functional directly (in the future simply 
called direct methods); and 

(ii) iterative methods for the diagonalization of 
the KS-Hamiltonian in conjunction with an iterative 
improvement (i.e. mixing) of the charge density (we 
will refer to these methods as selfconsistency cycle 
(SC) methods). 

The direct methods (i) have been pioneered by 
CP. They are based on the fact that the Kohn-Sham 
energy functional is minimal at the electronic 
groundstate. Therefore, minimization of the func- 
tional with respect to the variational degrees of 
freedom leads to a convenient scheme for calculating 
the electronic groundstate. The only problem to be 
solved is the inclusion of the orthonormality con- 
straint on the wavefunctions, which is done with a 
Lagrange formalism in the original method of CP. 
Generally the standard CP algorithm is relatively 
slow if it is applied to the electrons only. Small 
improvements might be obtained by integrating the 
equations of motions analytically [6], or by introduc- 
ing an improved pre-conditioning for the gradient 
[7]. In addition it is possible to replace the second 
order CP equations by a first-order steepest descent 
[8,9] equation. Nevertheless, recently Tassone, Mauri 
and Car [7] showed that a preconditioned damped 
second order equation of motion for the electrons is 
generally more efficient than this first-order steepest 
descent equation. 

Even more promising than CP like techniques are 
conjugate gradient (CC) schemes. Within these 
schemes it is necessary to minimize the KS func- 
tional along a given search direction exactly (which 
is usually not done within the CP like techniques), 
and in successive steps the new search direction is 
conjugated to previous directions. The main problem 
within the CG methods is that the orthonormality 
constraint is not easy to incorporate. For semicon- 
ductors and insulators Teter, Payne and Allan pro- 
posed a reliable algorithm which optimizes the elec- 
tronic energy in a band-by-band fashion [lo]. In their 
algorithm the total energy is minimized for a single 
orbital within the sub-space orthonormal to the cur- 
rent set of trial wavefunctions. Despite the advantage 
of small storage requirements, the algorithm is rela- 
tively slow because only a limited number of CG 
steps per orbital can be done, and because the charge 
density and the potential must be recalculated after 
each single update of each orbital. Therefore, algo- 
rithms which update all orbitals simultaneously 
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should be superior. These algorithms were pioneered 
independently by Stich, Car, Parrinello and Baroni 
[l I] and by Gillan [12]. The most systematic and 
elegant way to incorporate the orthogonality con- 
straint in this case is to generalize the KS functional 
for nonorthogonal orbitals [ 131. 

The results of this paper indicate that the direct 
methods (i) discussed up to now are in general not as 
efficient as the traditional SC-methods (ii) which are 
based on the repeated diagonalization of the KS- 
Hamiltonian and a charge density mixing. This is 
especially true for metallic systems. At first sight this 
is a clear contradiction to the mathematical crude- 
ness of the SC-methods, considering that the selfcon- 
sistent minimization of the KS functional is replaced 
by an independent improvement of the eigenfunc- 
tions and the charge density. But the reason for this 
behavior might lie in the following points: First, 
iterative methods for the diagonalization of the KS- 
Hamiltonian are easier to implement and more ma- 
ture than methods for minimizing the total energy 
selfconsistently. Second, and more important: meth- 
ods for an iterative improvement (i.e. mixing) of the 
charge density can retain information from all previ- 
ous mixing steps. This is an important difference to 
all direct schemes which take into account only 
information from one or two previous steps. In prin- 
ciple CG methods should overcome this shortcoming 
by creating a set of conjugated directions, but the 
speed of a CG method is always limited by the 
accuracy of the minimization into the search direc- 
tion, which becomes especially cumbersome for 
metallic systems, and slows down the net conver- 
gence. 

We have applied the SC-technique successfully to 
several different systems including liquid simple 
metals (Na, Ge) [14], liquid transition metals (V, Cu) 
[l&16], the transition from a liquid metal to an 
amorphous semiconductor by the rapid quenching of 
Ge [ 17,161, and the metal non-metal transition in 
I-Hg [ 181. One advantage of an efficient electronic 
minimization is that the relaxation of the ions to their 
instantaneous equilibrium position is much faster. 
Successful calculations for clean and hydrogenated 
C(100) surfaces [19], the site-selective adsorption of 
C-atoms on Al(111) surfaces [20] and Rh surface 
properties [21] demonstrate the feasibility of our 
method in this respect. Finally, we have also per- 

formed calculations of bulk-phonons in insulators 
and metals (cubic diamond and graphite see Ref. 
[22]), indicating that forces can be evaluated effi- 
ciently and accurately within the SC methods. 

1.2. Outline of the paper 

In this paper we will mainly concentrate on meth- 
ods based on the repeated diagonalization of the 
KS-Hamiltonian and a charge density mixing (SC- 
methods). After a general introduction of the Kohn- 
Sham energy functional (Section 2.1) the impact of 
partial occupancies on the Kohn-Sham functional 
will be explained (Section 2.2). The discussion in- 
cludes newest improvements of the tetrahedron 
method as well as a comparison of the tetrahedron 
method with finite temperature methods. Section 2.3 
contains a broad outline of the steps involved in 
methods relying on the selfconsistency cycle, fol- 
lowed by a brief explanation of the Hellmann-Feyn- 
man force theorem (Section 2.4). Some important 
technical details for the calculation of forces are 
pointed out. 

An in-depth discussion and comparison of several 
iterative matrix diagonalization schemes is given in 
Section 3. The ideas discussed in Section 3 have 
partly been published in different papers by different 
authors - but to our knowledge this is the first 
consistent review. In addition technical aspects which 
are important for an actual implementation will be 
explained. We also review an efficient iterative ma- 
trix diagonalization scheme based on the ideas of 
residual vector minimization (direct inversion of iter- 
ative subspace). This scheme will outperform any 
other iterative matrix diagonalization scheme for very 
large matrices. 

The second main ingredient of our scheme is the 
charge density mixing discussed in Section 4. We 
will concentrate on Broyden mixing [23] (especially 
Broyden’s second method or inverse Jacobian up- 
date) and a mixing method proposed by Pulay [24]. 
A close relationship between both methods will be 
pointed out, and a special metric optimized for a 
plane-wave basis set will be introduced. 

Finally, we have also included a section, which 
discusses methods to determine the minimum of the 
KS energy functional directly (Section 5). Special 
attention will be given to the conjugate gradient 
method. 
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In Section 6 a comparison between different 
methods is given. We have divided this section into a 
part which compares the non-selfconsistent case (i.e. 
iterative matrix diagonalization only, Section 6.1) 
and a part which concentrates on mixing and on the 
direct methods (Section 6.2). 

2. The Kohn-Sham energy functional for partial 
occupancies 

2.1. The Kohn-Sham energy functional 

In general the Kohn-Sham energy functional for 
an ultrasoft (US) Vanderbilt pseudopotential (PP) 
can be written as [25-271 

&sHm~~l 
= cf,(+,lT+ V&“ldi,> +EH[ P] +ExC[ P] 

n 

+ P 3rCY~bW + ~~~~~~~~~~~~ (1) 
with f, = 1 for occupied bands and f, = 0 for unoc- 
cupied bands. To simplify the notation we have 
dropped the k-point index. The first sum runs over 
all bands N, included in the calculation. The KS 
functional depends on the positions R, of the ions 
and the electronic wavefunctions c#+, only. EH is the 
Hartree-energy, E”’ the exchange correlation energy 
functional, V,$ the local ionic pseudopotential, T = 
- fi2/2 meV2 the kinetic energy operator and -yEwald 
the Madelung energy of the ions. For US PP the 
nonlocal part of the PP can be written as 

vg = CDj~l p,>< piI (2) 
ij 

and the charge density p(r) is given by 

p(r) = C.Ll~~,<~)I’ 

1 Cfn(4nI Pj)( PiI4n)Qij< r)y (3) 
n,ij 

where pi are localized projection states, and Q,,(r) 
localized augmentation functions. The total energy 
has to be minimized subject to the constraint of 
orthonormalization 

(@l4,> = a,, (4) 

where S is defined as 

s= 1 + Cqijl pj>< PiI, 
ij 

(5) 

with 

qij = _/Qij( r) d3r. (6) 

Ultrasoft pseudopotentials are discussed in detail in 
Ref. [25-281. Their general advantage is that they 
reduce the necessary energy cutoff for transition 
metals and first row elements by a factor of 2-4. 
The resulting basis sets are comparable in size with 
the basis sets for typical ‘pseudopotential’ elements 
like Na, Al, Si and Ge. 

The most important property of the KS functional 
is to be extremal in the ground-state with respect to 
arbitrary variations of the wavefunctions. Under the 
constraint of orthonormalization, variation with re- 
spect to the wavefunctions leads to the well known 
KS eigenvalue equations 

WQ = +w,>, (7) 
where H is the Kohn-Sham Hamiltonian 

H = T + V,; + VFL, 

with 

(8) 

V,~=V,$+VH[p]+VXC[p], (9) 

where V H[ p] is the Hartree potential and V “[ pl the 
exchange-correlation potential. For ultrasoft pseu- 
dopotentials the nonlocal part of the pseudopotential 

SC depends also on the total local potential and 
zit be calculated accordingly via (compare Eq. (2)) 

Dsi’ = D;;” + /e,,( r)V,; d3r. (10) 

From inspection it is clear that only occupied orbitals 
contribute to the total energy, and it can be shown 
that the total energy is invariant under an unitary 
transformation of the wavefunctions f$, if only occu- 
pied bands are taken into account (compare with 
Section 5). In this case it is sufficient to calculate a 
set of wavefunctions which fulfill the less stringent 
equation 

w%) = CLW,)~ (11) 
m 

where y,,, is an Hermitian matrix. If partial occu- 
pancies are included, i.e. if the f, are treated as 
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additional variational degrees of freedom, it is neces- 
sary to calculate the KS orbitals exactly @q. (7)), 
making the calculation of the electronic groundstate 
more complex for metallic systems, where partial 
occupancies should be used. 

2.2. Metallic systems and partial occupancies 

At this point it is necessary to review the impact 
of partial occupancies on the local density functional 
(LDF). There are two different approaches to the 
introduction of partial occupancies to the Kohn- 
Sham functional: 

First, Mermin [29] extended the LDF to finite 
temperatures. This approach becomes physically sig- 
nificant if the temperature of the system is compara- 
ble to characteristic excitation energies. In this case 
it is also important to use the finite-temperature 
exchange correlation functional EF[ p] [30]. Consid- 
ering the limited accuracy of the LDA it seems to be 
reasonable to replace EF[ pl by E;;C,,[ p]. For the 
finite temperature LDF, the impact of partial occu- 
pancies on the forces has probably been first dis- 
cussed independently by Weinert and Davenport 13 11 
and by Wentzcovitch, Martins and Allen [32]. 

The second approach concentrates on the evalua- 
tion of the energy at zero temperature: In this case 
partial occupancies are introduced as a tool for re- 
ducing the number of k-points in the Brillouin zone 
which are necessary to evaluate the band structure 
energy. At zero temperature, the band-structure en- 
ergy is defined as 

( 12) 

where O(X) is the Dirac step function, and p the 
Fermi-energy. This integral has to be evaluated using 
a discrete set of k-points 

1 

-/ n 
d3k+ cw,. (13) 

BZ firrz m 

For completely filled bands (i.e. semiconductors and 
insulators) no discontinuity exists, and the integral 
can be calculated accurately using a set of Monkhorst 
Pack special k-points (see Ref. [34]). But for metals 
the sum converges exceedingly slowly with the num- 

ber of k-points included, because the occupancies 
jump discontinuously from 1 to 0 at the Fermi level. 
The convergence with respect to the number of k 
points can be improved by replacing the step func- 
tion @cent - CL) by a smoother function fl{~}). 
Several functional forms have been proposed for 
fl{e,J), among these the linear tetrahedron method 
is probably the most unambiguous approach. 

2.2.1. Linear tetrahedron method 
Within the linear tetrahedron (LT) method, the 

one-electron energies l nr are interpolated linearly 
between the k-points, and the integral for the band- 
structure energy is performed analytically within each 
tetrahedron [35]. BlGchl [36] has recently revised the 
tetrahedron method to give effective weights ft( Q}) 
for each band and k-point. This new formulation 
gives strictly the same results as the conventional 
tetrahedron method but is easier to implement in 
most existing codes. In a second step, Bliichl was 
able to derive a correction formula which removes 
the quadratic error inherent in the LT method by 
going beyond the linear approximation and by in- 
cluding the effects of the curvature of the bands at 
the Fermi surface (we will refer to this method as 
LT-C, whereas LT is the standard linear tetrahedron 
method). The LT-C method converges very fast with 
the number of k-points, and we consider this method 
to be the most accurate and most unambiguous 
method for calculating the total energy of bulk mate- 
rials containing a small number of atoms. 

Nevertheless the method is not applicable to large 
supercells, because usually only a very small number 
of k-points is used in this case. In addition we have 
shown in Appendix B that the LT-C method makes 
the calculation of forces at least inconvenient (see 
also Ref. [36]), whereas the calculation of forces is 
straightforward for the conventional LT method: 
Blijchl points out that the total energy is variational 
with respect to the partial occupancies (‘the tradi- 
tional tetrahedron method is variational with respect 
to a change in the Fermi surface’), and therefore it is 
not necessary to recalculate the occupancies to get 
first order energy changes or forces. This behavior is 
clear, considering the basic foundations of the LT 
method. Within the conventional tetrahedron method 
the energy is linearly interpolated between a set of 
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k-points resulting in a band structure e,(k) and the 
occupancies are set according to the step function 

f,,(k) = @(e,(k) - p). B ecause these occupancies 

minimize the zero temperature KS functional, it is 

possible to evaluate first order energy changes with- 

out recalculating the ‘Fermi surface’, i.e. keeping the 

occupancies fixed. This property is still valid for the 

revised linear tetrahedron method with effective oc- 

cupancies fl{e,,]). 
But if the additional correction formula given by 

BlSchl (LT-C) is used the variational property with 

respect to the occupancies is destroyed [36] (see 
Appendix B), and additional terms have to be in- 

cluded for an exact evaluation of the forces. These 

additional terms arise from the derivatives of the 

partial occupancies with respect to the ionic posi- 

tions. For US PP the corresponding terms can not be 

evaluated easily, making the LT-C method an incon- 
venient tool if exact forces are required. Therefore it 

is necessary to resort to different methods like the 

smearing methods, explained in the next section. 

2.2.2. Finite-temperature approaches - ‘smearing 

methods’ 

We have already pointed out that tinite-tempera- 

ture LDF methods were first introduced by Mermin 
[29]. In the context of ab-initio calculations it is 

possible to use these methods as a tool for the 
reduction of the necessary number of k-points to 
calculate the total energy of a metallic system. In this 

case, the term ‘smearing methods’ is probably more 
appropriate. Within these methods the step function 
is simply replaced by a smoothly varying function, 
for example the Fermi-Dirac function 

E-P 4 1 
1 

-= 
u exp((e- PI/u) + 1 

or the integral over a Gaussian 

f(y)=i(l-erf[y]). 

(14) 

( ‘5) 

The Gaussian has been used first by Fu and Ho [33] 
in the context of plane wave pseudopotential calcula- 
tions. It turns out that the total energy is no longer 
minimal with respect to variations of f, at the 
electronic groundstate, and to obtain a variational 

functional it is necessary to replace the total energy 
E by a generalized free energy F [3 1,321 

F=E- &d(f,) (16) 
n 

with a correct form for the entropy term S(f,,). For 

the Fermi-Dirac function S is given by 

S(f)= -[flnf+(l -f)ln(l-f)]. (17) 

If the constraint on the number of electrons is taken 

into account it is easy to show that the variation of 

Eq. (16) with respect to f, is zero if the partial 
occupancies are set according to Eq. (14). For the 

Gaussian smearing the ‘entropy’ is defined as [37] 

s (Z!!$!k)=-&exp(-(~)2). (18) 

Formally it is necessary to express S as a function of 

f (see Eq. (16)), but this is not possible for Gaussian 
smearing because no analytical inversion of the error 
function exists. During an actual calculation based 

on the SC-methods (see Section 2.3) it is sufficient 

to evaluate the entropy term from Eq. (18), because 
the eigenvalues E, are always available. 

In conjunction with Fermi-Dirac statistics the 

free energy might be interpreted as the free energy of 
the electrons at some finite-temperature (T = k,T 
[29], but the physical significance of the free energy 

remains undefined for Gaussian smearing. For a 
continuous density of states at the Fermi-level it 
might be shown that the free energy deviates 

quadratically with CT from E,=, [38] 

F(u) =E,=,+ yu2. (19) 

Using S( (T > = - d F( o )/d (T it is possible to obtain 
for the energy E the equation 

E(a) =F((+) +aS(a) =EnzO- ya2. (20) 

It is now easy to see that it is possible to obtain an 
accurate extrapolation for u -+ 0 from results at fi- 
nite u using the formula 

E,=,=@u) =+(F(u) +,5(u)). (21) 

This way the leading quadratic error in u is re- 
moved from F(u ), and a functional ,??C u) which 
deviates only slowly from E,=, might be obtained. 
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Fig. 1. Convergence of the free energy for Gaussian smearing 
(N=O) and the MP-method (N=l, N=2) with respect to o. 

Also shown is the convergence of the quantity ,!? (Eq. (21)) for 
N = 0 i.e. Gaussian smearing. A k-point grid consisting of 35 X 35 

X 35 k-points (i.e. 1140 k-points in the irreducible wedge of the 

Brillouin zone has been used). The energy zero was calculated 

with the LT-C method. 

As an illustration the convergence with respect to u 
for F(a) and &icr ) is shown for Aluminium and 
Vanadium in Fig. 1. In the context of ab-initio 
calculations Eq. (21) was first used by Gillan [12] 
and later generalized by De Vita and Gillan [37] and 
it allows an easy and accurate evaluation of zero 
temperature properties. Even for a relatively large u 
&cr> converges to the exact zero temperature total 
energy En_,,, and the evolution of &ia) requires a 
substantially smaller number of k-points than a cal- 
culation with (T= 0. Typical settings for cr for dif- 
ferent materials are compiled in Table 1. 

2.2.3. Improved functional form for fle) - Method of 
Methfessel and Paxton 

The method described in the last section has two 
distinct shortcomings: 
. Forces are usually defined as the derivatives of the 

. 

variational quantity, i.e. the free electronic energy 
F (see Section 2.4). Therefore the forces cannot 
be used to obtain the equilibrium zero ‘tempera- 
ture’ groundstate or exact phonon frequencies 
which corresponds to an energy-minimum of 
&u). 
The parameter u has to be chosen with great care. 
If u is too large the energy J?(u) will converge to 
the wrong value even for an infinite k-point mesh, 
and if u is too small the convergence with the 
number of k-points will deteriorate. An optimum 
choice for u can be found only by comparing 
results for different k-point meshes and different 
values of CT. 
These problems can be solved by adopting a 

slightly different functional form for fl{e)), which 
was first proposed by Methfessel and Paxton (MP) 
[38]. They expanded the step function in a complete 
orthonormal set of functions. Within this approach 
the integral of the Gaussian is only the first approxi- 
mation (N = 0) of the step function, further succes- 
sive approximations (N = 1, 2,. . . > can be obtained 
easily. In analogy to the Gaussian method, the total 
energy is no longer variational with respect to the 
partial occupancies and has to be replaced by a 
generalized free energy functional (one feature miss- 
ing in the original work of Methfessel and Paxton). 
The variational quantity is defined by 

(22) 

Table 1 

Convenient settings for the smearing parameter o for different 

metals 

u (eV) 

Aluminium 1.0 

Lithium 0.4 

sc-Tellurium 0.8 

Copper 0.4 

Vanadium 0.3 

Rhodium 0.3 

The smearing parameter u was determined so that the entropy 

term &oSN(fn) was less than 1 meV/atom in the method of 

Methfessel and Paxton with N = 1. Aluminium, Lithium and 
Tellurium show a fairly simple structure of the DOS at the Fermi 
level, therefore u might be large. For Copper u is mstticted by 
the fact that the d-band lies approximately 0.5 eV beneath the 

Fermi level. Due to the complicated structure of the DOS at the 
Fermi level D must be small for most transition metals like 

Vanadium. 
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where S,,, is given by 

SN( X) = iA,HzN( x) e-I2 

and the partial occupancies are given by 

fo(~)=$(l -erf(x)), 

(23) 

fN( X) =fo( x) + i A,H,,_ ,( x)e-“. (24) 
m=l 

with 

E-IJ x=- 
(T . 

(25) 

H,,, is the Hermite polynomial of degree M, and 
explicit formulas for A,,, can be found in Ref. [38]. 

In contrast to the Gaussian method the entropy 
term X,aS,((e, - ~>/a) will be very small for a 
reasonable choice of (+, and the deviations from 
E,=, are only of the order N + 2 in (+ (see also Fig. 
1) 

F(o) =E,=,+0(a2+N). (26) 

Extrapolation to zero u is usually not necessary, but 
in principle it might be done using 

En=0 =,!?(a)= &((N+ l)F(a) +E(a)). 

(27) 

The values given in Table 1 will result in an entropy 
which is less than 1 meV per atom and in a very 
accurate description of the lattice constant and bulk 
moduli. We found that the 1 meV threshold is suffi- 
cient for most calculations of elastic properties and 
phonon frequencies. 

To summarize: For the MP-method the entropy 
term is a simple error estimation for the difference 
between the free energy F and the ‘physically’ 

correct energy Emso. u can be increased until this 
error estimation gets larger than an allowed threshold 
(usually 1 meV). Because the free energy and the 
‘physical’ energy E,=, are the same except for this 
small error the forces which are calculated as a 
derivative of the free energy are also correct and can 
be used to determine the zero ‘temperature’ ground- 
state. Especially the last property makes the method 
of Methfessel and Paxton very appealing for situa- 
tions where the k mesh is not sufficient for the 
application of the tetrahedron method, or applica- 
tions where accurate forces are required (see Section 
2.2.5 and Table 2). 

2.2.4. Convergence of the total energy with the 

number of k-points 

We want to illustrate the convergence with re- 
spect to the number k-points for the LT-C and the 
MP-method for two simple examples - bulk Alu- 
minium and bulk Vanadium. In Vanadium the con- 
vergence is especially cumbersome, because s and d 
like bands exist close to the Fermi surface. 

Fig. 1 shows the convergence of different func- 
tionals with respect to (+ for Al and V. For the 
conventional Gaussian method the free energy F( (T ) 

deviates even for small (+ rapidly from E,=,. But 
the functional ,!? (Eq. (21)) and the free energy 
functionals for the MP-methods with N 2 1 con- 
verge rapidly to the correct energy, allowing a much 
larger (T. 

In Fig. 2 the convergence of energy for the LT-C 
and of the free energy for Gaussian smearing (N = 0) 
and the MP-method (N = 1) with respect to the 
k-point mesh is shown. For each calculation o was 
chosen so that the error in the k-point converged 
energy was less than 1 meV. It might be seen that 

Table 2 

Phonon frequencies for Rh at the K-point (i.e. in (I Ii) direction, Brillouin zone boundary) calculated using a frozen-phonon approach 

f 0Hz) Energy MP Force MP Energy LT-C Force LT-C Energy LT Force LT 

III trans. 4.29 4.28 4.30 4.10 3.91 3.93 

I 1 I long 7.95 7.96 7.93 7.68 7.46 7.49 

A Monkhorst Pack grid consisting of 9 X 9 X 3 k-points was used corresponding to 70 k-points in the irreducible wedge for the transversal 
branch and 3 1 k-points for the longitudinal branch. MP is the method of Methfessel Paxton for N = 2 and o = 0.4, LT-C is the tetrahedron 

method including the correction terms proposed by Bli5cht and LT the linear tetrahedron method without corrections. The k-point mesh is 

not sufficient for an accurate calculation of phonon frequencies with the LT method, but results are converged for the MP and LT-C method. 

For the LT-C method the weights f were naively kept fixed, therefore the forces ate not consistent with the energy. 
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Fig. 2. Convergence of energy for the LT-C and of the free energy 
for Gaussian smearing 6%’ = 0) and the MP-method (N = 1) with 
respect to the k-point mesh. The k-point meshes consisted of 
gridX gridX grid k-points. For the smearing methods sigma v 
was chosen so that the error in the k-point converged energy was 
less than 1 meV with respect to the LT-C method. 

the LT-C method converges fastest for Al and V and 
in addition the LT-C does not require to find an 
optimal o. Nevertheless the convergence of the 
MP-method (N = 1) is also quite good, mainly be- 
cause o can be relatively large. Gaussian smearing 
without the extrapolation I? (Eq. (2111, requires a 
small o resulting in the slowest convergence. 

2.2.5. Calculation of photwn frequencies for metals 
To illustrate that the LT-C method might be 

problematic for the calculation of phonon frequen- 
cies based on the forces we show results for the 
phonon frequencies of Rh for a high symmetry point 
in Table 2. The phonon frequencies were calculated 
from the change of the free energy induced by a 
small displacement and from the forces for a dis- 
placed structure. Different methods for calculating 

the partial occupancies have been used: For the 
MP-method and the standard linear tetrahedron (LT) 
method the phonon frequencies derived from the 
forces and the energy are equivalent, but because the 
k-point mesh is not sufficient for a good conver- 
gence of the LT method errors in the LT method are 
up to 10%. 

Phonon frequencies derived from the free energy 
change are almost indistinguishable for the MP and 
the linear tetrahedron method with Bliichl correc- 
tions (LT-C) approach indicating that the k-point 
mesh is sufficient for both methods. But for the 
LT-C method, the partial occupancies were kept 
fixed for the evaluation of the forces, resulting in a 
considerable error of the forces and a serious error of 
the corresponding phonon frequencies (= 5%). This 
indicates that the MP-method is the best choice for 
calculations where accurate forces are required. Es- 
pecially phonon frequencies can be evaluated accu- 
rately and easily within this approach. We have used 
the MP-method recently with good success for the 
calculation of phonon frequencies in bulk Li, Na, K, 
Rh and MO and for the calculation of properties of 
metallic Rh surfaces (including surface phonons) 
w. 

2.3. Selfconsistency loop and iterative methods 

We have pointed out in the introduction that 
iterative methods for the diagonalization of the KS- 
Hamiltonian seem to be the most efficient schemes 
for calculating the finite temperature KS groundstate. 
These methods must be used in conjunction with a 
charge density mixing to get a reliable scheme; Fig. 
3 shows a typical flowchart for this situation: At the 
beginning an appropriate set of trial wavefunction 

(49 n=l ,*.*, NJ and a reasonable input charge 
density pin is chosen. Usually, the start charge den- 
sity corresponds to the superposition of the atomic 
pseudo charge densities of the constituents. From the 
input chargedensity the local potential 

vI~~ = vlZ + vH[ Pin1 + “‘II Pin1 
and the corresponding double counting 

Ed.,,[ PinI = -3EH[ PinI +E”“[ PinI 

(28) 
corrections 

- d3tVXC(r)Pin(r) 
/ (29) 
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choose trial-charge Pin and trial-wavef. { &} 

1 

talc. Hartree-potential VH(pin) and d.c. 

talc. xc--potential V”“(pi”) and d.c. 

set up non-local part Ix; 

I 

sub-space diagonalization (if required) 

iterative improvement of {&, c,} 

Gram-Schmidt orthogonalization (if required) 

I 

new partial occupancies f,L 

free energy F = 1, c,fn - C, oS(Jn) + t1.c. 

4 

new charge density pout from wavefunctions 

mixing of charge density pin, pout + new plr, 

Fig. 3. Flow chart for iterative methods for the diagonalization of 

the KS-Hamiltonian in conjunction with an iterative improvement 

(i.e. mixing) of the charge density. 

are evaluated. For ultrasoft pseudopotentials the non- 
local part of the pseudopotential depends also on the 
local potential and must be calculated accordingly 
(Eq. (10)). In the next step the N, trial wavefunc- 
tions are improved using an iterative method, and the 
new eigenenergies are used to calculate a new Fermi 
energy and new partial occupancies. The total free 
energy for the current iteration is calculated as the 
sum of the band structure energy pIus the entropy 
term plus double counting corrections 

F = c f,, l ipp - 
R 

(30) 

Conceptually the calculated energy corresponds to 
the energy evaluated from the Harris-Foulkes (I-IF) 
functional [39-411, which is non-selfconsistent - in 
contrast to the KS functional: the HF functional 
(defined in Eq. (30)) requires the calculation of the 
band structure energy for a fixed charge density pi,. 
With our code it is easy to evaluate this energy 
keeping the initial charge density fixed (for instance 
to the superposition of atomic pseudo charge densi- 
ties) and iterating the eigenvectors only until they are 
converged. 

To get the exact KS-groundstate-energy selfcon- 
sistency with respect to the input charge density 
requires that the charge density residual vector R[ pi, I 

R[ Pin 1 = Pout - Pin (31) 

is zero, where the output charge density P,,~ is 
calculated from the wavefunctions using Eq. (3). The 
residual vector R[ pi,] - and possibly information 
from previous mixing steps - allows to calculate a 
new charge density pi, for the next selfconsistency 
loop. In principle it is necessary to evaluate the 
eigenfunctions 4, exactly for each new input charge 
density making P,,,~ and the residual vector R func- 
tionals of the input charge density pin only. Never- 
theless, even in conjunction with complex Broyden 
like mixing techniques, it turns out that this is not 
necessary if the final wavefunctions of the previous 
mixing iteration are used as new initial trial wave- 
functions. In this case a few steps in the iterative 
matrix diagonalization are sufficient to get a reliable 
result for the charge density residual vector R. In 
Section 3 we will concentrate on different iterative 
methods for the diagonalization of the KS-Hamilto- 
nian, Section 4 will discuss algorithms for the charge 
density mixing. 

2.4. Forces 

Forces for the finite-temperature KS functional 
can be obtained easily, but the calculation is some- 
what complicated by the US PP. To obtain the forces 
it is convenient to use a basis set oriented notation. 
In our case the wavefunctions are written as a sum of 
a finite set of plane waves 14). i.e. 

(32) 
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(once again the k-point index k has been omitted) 
and the KS energy functional E, respectively the free 
energy F becomes a function of the expansion coef- 
ficients C”,, the partial occupancies f, and the ionic 
positions R,, 

F+FWL I.09 WI- (33) 
To incorporate the orthonormality constraint and 

the conservation of the number of electrons it is 
convenient to use the Lagrange formalism and to 
introduce the function 

= F - c Y,,~CC~‘~~S~&, 
d99’ 

-P(pn-,,). 

(34) 
where A,,, is defined as 

A q’4 = <q’lAlq). (35) 

At the KS-groundstate the Lagrange multipliers are 
given by y,,,, = S,,,,,E,, f,, where E,, are the exact 
KS-eigenvalues (compare with Eq. (117)), and F is 
minimal with respect to arbitrary variations of Cn,, 
ynn’, f, and cc. The change in the free energy up to 
first-order is exactly given by (see Appendix A) 

has to be added to the forces. In Eq. (38) changes of 
the Hamiltonian H due to changes in the input 
charge density pat,, have to be omitted, as in the 
selfconsistent case. 

We have found that the similar correction formula 

dF_ c aF[{C},(y},{f},CL,{R}l dR,, (36) 

av”t P.%om) + VXC( Pa,,,) 
aRN 

(f> 

N aRN 

x( POW(~) - (Pin<‘))) . 
I 

where changes of the Hamiltonian H due to changes 
in the selfconsistent charge density p must not be 
calculated. For further details we refer to Ref. [26,27]. 

It is also possible to obtain a correct formula for 
the forces if the Harris-Foulkes functional instead of 
the Kohn-Sham functional is used. If the input 
charge density pin for the Harris-Foulkes functional 
is calculated from the atomic charge density of the 
constituents, only one additional term arises which is 
due to the fact that the input charge density depends 
on the atomic coordinates. In this case H in Eq (38) 
has to be replaced by the Hamiltonian calculated 
from the atomic charge density H[ ptiOm, {RI], and 
the term 

d 3f av”t Pam) + VXC( Pamn) 
aRN 

and it is convenient to define the forces FN as 

aF 
FN=- 

aR, - 
(37) 

This formula is exact and contains Hellmann- 
Feymnan [z] as well as Pulay contributions [42] (for 
the pseudopotential approach, no Pnlay contributions 
exist, but Eq. (37) is also exact for other basis sets). 
A similar formula also holds for the stress tensor, 
derivatives with respect to the basis set are implicitly 
contained in this definition. It is now easy to show 
that the forces can be rewritten as (for the selfconsis- 
tent case this equation was first derived in Ref. [431) 

(W 

also improves the convergence of the forces during a 
selfconsistent calculation. In Eq. (38) H has to be 
replaced by H[ pin, {R}], where pin is the charge 
density obtained in the previous iteration. In princi- 
ple it is necessary to evaluate the change of fin if 
the ions move (i.e. the first term in E$. (40) should 
be replaced by a(VH + VxcXpin)/aR,), which is 
not possible, but Eq. (40) seems to be an excellent 
approximation. This correction formula improves the 
precision of the forces by almost two orders of 
magnitude, and allows to stop the selfconsistency 
cycle much earlier. 

This is demonstrated in Fig. 4, where the conver- 
gence for the forces is compared for different algo- 
rithms for a Pd(ll1) surface with a mono-layer 
hydrogen (see Section 6.1.2). It can be seen that the 
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Fig. 4. Convergence of the forces (in eV/A/atom) for different 

algorithms for the Pd (111) surface with a monolayer hydrogen 

located in the hollows between three Pd atoms, for a selfconsistent 

calculation. ‘out’ - output charge density was used for the 

calculation; ‘mix’ - mixed charge density was used; ‘opt’ - is the 

optimized scheme explained in the text. 

optimized scheme (opt) explained here results in the 
best overall performance. A similar convergence rate 
might be obtained by using the mixed charge density 
(mix) (Section 4) for the calculation of the local 
contribution to the forces, i.e. 

(41) 
This part of the forces is very sensible to changes 

in the charge density. The use of the output charge 
density (out) - i.e. the left side of Eq. (41) - without 
the correction term @q. (40)) makes the forces 
worse by a factor 100 (see Fig. 4). 

3. Iterative methods for the diagonalization of the 
KS-Hamiltonian 

In this section we will discuss several iterative 
approaches for the diagonalization of the KS Hamil- 
tonian, including the residual minimization method 
direct inversion in the iterative subspace (RMM-DIIS 
or simply RMM) proposed by Pulay [24] and Wood 
and Zunger [44], which is superior for very large 

matrices. For ultrasoft pseudopotentials we are con- 
fronted with a generalized eigenvalue problem (see 
Eq. (7)) 

which has to be solved. For a small basis set, this 
eigenvalue problem is usually solved by straightfor- 
ward diagonalization of the Hamiltonian (for in- 
stance using the Choleski-Householder procedure). 
Nevertheless, this procedure becomes intractable for 
large matrices, because it scales as N$,,, Nr,,,, being 
the number of plane-waves included in the basis set. 
For three reasons iterative methods are an order of 
magnitude faster for the calculation of the eigenfunc- 
tions: (i) only N, =?L Nplw occupied orbitals must be 
calculated, (ii) the calculation of HI 4,) is especially 
convenient for a plane-wave basis set (see introduc- 
tion), and (iii) iterative methods are efficient in 
conjunction with a selfconsistent calculation, because 
optimization of the charge density and wavefunc- 
tions can be done almost simultaneously. 

A good review of different iterative methods can 
be found in [44] and we will try to adopt the notation 
of this paper. Nevertheless we also want to point out 
that the examples discussed in Ref. [44] are only 
small to medium sized from today’s point of view, 
and not all of the algorithms of Ref. [44] work 
reliably for very large systems. In addition new 
iterative methods (like the band-by-band conjugate 
gradient algorithm [IO,4511 have been proposed re- 
cently, making a new comparison between different 
methods necessary. 

As pointed out in [44] most iterative algorithms 
construct an expansion set (lb;), i = 1,. . . , N,} from 
which the best approximation to the exact eigenval- 
ues and eigenvectors is calculated. This expansion 
set is much smaller than the number of plane waves 

N, * Nr,w and depending on the algorithm it might 
be smaller or larger than the number of bands Nb to 
be calculated. In each iteration new vectors are 
added to the expansion set. It is possible to differen- 
tiate between blocked and unblocked methods. Un- 
blocked methods (or sequential band by band meth- 
ods) optimize one band at a time and the expansion 
set usually starts with only one vector lb,), which 
should be a reasonable approximation to the eigen- 
vector I+,). In each iteration i a single correction 
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vector ]bi) is added to the expansion set. Blocked 
methods on the other hand optimize all orbitals or a 
set of orbitals simultaneously, increasing the size of 
the expansion set at each step by N new vectors. 

In most blocked and unblocked methods it is 
necessary to obtain a new best approximation of the 
exact eigenvalues and eigenvectors from the expan- 
sion set at each iteration. This is done via the 
Rayleigh-Ritz [44,46] scheme: In principle the 
Hamiltonian is diagonalized in the space spanned by 
the expansion set, i.e. the N, X N, eigenvalue prob- 
lem 

(43) 
m m 

with 

& = (b,lHlb,,,), s,, = (b,lSlb,), (44 
must be solved. The m lowest eigenvalue/eigenvec- 
tor pairs 

$QQ, lb,) = CB,,lb,) (45) 
m 

correspond to the best approximation of the exact 
lowest m eigenvalues and eigenvectors within the 
sub-space spanned by the expansion set. 

3.1. Residual vector and preconditioning 

A key step within all iterative methods is the 
calculation of a correction vector which is added to 
the expansion set, and a central quantity within most 
methods is the Rayleigh quotient, which is defined as 

(~,IWs,~ 
E 
VP= (~#js14n> - (W 

This quantity possesses a saddle point at the exact 
eigenvector, and variation of the Rayleigh quotient 
with respect to (4J leads to the residual vector 
defined as 

IR(4,)) = (H- ‘aQQs)k) (47) 
if (Cp,,lSl~$~,> = 1. The norm of the residual vector 
(RI R) is an accepted measure for the error in the 
eigenvector. Formally a good approximation to the 
difference between the exact and the approximate 
eigenvector I c#+,> is obtained from the residual vector 
using the equation 

IS&) = - 
H-:qQSIR)* 

It is easy to show that I&,> = I+,> + IS+,> results in 
a minimum residual vector, which satisfies 

0 = (H - E~~~S)I,). (49) 
Nevertheless, the inversion of H - eaQQS is not 

easier than the diagonalization of the matrix H and 
definitely intractable for large matrices. This makes a 
more approximate treatment necessary. In the follow- 
ing, the step which calculates the approximative 
error I&#J,> from the residual vector will be called 
preconditioning, and the matrix K which is multi- 
plied with the residual vector to obtain I&$,) 

164,) = KIR) (50) 

will be called preconditioning matrix. 
Frequently only the diagonal elements of the ex- 

act matrix in Eq. (49) are used, i.e. 

K=-x 
l4Xql 

q (qlH-- EaQQSlq> ’ (51) 

where q runs over all plane-waves included in the 
basis set. Instead of jq) it is possible to chose a 
different complete set of vectors in Eq. (51). Note 
that Eq. (51) is equivalent to Eq. (48) if lq) is 
replaced by the exact eigenvectors of the Hamilto- 
nian H. This inspired Wood and Zunger [44] to use 
the eigenvectors lap) of a small approximate Hamil- 
tonian HO plus a set of plane-waves to make a 
complete set. The Hamiltonian H,, might be calcu- 
lated for a plane-wave basis set consisting of NO 
plane-waves; this results in a preconditioning matrix 

K=-Z la~>(afI 
i_, (a:IH - •aQQSla~> 

14x41 
- F’ CqlH- E 

aQQ Slq) ’ 
(52) 

where the prime in the second sum means exclusion 
of all plane waves included in the initial Hamiltonian 
Ho. We have tested this preconditioning to some 
extent and it works reasonably well for small to 
medium sized problems (N,,, < 10001, but for large 
basis sets (N,,, > 1000) the size NO of the initial 
matrix soon becomes the limiting factor. If the initial 
size is equal to the number of bands NO = N,, the 
improvement over the diagonal approximation Eq. 
(51) is small. If NO is considerably larger than Nb 
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(N, > 3NJ the calculation of the first sum in Eq. 
(52) becomes the most expensive part of the calcula- 
tion. Therefore, we actually adopted the precondi- 
tioning function proposed by Teter et al. [ 101 

27 + 18x+ 12x* +8x3 
X 

27 + 18x+ 12x* +8x3 + 16x4 

ii* q* 

wl* ’ = zrn, 3+kin( R) ’ (53) 

and Eki”(R) being the kinetic energy of the residual 
vector. There are only two changes with respect to 
Ref. [lo]: First, we use $u”(R) instead of Eki”(R) 
in the definition of X, resulting in a slightly im- 
proved convergence speed for most elements. Sec- 
ond, we multiply the preconditioning function by a 
constant factor 2/(sEki”(R)). Using this factor the 
diagonal part of the preconditioning matrix K con- 
verges to 

2% 
h*q* 

(54) 

for large q, resulting in a more convenient length of 
the correction vector I SC&, >. Although the length of 
the correction vector does not enter in any of the 
schemes discussed in the next sections, it is impor- 
tant to have a reasonable length for the algorithm in 
which the KS functional is minimized directly (see 
Section 5). 

Slightly different preconditioning functions were 
proposed by several other authors: Furthmiiller [47] 
and recently Tassone et al. [7] used the matrix 

1, 4 < 
K= - )h)(qlx 

4cut ’ 

4 4,2,,/s* 9 > qor- 
(55) 

9 

The functional form of this matrix is very similar to 
IQ. (53) and requires the determination of an opti- 
mum cut off qcul. Generally it does not improve the 
convergence speed in comparison to the ‘smoother’ 
preconditioning function (53). 

3.2. Blocked Davidson scheme 

This method was originally proposed by Davidson 
[48] and later modified by Liu for a simultaneous 

update of all bands [49]. The expansion set increases 
in each step M by Nb - where N, is the number of 
bands included in the calculation N,, 2 Nelect/2 - 
residual vectors 

{lb,),*.*, i= 1, Nb(M+ 1)) 

= {]c#J:), i= l,..., N,/]PF), i= l,..., Nb/lPi’), 

i= l,..., NJ...}. (56) 

IP;) = KIRb#$)) are the preconditioned residual 
vectors for the initial wavefunctions. In each itera- 
tion M the Rayleight-Ritz scheme is used to obtain 
the lowest eigenvalue/eigenvector pairs E~,]c#+~). 
From these eigenvectors the new preconditioned 
residual vectors I Pi” > = KI R(+/‘)) are calculated 
and added to the expansion set. For large problems 
the storage of all previous residual vectors and of the 
initial vectors I+‘) becomes a problem, therefore M 
must be restricted to a relatively small value. In our 
case we generally use M = 1: In each step the final 
expansion set consists of 2N, vectors, the precondi- 
tioned residual vectors {I P,“)} and the initial set 
{I&O)]. Then a diagonalization is performed in this 
2N,-dimensional sub-space, and the N,, lowest 
eigenvectors are calculated. In the next step these 
lowest eigenvectors and the new residual vectors 
form the new expansion set. For a selfconsistent 
calculation usually two steps are necessary between 
the charge density mixing. After the charge density 
mixing the final wavefunctions of the previous step 
are used as new initial trial vectors. We will refer to 
this algorithm as DAV2, for DAV2 one step always 
consist of 2 successive simple blocked Davidson 
steps. 

3.3. Unblocked algorithms 

Unblocked or sequential algorithms are generally 
considered to be ‘slower’ than blocked algorithms, 
nevertheless the blocked Davidson scheme requires 
the storage of at least 2N, vectors, which is incon- 
venient for large systems. Schemes which optimize a 
single band at a time require less storage, and as we 
will show they are also more efficient for very large 
systems, because the number of iterations can be 
larger than in the blocked Davidson scheme. Gener- 
ally it is favorable to restrict the search vector in the 
sequential methods to the sub-space orthonormal to 
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the current wavefunctions. After a band-by-band se- 
quential update of all wavefunctions it is necessary 
to determine the optimal wavefunctions in the sub- 
space spanned by the Nb final trial wavefunctions 

(IQ, II= l,..., Nb) using the Rayleight-Ritz 
scheme (Eqs. (43)-(45)). We will refer to this step 
as sub-space diagonalization or sub-space rotation. In 
any efficient sequential scheme sub-space rotation 
and sequential update should alternate. 

3.4. Correction vector for sequential, band-by-band 
methods 

Generally the correction vector must be chosen 
with a little bit more care in the sequential methods. 
Consider that one specific band m, has to be opti- 
mized: As already pointed out, it is convenient in the 
sequential methods to restrict the search direction for 
this band m to the sub-space orthogonal to the 
current trial set {I&,), n = 1,. . . , NJ. This can be 
done easily using e.g. the Lagrange formalism: Mini- 
mization of the Rayleigh quotient with the additional 
orthonormality constraint 

C3/,n((~mISl~n)-6,,)=0 Vn=l,..., N,,, 
n 

(57) 

results in a gradient vector 

lg( 4,)) = I&) -HI&) - ce&#%,>. (58) 
n 

which can be made orthonormal to the current trial 
set by requiring 

(~,lg,J =0 Vn= I,..., A$,, (59 

and after evaluating the Lagrange multiplicators ex- 
plicitly we obtain 

I& 4,)) = I&J = (I- w#J.x41)mm~. 
n 

PI 
For a set of trial wavefunctions which diagonal- 

izes the Hamiltonian, i.e. (~,IHIt#+,,> = S,,,,,E~~, Eq. 
(60) reduces simply to the residual vector (47). Mind 
that the gradient vector allows to calculate the first- 
order change of the Rayleigh quotient l fp (Eq. 
(47)) using 

deTP = (&$,I&) + c.c., (61) 

where C.C. is the complex-conjugate of the first 
expression. The choice of the constraint (591, which 
actually determines the Lagrange multipliers, is in- 
spired by the requirement of getting correct first-order 
energy changes: For a change I S$.J, > parallel to any 
vector contained in the set (+,,,) the energy change, 
given by Rq. (61) should be zero. 

Because in our implementation the sequential 
band-by band algorithms generally alternate with the 
sub-space rotation, it is reasonable to replace the 
exact gradient (60) with its ‘diagonal’ approximation 
the residual vector given by Rq. (47). The residual is 
preconditioned and then explicitly S-orthogonalized 
to the set (+,I, i.e. 

IP( 4%)) = IP,) = (1 - cls.~c4$) 

XK(I;- Eqps)14mL (62) 
This preconditioned ‘search vector’ fulfills the condi- 
tion 

(&,lSlp,)=O Vn= l,..., Nb. (63) 

The sequential methods differ in the way this 
correction vector is added to the wavefunctions (4,). 

3.5. Unblocked Davidson-like update 

In the conventional unblocked Davidson method a 
single preconditioned correction vector K I Z?(4,,,)) is 
added to the expansion set ( bi} at each iteration. At 
startup the expansion set consists of the current set 
of trial wavefunctions, therefore the expansion set is 
given in each iteration by the set 

(Ibi), i= l,..., Nb+M} 

= {I+,“), n= l,..., N&‘,)/l~;)/. . .}. 

(64) 

If band m is optimized, then in the first iteration 
the preconditioned residual is evaluated from the 
initial trial vector I P,“) = K I R( c#J~)), added to the 
expansion set and a new optimal 14,) is calculated 
applying the Rayleigh-Ritz scheme. In the next step 
the preconditioned residual I PA) = KIR(#,)) is cal- 
culated from the new wavefunction I&,) and once 
again added to the expansion set. 

This scheme is relatively inconvenient and re- 
quires the diagonalization of a large matrix at each 
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step. To simplify the scheme we first replace 1 P,” > 

by the preconditioned gradient I p,” > = 1 p<c#$ 1) 
(Eq. (62)). By inspection we see that this does not 
change the result of the iteration scheme, but the 
overlap matrix sij (Eq. (44)) in the Rayleigh-Ritz 
scheme is now simply the unity matrix for i or 
j I Nb and i, j f m. Second, in Hjj the terms (Eq. 
(44)) in the off-diagonal elements are neglected for i 

or is N,, and i, j # m. This leads to a simple 
‘decoupling’ of the vector sets {lr#+a), i = 1,. . . , Nb; 
i z m} and {I~I1)/Ip~)/Ip~)/...j, requiring only 
the diagonalization of a much smaller matrix. 

To summarize: In this case the expansion set 
starts with the trial vector I#>, and in successive 
iterations M the preconditioned and orthonormalized 
gradient I p,” > = I p( 4,” 1) is added: 

{IQ, i= l,..., M} = {l4~vlP~)/IP~v...) 
(65) 

In each iteration the optimal wave vector 14,” > is 
calculated from this expansion set using the 
Rayleigh-Ritz scheme. After updating one state sev- 
eral times a move to the next band is done, and at 
last a sub-space rotation for all final wavefunctions 
(l&9, n= I,..., N,,} is performed. The sub-space 
rotation at the end is strictly necessary to obtain the 
exact groundstate eigenvectors. Without the sub- 
space rotation this scheme would converge to an 
arbitrary linear combination of the exact lowest 
eigenvectors. 

3.4. Conjugate gradient minimization 

It is possible to reduce the number of numerical 
operations even further by applying the ideas of 
conjugated gradients (CG) [50,511. In the context of 
a sequential energy minimization this was first done 
by Teter et al. [lo], and the same algorithm was also 
used by Bylander, Kleinman and Lee [45] for the 
iterative diagonalization of the KS-Hamiltonian. 

Instead of storing all previous preconditioned gra- 
dients it is possible to conjugate each new search 
direction to the previous directions applying a stan- 
dard conjugate gradient scheme, i.e. the search direc- 
tion If”) for iteration M is now given by 

In this equation I g,” > = I g( 4,” )> is the gradient 
vector defined in Eq. (60) and I p,” > = 1 p(c#+f>) is 
the preconditioned gradient defined in Eq. (62). In 
each iteration the optimum new wave vector 14,“’ ’ > 
is determined from the set (14,” >/lf”)) applying 
the Rayleigh-Ritz scheme. In Eq. (66) it is possible 
to replace the gradient vector Igf > by the residual 
vector 1 Rf ) because the preconditioned gradient is 
orthogonal to all wavefunctions and therefore 
( p,” I g,” ) = ( p,” I R,M ). Except for small (mainly 
numerical) rounding errors, the improvement per 
iteration is the same for the conjugate gradient mini- 
mization and for the scheme introduced in the previ- 
ous section (Eq. (65)), and we will restrict the fol- 
lowing discussions to the computationally slightly 
more efficient CG algorithm. 

3.7. Residual minimization method - direct inver- 

sion in the iterative subspace (RMM-DIN 

The sequential conjugate gradient scheme dis- 
cussed so far is relatively fast and very stable. The 
only remaining drawback is the necessity for an 
explicit orthonormalization of the preconditioned 
residual vector K IR(&,,)) to the current set of trial 
wavefunctions (Eq. (62)). Unfortunately avoiding the 
orthonormalization is not possible applying the algo- 
rithms discussed above. The Rayleigh-Ritz scheme 
tries to obtain the lowest possible eigenvalues in the 
sub-space spanned by the expansion set, actually it is 
easy to show that the algorithm minimizes the 
Rayleigh quotient for a given set of wavefunctions. 
The Rayleigh quotient is stationary at each eigenvec- 
tor but it does not possess a minimum. Without 
explicit orthonormalization (62) the schemes investi- 
gated in Sections 3.5 and 3.6 will converge for any 
start vector to the lowest eigenvector of the Hamilto- 
nian. In this case the algorithms are equivalent to a 
simple Lanczos [44,52] method, only the explicit 
orthonormalization makes it possible to converge to 
a selected eigenvalue efficiently. 

Fortunately a solution to this problem is available 
and was first proposed in Ref. [44]. Minimizing the 
norm of the residual vector instead of the Rayleigh 
quotient makes the orthonormalization unnecessary, 
because the norm of the residual vector has an 
unconstrained minimum at each eigenvector. 
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In our implementation we follow the original 
work of Pulay [24] and not the variant proposed by 
Wood et al. [44]. This variant would require the 
additional calculation and storage of Slr$>, and is 
therefore slower than our algorithm. We start with an 
evaluation of the preconditioned residual vector 
KlRL) =KlR(&)) for a selected band m. Then a 
trial step into this direction is done 

(67) 
and the new residual vector IR!,,) = II?(Q) is eval- 
uated (mind that we update ear,,, in the evaluation of 
R(&), see Eq. (47)). Next a linear combination of 
the initial I&> and the trial wavefunction 14, > 

i-0 

is found which minimizes the norm of the residual 
vector. Assuming linearity in the residual vector i.e. 

M 

i-0 

this requires the minimization of 

This step is usually called direct inversion in the 
iterative subspace (DIIS). The problem stated in Eq. 
(70) is equivalent to solving the Hermitian eigen- 
value problem 

(71) 
j-0 j-0 

The next trial step starts from 13” ) along the 
direction K IEM). In each iteration M a new wave- 
function 14,“) = l$“-l) + hKI?‘-‘) and a new 
residual vector I R(c#$)) are added to the iterative 
sub-space. The size of the trial step A is a critical 
value. We have found that a reasonable choice for 
the trial step can be obtained from the minimization 
of the Rayleigh quotient along the search direction in 
thefirst step (this is in the spirit of Section 3.5), this 
optimal A is used until a move to the next band is 
performed. The line minimization can be done wifh- 
out additional computational requirements. Usually 
the obtained step size is between 0.3 and 1 for the 
preconditioning function given in Eq. (53). In rare 

cases - especially if the minimization of the Rayleigh 
quotient starts to go for the wrong band - the trial 
step might become very large. Therefore we restrict 
the size of the trial step to a value between 0.1 and 1. 
With this choice we have found that it is always 
possible to finish with the trial step. The trial step 
approaches already the exact position of the minimal 
residual vector. 

The scheme explained in this section requires 
approximately the same number of iterations as the 
CG algorithm, but it avoids any explicit orthonormal- 
ization and is therefore much faster for very large 
problems where the orthonormalization is the leading 
factor. Even more important is the fact that the 
residual minimization is inherently local, and it is 
therefore very easy to implement the algorithm on a 
parallel machine. For instance each processor might 
handle a certain number of bands, information about 
other bands is not required (see also Section 3.9). 

One drawback of the RMM method is that it 
always finds the vector which is closest to the initial 
trial vector. Therefore, initialization becomes a criti- 
cal task and it might happen that in the final solution 
one vector is ‘missing’. To avoid this the initializa- 
tion must be done with great care: We usually start 
with a set of random trial vectors, and perform three 
sweeps over all bands. Each initial sweep consists of 
one sub-space rotation and two steepest descent steps 
into the direction of the preconditioned residual vec- 
tors (Eq. (67)) per band (see also Section 3.8). 
During this initial phase the Hamiltonian is also kept 
fixed, after this ‘delay’ we switch to the RMM 
scheme and start to update the potential. 

As already explained sub-space rotation and se- 
quential update of the bands alternate. In the residual 
minimization the final vectors are no longer orthogo- 
nal. Applying the Rayleigh-Ritz scheme the vectors 
are correctly orthonormalized. We want to empha- 
size, that in principle the RMM method would also 
converge without any explicit sub-space rotation or 
orthonormalization, but for current system sizes we 
have found that the sub-space rotation speeds up the 
calculations although it is an order G( N 3, operation 
(see Section 3.1). The main problem is that the 
‘barrier’ in the norm of the residual vector between 
two neighboring eigenvectors with eigenvalues E 
and E + SE is only of the order 8~ [53]. Therefore 
two eigenvectors which are close in energy are lying 
in one long steep valley and only a shallow hill 
spearates them - a typical example of a badly condi- 
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tioned minimization problem. The sub-space rotation 
solves this problem because after the rotation the 
residual vectors are orthonormal to the current trial 
set (see explanation following Eq. (60)), and search 
vectors parallel to the long valleys are effectively 
suppressed. 

3.8. The complete algorithm 

The complete selfconsistency loop consists of 
several steps (the section where the algorithm has 
been discussed is given in brackets, also see Fig. 3): 

sub-space rotation (31, 
DAV2 (3.21, CG (3.6) or RMM (3.7) algorithm, 
orthonormalization using Gram-Schmidt method 
(only required for the RMM scheme), 
update of partial occupancies and charge density 
for a selfconsistent calculation. 

The initial trial set (I4,>, n = 1,. . . , Nb} in each 
iteration is equivalent to the final set of the previous 
iteration, initialization is usually done with a random 
number generator. This loop is repeated until self- 
consistency is reached, for a non-selfconsistent cal- 
culation no charge density update is done. The or- 
thonormalization is only necessary in conjunction 
with the RMM, in addition the DAV2 method re- 
quires no sub-space rotation. 

We have found that the sub-space rotation should 
be performed between the update of the charge 
density and the RMM or CG algorithm, especially at 
the beginning of a selfconsistent calculation. In this 
case the calculated residual vectors IR(+,,,)) agree 
with the exact gradients lg(&)). For this reason 
and because the wavefunctions should be orthonor- 
ma1 for a recalculation of the charge density, it is 
necessary to separate the orthonormalization and the 
diagonalization of the sub-space Hamiltonian, which 
is done at once in the Rayleigh-Ritz scheme. 

In addition it is necessary to find an optimal break 
condition for the sequential RMM and CG algo- 
rithms. A static criterion, for example 2 steps per 
band, is not a good choice, because lower bands 
converge much faster than higher bands. Therefore, 
we have adopted the following dynamic criterion 
(which is inspired by Ref. [54]): (i) Both algorithms 
are stopped if the change in the total eigenvalue 

becomes smaller than Eaccuracy/Nb/4, where Eaccuracy 
is the required accuracy of the calculation and N, is 
the number of occupied bands. (ii) The RMM is 
stopped if the square of the norm of the residual 
vector gets smaller than 30% of its initial value, and 
the minimization always stops with the trial step. (iii) 
The CG is stopped if the change in the eigenvector 
gets smaller than 30% of the change in the first i.e. 
the steepest descent step. (iv) The maximum number 
of steps is always four. For the RMM the residual 
vector is minimized three times and at last a fourth 
trial step is performed. (v) Empty bands are opti- 
mized only twice. 

By now, these criteria have been used for a large 
number of system and are very robust. In most cases 
two CG or two RMM steps are done per band, but 
problematic eigenvalue/eigenvector pairs are iter- 
ated more frequently. Usually more iterations are 
done for the higher bands, and the total speed of 
convergence for all bands is very good. 

3.9. Computational considerations 

To make a fair comparison of different techniques 
it is necessary to count the number of operations for 
each algorithm carefully. The CG minimization of 
the Rayleigh quotient requires always slightly less 
evaluations of the Hamiltonian multiplied with a 
wavefunction than the RMM, but for large systems 
the most expensive part is the orthonormalization of 
the wavefunctions. For our implementation the eval- 
uation of (H - l )I 4”) is an order 

T * = N, NPlw In NPlw a N2 In N (72) 

operation, where N qualifies the system size. The 
limiting factors are the fast Fourier transformations 
( Nb NPlw In NP,,,, a N2 In N > and the evaluation of 
the nonlocal projection operators. For large systems 
we calculate the non-local projection operators in 
real space [55] and therefore the number of opera- 
tions per band increases linearly with the system size 
(CNiO,,), for all bands this is only an order N2 
operation. The Gram-Schmidt orthonormalization 
takes 

TGS=N2XN aN3 b PlW (73) 
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steps, whereas the explicit orthogonahzation of the and (77)). For a comparison of the number of itera- 
gradients of each band to all other bands in Eq. (62) tions required for each algorithm you might go to 
takes twice as many steps Section 6.1. 

T ‘It = 2N,2 x Nplw a 2N3. (74) 

But even worse, the explicit orthogonalization 
makes any efficient memory caching impossible. The 
CG algorithm is strictly sequential and at each itera- 
tion the new gradient must be orthogonalized to all 
other bands, requiring a large band width from the 
main memory. We found that this is a problem on 
some machines like the Silicon Graphics Power 
Challenge architecture where several processors share 
a large main memory (on vector processors this 
operation is generally reasonably fast). For the 
Gram-Schmidt orthononnalization a routine with 
good data locality which avoids this problem can be 
found easily and T Ort is therefore usually 3- 10 times 
larger than TGS on scalar machines. Efficient rou- 
tines with good data locality can also be found for 
the sub-space rotation, and the number of operations 
is 

4. Charge density mixing 

The second key step within our algorithm is an 
efficient mixing of the input and output charge densi- 
ties. We have adopted the modified Broyden method 
proposed by Johnson [56]. This approach is flexible 
and for a special parameter setting the charge density 
mixing schemes of Pulay [24] and that proposed by 
Srivastava [57] and Blligel [58] are obtained. To 
improve the convergence further, we have adopted a 
special initial mixing matrix and a metric, which are 
both optimized for a plane wave basis set. In the next 
sections we will briefly discuss simple mixing, Pu- 
lay’s and Johnson’s approaches. 

4.1. Simple mixing 

Tdiag=TH+2N;XNplw. (75) 

For the blocked Davidson scheme the number of 
operations is 

Tdav = 2TH + 5+N,z X Nplw 

for the first iteration and 

(76) 

The central quantity of all charge density mixing 
schemes is the charge density residual R[ pi,,] (see 
Eq. (31)) 

R[ Pin 1 = Pout1 Pin 1 - Pin * (78) 

The norm of the residual vector 

Tda’ = ITH + 4N,z X Nplw (77) 

for all further iterations if the potential is fixed. As 
we will show in Section 6, two consecutive blocked 
Davidson steps (DAVZ) are necessary to get a con- 
vergence speed that is comparable with the CG or 
RMM band-by-band methods. For large systems, 
where the orthogonalization is the leading factor, one 
blocked Davidson step (with only a single sweep 
over all bands) takes more time (and converges 
much slower) than one RMM-step (with two opti- 
mizations per band, one sub-space rotation and one 
Gram-Schmidt orthonormalization this is an order 
3TH + 3N,2 X Nplw operation, to be compared with 
Eq. (76)). In addition we have found that two blocked 
Davidson steps for a fixed potential (DAV2) take 
generally more time than one CG sweep over all 
wavefunctions (approximately 3TH + 5Nt X Nplw 
operations, to be compared with the sum of Eqs. (76) 

(R[ PinIlR[ Pin]) (79) 
must be zero for selfconsistency. Simple schemes 
take into account only information from the current 
iteration. Linear mixing for example adds a certain 
amount of R to the current input charge density 

pz+’ = PZ + YR[ P;]. (80) 

As in the case of the iterative matrix diagonaliza- 
tion (see Section 3.11, it is a good idea to improve 
the simple mixing by preconditioning the residual 
vector using knowledge about the Jacobian matrix. 
In this case the mixing equation is 

Pin “,+ ’ = p; + G’R[ pi;] (81) 

where G’ is a special preconditioning matrix. A 
simple but efficient scheme for a plane-wave basis 
set was proposed by Kerker [60], and we used this 
scheme with some success for the first calculations. 
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In the Kerker scheme the preconditioning matrix is 
diagonal in reciprocal space and given by 

This scheme has the advantage of damping the 
oscillations in the low-q components of the charge 
density i.e. for small wave vectors the function be- 
haves like Aq*/qi and mixes only a small amount 
of the output charge density to the input charge 
density. For large wave vectors q, a simple linear 
mixing with the linear mixing parameter A is done. 
Generally A can be quite large and we found that 
A = 0.8 is always an acceptable choice, q0 might be 
optimized for the actual system. 

4.2. Pulay mixing 

In the scheme of Pulay [24] the input charge 
density and the residual vectors are stored for a 
number of mixing steps. A new optimal input charge 
density is obtained in each step as a linear combina- 
tion of the input charge densities of all previous 
steps 

pp,P’ = c (Yi pt. (83) 

Assuming linearity of the residual vector with 
respect to the input charge density pin, the residual at 
p,“,“’ is given by 

R[ P;~‘] = R c cxi p;,, [ 1 = c cti R[ p,‘,] . (84) i i 

The optimal new charge density must minimize 
the norm of the residual vector 

(R[ P;~~]IR[ p,pR’]) (85) 

with respect to (Y; under the constraint 

&= 1, (86) 

which conserves the number of electrons. These 
equations are very similar to those given in Section 
3.7, only the functional form of the constraint has 
changed. The optimal (Y~ is now given by 

CjA,;’ 
(y,= - 

’ Ckj Aij’ 
with Aii=(R[ p,‘,]IR[ Pk])* 

(87) 

To improve the numerical stability and for of 
comparison with the formulas given in the next 
section it is convenient to transform for iteration m 
to a new set of independent variables defined by 

pm = p?‘, Api = p,‘,” - p;“, 

R” = R[ p;], AR’= R[ p;;‘] - R[ pil,] (88) 

for i < m. The new optimal input charge density is 
then a linear combination 

m-l 

Pi” opt= pm + c ZiApi. 
i-l 

(89) 

An one-to-one relationship between ayi and (Yi 
exists and it is evident that the transformation makes 
a constraint on cUi unnecessary. It is easy to show 
that ‘Yi is given by 

m-l 

‘y,= - C X;'(ARJR~), (90) 

with 

Aij= (AR’IAR’). 

The charge density in 
obtained via the equation 

Pi” m+ ’ = p,pR’ + G’R[ p;PR’] 

m-l 

=p”+G’R”+ c 
i= 1 

(91) 

the next step might be 

Zi(Api +G’bR’), 

(92) 

where G’ can be a constant corresponding to simple 
mixing or a matrix like that one given in Eq. (82). 

4.3. Broyden mixing 

Among the most sophisticated procedures to cal- 
culate the selfconsistent solution of the KS equations 
are the quasi-Newton algorithms proposed by Broy- 
den [23]. These algorithms try to find an approxima- 
tion for the Jacobian or the inverse Jacobian matrix 
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by updating the Jacobian matrix at each iteration. 
Storing the full NX N Jacobian matrix is rarely 
possible for large selfconsistency problems, but in 
the last few years several authors were able to derive 
modified algorithms which require only the storage 
of a few N-dimensional vectors at each iteration; 
Srivastava [57] derived an algorithm for Broyden’s 
second method (inverse Jacobian update) and similar 
results were obtained by Bltigel for Broyden’s first 
(Jacobian update) and second method [58]. Another 
important contribution goes back to Vanderbilt and 
Louie [59], who suggested a new more flexible 
version of Broyden’s method, which avoids that 
information obtained in previous steps is lost during 
the update of the Jacobian matrix. Johnson [56] 
reformulated this method so that it requires only the 
storage of N-dimensional vectors. Here we will 
mainly concentrate on this approach because it is 
flexible and allows to obtain Blligel’s and Pulay’s 
methods for a special set of parameters. 

The key point of quasi-Newton methods is the 
assumption that the residual vector can be linearized 
near the minimum, 

NPl=qPi?l -J%-Pia (93) 
where J” is an approximation of the Jacobian ma- 
trix. If we require R[ p * ] = 0 we obtain an optimal 
charge density p * which makes the residual vector 
zero: 

p* =p:+(YyR[ p,:]. (94 

In successive steps an improved approximation of 
the Jacobian matrix J” or of the inverse Jacobian 
matrix (J”)-’ is build up, and a new charge density 
is obtained from the current approximation of the 
inverse Jacobian matrix, the current charge density 
pz and the current residual vector R[ pzl using the 
equation 

p;+’ = P,::+(J”)-~R[~~‘$ (95) 

The algorithms differ in the way how J” is 
changed and updated in each iteration. To comply 
with the notation used by Johnson [56] we define 
G” = (J")- ’ . Johnson suggested a scheme in which 
information of all previous iterations is taken into 
account to calculate G” for the current iteration. For 
iteration m this is done via a least square minimiza- 

tion of an error function 

E = wOllGm+ - G”‘II* + 2 willApi + Cm+ ‘AR’II’, 
i= 1 

(96) 

where IIAll*= (AIA), and Api and AR’ were de- 
fined in the previous section in Eq. (881, and the wi 
are weighting factors (see below). The definition of 
this error function can be understood easily in terms 
of the following arguments: (i) the first term corre- 
sponds to the requirement that the approximation for 
the inverse Jacobian matrix should not change too 
much between each iteration. Actually it turns out 
that this constraint is relatively unimportant and after 
obtaining the final formula we will concentrate on 
the case w0 + 0. (ii) The second term requires that 
the norm of 

Api + G”+‘AR’ (97) 

is as small as possible. If R[ p] is linear with respect 
to p and for the exact inverse Jacobian matrix 
G m+l_ - G”““’ this quantity would be zero (compare 
with Eq. (94)). 

Starting from Eq. (96) it is possible to derive an 
exact solution for Cm+ ‘. Because Ref. [56] contains 
a relatively large number of misprints we will give 
the final correct formulas once again: 

G m+l =G' - c lZ,m)(ARkl (98) 
k= I 

where 

IzF> = 2 &W&I& + mi’ &lz,m- ‘> (99) 
n=l n= I 

and 

1~“) = G’IAR”) +IAp”). ( 100) 

Pk,, and a, are given by 

P,,=(WoZ+A3;“1* A,, = w,w,(AR”IAR”) 

( 101) 

and 

s,,= a,,, - 2 wkwjPkj(AR”IARi). ( 102) 
j- 1 



36 G. Kresse, J. Furrhmiiller/ Computational Materials Science 6 (1996) 15-50 

I_f all iteration weights wn are the same the equality 
& = wi Pkn holds and the equations given in Ref. 
[56] are obtained (maybe this case was implicitly 
assumed in Ref. [561). 

It is now easy to show that Pulay’s scheme can be 
obtained by evaluating the equations given above for 
w,, + 0 and w0 a: w,,. Interestingly, for the case 
w0 + 0 the choice of wn does not influence G" + ’ at 
all, which can be seen by showing that wkwn &,, is 
invariant under a change of an arbitrary weight w,. 
Without loss of generality we therefore set wn to 1 
and obtain for the inverse Jacobian 

m-l 

G” = G’ - c &lu”)(ARkl. 
k,n- 1 

( 103) 

Some straightforward manipulation gives for the 
new input charge density pc’ ’ = pz + GmR[ p:] 
(see Eq. (95)) exactly the same result as in Eq. (92). 
It is also possible to show that the inverse Jacobian 
obtained in this way makes Eq. (97) exactly zero for 
any i < m, therefore G” might be considered as the 
best approximation of the exact inverse Jacobian 
matrix in the space searched up to now. 

As a second case it is possible to derive Broyden’s 
second method from the equations given above by 
setting wi = 0 for i < m and requiring w0 ux wm. In 
this case the update equation is simply 

lZ~>=lZ~-‘) fork<m ( 104) 

and 

1 m-l 

~ 
“” = llAR”112 

Id”>- c (ARkIAR”)IZ;-‘) 
k-l 

in agreement with the formulas given by Bliigel [58]. 
In Broyden’s second method information of the cur- 
rent iteration is allowed to overwrite information of 
all previous iterations and Eq. (97) is zero only for 
the last iteration i = m. 

We have found, that Broyden’s second method is 
always slower for the charge density mixing than 
May’s method. The only problem for Pulay’s 
method might be that the linear dependencies be- 
tween consecutive search directions are too strong. 
In the context of charge density mixing this does not 
seem to happen, but we have also tried to use 
Pulay’s and Broyden’s second method in conjunction 

with the relaxation of the ionic degrees of freedom. 
For configurations with a small number of degrees of 
freedom linear dependencies between the forces for 
different positions develop and Pulay’s method gets 
unstable. Broyden’s second method seems to be 
more favorable in this case. For the ionic relaxation, 
another convenient choice is to take into account 
only information from a fixed small number n of 
previous steps (i.e. wk = 0 for k < m - n, and wk * 
w0 for m - n s k < m). 

At last we want to consider the case w0 = wn: 
This choice restricts changes in G between two 
iterations and we have found that this destroys most 
of the advantages of Broyden’s scheme; the update 
of G does not work as expected. In this case G’ 
must be close to the correct inverse Jacobian matrix 
for a reasonable convergence. In the spirit of the 
arguments given above it is also evident that a 
dynamic choice of w,, as proposed by Johnson is 
usually not applicable. Useful settings are only w,, = 
0 or w, * w,,, and we have already shown that for 
w,, * w0 the actual choice of w, does not influence 
G at all. 

4.4. Preconditioning and metric 

Two questions remain, first the choice of the 
initial matrix G’, and second whether an optimized 
metric for evaluating the scalar products ( . I . ) can 
be found. 

The initial mixing plays only a minor role, but for 
convenience we use the Kerker matrix G’ (Eq. (82)) 
because it gives already good convergence in the 
first few steps. As we will show in Section 6.2.2, the 
technique is rather insensitive to the choice of the 
parameters for the initial mixing, and there is no 
need to optimize the paramtters for different sys- 
tems: A = 0.8 and q,, = 1.5 A-’ is always satisfac- 
tory. For magnetic systems and for some surfaces an 
initial linear mixing with A = 0.1 was convenient. 

Second, a reasonable metric can help to reduce 
the number of iterations. We have found that the 
inclusion of a weighting factor 

“2 + “2 
f, = ?‘11 

q2 
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in the evaluation of the scalar products 

(AtB)= Cf,A,'B, (107) 
9 

improves the results considerably for complex metal- 
lic systems. This function is inspired by the fact that 
the contributions for small wave vectors are more 
important than contributions for large wave vectors. 
The choice of q, is relatively unimportant and we 
set q1 in a way that the shortest wave vector is 
weighted 20 times stronger than the longest wave 
vector. At this point, we also want to make clear that 
a considerable difference between charge density 
mixing and potential mixing exists. Taking into ac- 
count only the Hartree term the potential is given by 

therefore the metric for the evaluation of scalar 
products differs by a factor of l/q4 in both cases. 

Third, we are frequently confronted with very 
large systems with FFT grids containing up to 64 X 
64 X 64 points, which are necessary to describe the 
rather hard augmentation charges of transition met- 
als. These large meshes exceed the storage possibili- 
ties even for the new efficient mixing schemes. A 
rather simple solution to this problem exists: We 
have found that no mixing is necessary for large 
wave vectors q, i.e. it is possible to set 

P,;‘=Pomutp ( 108) 

without any loss of efficiency, and only a relatively 
small number of grid points must be treated with 
Broyden’s method, usually we take all grid points 
which are also contained in the plane wave basis set 
(h21q12/(2m,) <&“,I. 

To summarize the results of this section: For the 
charge density mixing we usually use F’ulay’s method 
and we set G’ to the matrix proposed by Kerker with 
the parameters A = 0.8 and q0 = 1.5 A-‘. For all 
cases treated up to now these parameters resulted in 
a very good convergence during the selfconsistent 
procedure, and optimizing the parameters never im- 
proved convergence speed by more than 10%. A 
comparison of different mixing methods can be found 
in Section 6.2. 

5. Direct minimization of the KS-functional 

As an alternative to the SC-iterative methods we 
also want to discuss briefly the direct minimization 
of the KS-functional. As in Eqs. (34) and (57) it is 
convenient to incorporate the orthonormality con- 
straint using Lagrange multipliers. In the most gen- 
eral form, this results in a functional 

which has to be minimized with respect to all de- 
grees of freedom. The gradient of this functional 
with respect to the wavefunctions is similar to Eq. 
(58) 

- 

-& = Ig,) =f,HIf#J,> - CSYnfnl4m). (110) 
” m 

but for a consistent definition of the gradient, we 
have to define the Lagrange multipliers in a different 
way: The gradient should describe energy differ- 
ences up to first-order 

dF= c@!+,,Ig,) +c.c., 
m 

(111) 

correctly, but now all bands are allowed to change 
simultaneously. If an unitary rotation of the wave- 
functions (4,) is allowed, 

<4,ls,> + (4,,lg,) = 0 vm, n, 

has to be required and this results in 

(112) 

Y nm = fR,(fn+fm)7 (113) 

with 

li,, = G#$JfI~n,>. (114) 

The explicit gradient is then given by 

Ig,) =f.( 1 - cs14m)hbml)fw 

m 

+ ; $L(f. -fmWm). (115) 
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A similar result might be obtained - maybe in a 
more elegant way - by a generalization of the 
KS-functional to nonorthogonal orbitals [13]. The 
structure of Eq. (115) is very interesting. Clearly the 
first term describes changes which result from a 
change of the sub space spanned by the wavefunc- 
tions I+,,} and was already obtained in Eq. (601, 
whereas the second term is new and corresponds to 
the energy change arising from an unitary transfor- 
mation of the wavefunctions {&,I. At the groundstate 
the energy change dF (Eq. (111)) must be zero for 
arbitrary variations Sk&,,, and the second term is only 
zero if the matrices H,,,,, and F,,, = f, a,, commute. 
For materials with a gap this can be achieved by 
generating the eigenstates for the filled orbitals only 
(i.e. all f, = l), and the Lagrange multipliers at the 
groundstate are given by 

Y nm =H,, (116) 
(compare Eq. (1 l)), whereas for metals with f, #f, 
both matrices only commute if H,, is diagonal, 
clearly demonstrating that the exact Kohn-Sham 
eigenstates have to be calculated for metals. In this 
case the Lagrange multipliers at the groundstate are 
given by 

(117) 

where E, are the exact Kohn-Sham eigenvalue. 
Finally, we want to point out, that the last term in 
Eq. (115) defines an unitary rotation matrix U, 

un, = 6”” - AK(f” -fm) (118) 
for small A, which might be used to rotate the 
wavefunction 4, until the sub-space Hamiltonian 
(Eq. (114)) is diagonal. 

5.1. Preconditioned search direction 

To find a good search direction it is simplest to 
treat both terms in Eq. (115) independently. First, a 
correction vector to each state 4, which changes the 
basis set (4J has to be calculated. We use the 
correction vector already successfully applied in the 
sequential band by band methods (Section 3.4, Eq. 
(60)) but with a full inclusion of all Lagrange multi- 
pliers i.e. 

(119) 

The explicit S orthogonalization of this vector 
can be avoided, because a Gram-Schmidt orthonor- 
malization is done after updating all bands. Mind 
that it is very important to have a reasonable length 
for this correction vector Ip,), because the unitary 
transformation and the addition of the correction 
vectors are done at once in the all bands simultane- 
ous scheme. Using the preconditioning function of 
Eq. (52) the rotation of the wavefunctions and the 
changes of the basis set are done in a well condi- 
tioned way. 

Second, an unitary transformation of the wave- 
functions 4, has to be found, which makes the 
sub-space Hamiltonian (114) diagonal. Rotating the 
wavefunctions into the direction of the steepest de- 
scent (second term in Eq. (115) or Eq. (118)) turns 
out to be extremely slow. Much more efficient is a 
transformation based on second order Loewdin per- 
turbation theory (this idea was first discussed by 
Gillan [12] in this context). In this case the rotation 
matrix is defined as 

( 120) 

For a start configuration far from the electronic 
groundstate, the matrix elements might become very 
large and perturbation theory fails, therefore we re- 
place x = H,,/(H,, - H,,,> by the quantity 
sin(arctan(2x)/2) which is inspired by the exact 
treatment of a two by two matrix. This unitary 
matrix is used to rotate the wavefunctions according 
to the equation 

4, = c K”4F. 
m 

(121) 

As pointed out by Gillan [12] it might happen 
during the minimization procedure that th-i ordering 
of the partial occupancies is wrong i.e. H,,,, > a,,,, 
but (incorrectly) f, > f,. in this case U,,, is set to 
zero to guarantee that the energy decreases along the 
search direction. 

Finally we have to find a consistent update scheme 
for the partial occupancies. In principle a direct 
calculation of the gradient vector for f, is possible if 
Fermi-Dirac statistics is used, because an explicit 
functional form for the entropy term S( f > exists for 
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this case (see for instance Ref. [al]). But no analyti- 
cal form for the entropy term $f) is available for 
Gaussian smearing or the MP scheme, and within the 
tetrahedron method the partial occupancies f, are no 
independent degrees of freedom. Therefore we opti- 
mize a new independent set of variables g” from 
which the partial occupancies are calculated directly 
using 

I.?_-L&u\ 
f, =I*\. 

The gradient vectors for these new variational 
degrees of freedom can be evaluated analytically, 
and are given for the smearing methods by 

( 122) 
with 

df(( % - ~)/a) 
g, = 

dg, 

(we recently found that the same approach was used 
in Ref. [62]). The actual search direction used by us, 
however, is not this complicated expression for the 
exact gradient but simply the difference between E”, 

and H,, 

H,,,,, - El,. ( 123) 

At the groundstate the g,, will converge to the 
exact KS eigenvalues, and the partial occupancies 
are correctly determined. 

5.2. Steepest descent and conjugate gradient algo- 
rithm 

The search direction discussed in the previous 
section can be used in an all bands simultaneous 
update scheme. Within the steepest descent algo- 
rithm it is no problem to re-orthogonalize the wave- 
functions after each step, but we also do the re-ortho- 
normalization within the conjugate gradient scheme. 
In principle this might slow down the CG algorithm, 
but we think that the orthonormalization causes only 
minor problems: It can be shown that the last search 
direction and the new gradient are orthogonal up to 
second-order in the trial step and this orthonormality 

is the most important condition for a stable and fast 
convergence of the CG routine. For the minimization 
we are using a standard (preconditioned) CG routine. 
The conjugated direction is simply given by 

i 

If’> = Ipi) + (p:P,;$,lfY, ( 124) 

where 1 g’) is the gradient and 1 pi> is the un-con- 
jugated search direction, consisting of components of 
Eqs. (1191, (120) and (123). 

A second serious difficulty within the CG routine 
is the accuracy of the line minimization: We assume 
a quadratic behavior of the total energy along the 
search path, and evaluate the exact energy change for 
a finite step. Using this information and the expected 
first-order energy change (which is directly propor- 
tional to (f’lg’), i.e. the product of the conjugated 
search direction and the gradient), it is possible to 
determine the minimum. An improved treatment 
(especially an improved treatment of the orthonor- 
mality constraint, see Ref. [13]) might result in a 
better convergence, but even for our implementation 
the improvement over a steepest descent approach is 
considerable. Only for starting configurations far 
away from the exact groundstate problems might 
occur (a result of the way the orthonormality con- 
straint and the line minimization are handled), but 
close to the groundstate the routine works very well. 

To avoid any ambiguities we will refer to the 
algorithms which minimize the KS functional di- 
rectly as CGa for the conjugate gradient scheme - 
and SDa for the steepest descent scheme. The CGa 
scheme should not be mixed up with the sequential 
CG scheme, discussed in the context of iterative 
matrix diagonalization (Section 3.6). 

5.3. Other direct minimization methods 

The standard CP method is also a direct method, 
and the most efficient version of the CP method was 
recently discussed by Tassone et al. [7]. In this case a 
damped and preconditioned second-order equation of 
motion is used to calculate the electronic ground- 
state. Tassone found that the second-order equation 
is far superior to a preconditioned steepest descent 
approach. In the limit of semiconducting systems 

(i.e. &I = Nelectrons /2) their simple steepest descent 



40 C. Kresse, J. Furthmiiller/ Computational Materials Science 6 (1996) IS-50 

approach is almost equivalent to our steepest descent 
approach. There are some small differences espe- 
cially in the preconditioning and in the incorporation 
of the orthonormality constraint, which is done more 
consistently in Ref. [7]. It is interesting to point out 
that the damped second-order equation of motion 
proposed in Ref. [7] is closely related to an accelera- 
tion scheme for slowly converging series by Tcheby- 
cheff, which has been used for the mixing of charge 
densities by Akai and Dederichs 1631. 

Another efficient minimization algorithm, which 
includes partial occupancies was recently discussed 
by Grumbach, Hohl, Martin and Car [62], and first 
proposed by Gillan 1123. But both implementations 
suffer from the fact that the conjugate gradient algo- 
rithm is restricted to the wavefunctions (Eq. (119)). 
To us it seems that this is an unnecessary restriction: 
Grumbach et al. point out that they found a slower 
convergence at the end of the calculation, the en- 
ergy-drop in the last part of the calculation of carbon 
was mainly due to the sub-space rotation (Eq. (120), 
or sub-space mixing using the terminology of Ref. 
[62]). To improve the convergence they had to per- 
form additional exact sub-space diagonalizations af- 
ter several standard steps. These problems are related 
to the simple steepest descent treatment of the sub- 
space part in their work, showing that all degrees of 
freedom must be updated simultaneously and consis- 
tently. 

6. Comparison of different techniques 

6.1. Iterative matrix diagonalization 

In this section we will compare different iterative 
diagonalization techniques considering the calcula- 
tion of the eigenvalue spectrum for a fixed Hamilto- 
nian only. The selfconsistent case will be covered in 
section 6.2. For all calculations the charge density 
was constructed from the atomic charge density of 
the constituents, therefore the calculated energy cor- 
responds to the energy of the Harris-Foulkes (I-IF) 
functional [39-411 already introduced previously (see 
Section 2.3). In some cases like liquid Germanium 
(and most liquid metals) the calculation of the eigen- 
values and eigenvectors of the Hamiltonian turns out 
to be the only limiting factor for a selfconsistent 

calculation, in other cases like hydrogen on a palla- 
dium surface the charge sloshing is so pronounced 
that the mixing procedure determines the overall 
performance. 

6.1 .I. Liquid metallic system 
As a prototype for a liquid metallic system we 

consider Germanium at a temperature of T = 1250 
K. This choice was influenced by two facts. First, we 
have done an extensive study of liquid and amor- 
phous Germanium [ 171, and we have reasonable 
models for the liquid structure. Second, we want to 
compare the convergence of our techniques with the 
results for liquid Silicon published recently by Tas- 
sone et al. [7] and Grumbach et al. [62]. 

For the calculation we used a 64 atoms ensemble. 
The cutoff was 160 eV, Gaussian smearing with 
IT = 0.2 eV, the r point only and 148 bands were 
used for the calculation (20 bands more than neces- 
sary to hold all electrons). The initial electronic 
configuration was calculated doing a random initial- 
ization and 2 CG steps on the wavefunctions (i.e. 2 
sub-space rotations, 2 CG sweeps over all bands, 2 
optimizations of each wavefunction per sweep). This 
initial choice is mainly influenced by the fact, that 
the RMM scheme requires a reasonable electronic 
start configuration, because the algorithm traps the 
eigenvector closest to the initial trial vector. Results 
for the non-selfconsistent calculation are reported in 
Fig. 5. It is evident that the CG algorithm gives the 
best convergence, but the RMM makes up for this 
fact by requiring less time per step. Overall the 
performance is approximately the same on most 
processors, but the RMM scheme is much faster on 
machines with slow memory subsystems (like Sili- 
con Graphics Power Challenge architecture or DEC 
Alpha machines). In the CG and RMM approxi- 
mately two steps per band are made in each sweep. 
In addition one sub-space diagonalization is per- 
formed per step. 

The blocked Davidson scheme results in the slow- 
est convergence. One step in the plot corresponds to 
expanding the expansion set to 2N, and collapsing it 
back to 1 Nb twice (DAV2) i.e. one step in the plot 
corresponds to two simple blocked Davidson steps 
(see also Section 3.2). The convergence of the 
Davidson scheme would improve enormously by 
expanding the expansion set to 3N, and collapsing 
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Fig. 5. Convergence of the total free energy per atom E (in eV) 
for different algorithms for 1 Ge (64 atoms), non-selfconsistent 
case. DAV2 conesponds to the blocked Davidson scheme, one 
step in the plot is equivalent to expanding the expansion set to 
2 N,, and collapsing it back to 1 Nt, twice, RMM it the sequential 
residual vector minimization, CG the sequential conjugate gradi- 
ent scheme. 

then to lN,, but this requires additional computer 
memory and additional order N3 operations, making 
the Davidson scheme even less favorable. In terms of 
computing time one DAV2 step takes approximately 
twice the time of one RMM step, making the David- 
son scheme the slowest scheme for liquid Ge. 

Here we consider the non-selfconsistent case only, 
results are shown in Fig. 6. In this case the initial 
electronic configuration was calculated doing a ran- 
dom initialization and 3 CG steps on the wavefunc- 
tions. As previously, for the method DAV2 one step 
in the plot corresponds to 2 blocked Davidson steps. 
It is evident that the CG method is again most 
efficient, it is also better in terms of computer time, 
but the gain in comparison to the RMM and DAV 
method is modest (20%). For this calculation the 
performance and the time per step of CG, DAV2 and 
RMM are almost the same. This arises from the fact 
that order N 3 operations play only a minor role for 
this small system, and the number of evaluations of 
(H - e,,S)l&> is exactly 3 for DAV2 and using the 
dynamic break criterion approximately 3 for the 
RMM or CG scheme (sub-space rotation included). 
For a large system with more atoms per layer the 
RMM scheme is the fastest scheme and outperforms 
the DAV2 and CG schemes, we have verified this 
for calculations containing up to 32 atoms in the 
supercell. 

61.3. Diamond surface 
The test system is a clean C (100X1 X 2) surface, 

modelled by a slab geometry containing 16 atoms (8 
C-layers with 2 C-atoms per layer and 8 layers 

6.1.2. Metallic surface 
As a second test system we consider the Pd (111) 

surface with a monolayer hydrogen located in the 
hollows between three Pd atoms. The supercell con- 
sists of 5 layers vacuum and 5 Pd atoms in a (1 X 1) 
unit cell, the geometry is not relaxed. The cutoff was 
200 eV. Once again Gaussian smearing with u = 0.2 
eV, and a 5 X 5 X 1 Monkhorst Pack k point grid 
was used. 32 bands were included in the calculation 
(6 bands more than necessary to hold all electrons). 
The system is relatively small, but even for this 
small system the charge sloshing is extremely strong 
because the Fermi level lies at a rather steep point of 
the electronic density of states. We have also done 
calculations for larger systems containing up to 32 
atoms, but the main points concerning the conver- 
gence are already captured by this small system. 
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Fig. 6. Convergence of the total free energy per atom E (in eV) 
for the Pd(ll1) surface with a monolayer hydrogen located in the 
hollows between three Pd atoms, non-selfconsistent case. A slab 
consisting of 5 layers of Pd is used to model the surface. 
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Fig. 7. Convergence of the total free energy per atom E (in eV) 

for a clean c(lOO)( 1 X 2) surface, modeled by a slab containing 16 

atoms, non-selfconsistent case. 

vacuum). One side of the slab is reconstructed, re- 
sulting in a dimerization of the C atoms in the top 
layer, the other side is unreconstructed and possesses 
a single metallic surface band. Despite this metallic 
behavior, the convergence of the partial occupancies 
is fast and unproblematic, because well defined gaps 
separate the metallic surface band from the other 
bands (in contrast to the Pd surface). 

Gaussian smearing with u = 0.2 eV, and a 3 X 6 

X 1 Monkhorst Pack k-point grid was used; 40 
bands were included in the calculation (8 bands more 
than necessary to hold all electrons). The system is 
also only medium sized, but it captures all main 
points which are important for larger systems (calcu- 
lations for systems containing up to 64 atoms have 
been done). The charge sloshing is not as important 
as for the Pd surface, but it is still considerable. 

Results for the non-selfconsistent case are shown 
in Fig. 7. The initialization and the methods are the 
same as for I-Ge. The RMM and the CG scheme 
require the same number of steps, which is typical 
for semiconducting and insulating systems. Because 
orthonormalization (order N 3 operation) plays only a 
minor role the time per step is also the same for this 
system size. Going to large systems, where order N 3 
operations are important, the RMM scheme becomes 
favorable. The DAV2 scheme is once again the 
slowest scheme, although the time per step for this 
small system is comparable to the RMM and CG 

scheme. Summarizing the results of the last three 
sections: We have found that 
. the CG algorithm is fastest for very small systems, 

where order N 3 operations are negligible; 
. the RMM algorithm is superior for large systems 

containing more than 20-30 atoms; 
. and the DAV2 scheme is always outperformed by 

one of the other two techniques. 

6.2. Comparison for selfconsistent calculations 

6.2. I. Liquid metallic system 
The convergence for the selfconsistent calculation 

of liquid Ge is mainly determined by the conver- 
gence of the iterative matrix diagonalization. Charge 
sloshing is negligible in this simple system. This is 
demonstrated in Fig. 8, where the convergence is 
compared for different matrix diagonalization 
schemes. In all cases we used the same initial wave- 
functions as in the non-selfconsistent calculation, and 
the initial charge density is calculated from the charge 
density of the Ge atoms. It is evident that Fig. 8 
shows the same behavior as Fig. 5. The mixing 
parameters are not important for this system, and 
therefore we used only the default parameters. Com- 
paring Figs. 5 and 8 it might be seen that actually 
only one or two additional iterations are necessary 
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Fig. 8. Convergence of the total free energy per atom E (in eV) 

for different algorithms for I-Ge (61 atoms), selfconsistent case. 

RMM, CG and DAV2 arc algorithms relying on the selfconsis- 

tency cycle. CGa is the conjugate gradient algorithm applied 
directly to the KS functionat for 148 bands. 
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Table 3 
Time necessary to do one iteration for a I-Ge ensemble containing 
64 atoms for several algorithms on an IBM RS 6OCO/Model590 

DAV2 
CG sequent. 
RMM sequent. 
CGa- 148 
SDa-148 
CGa-128 
SDa- 128 

Complex 

180s 
= 155s 
= 102 s 
91 s 
64 s 
65 s 
50 s 

Real 

= 70 s 
= 42 s 
37 s 
30 s 
29 s 
23s 

‘Complex’ is the timing for a full complex code, ‘Real’ for a code 
which takes into account that C, = Cl 4 if the r-point only is 
used for the k-point sampling. CG refers to the conjugate gradient 
band-by-band scheme with mixing, RMM refers to the residual 
minimization band-by-band scheme also with mixing, CGa and 
SDa are the conjugate gradient and steepest descent algorithms 
applied directly to the KS-functional for 128 or 148 bands. For the 
SDa method timing for a non-optimized trial step is given (this 
step is comparable to a Car-Parrinello step). 

for the selfconsistent case. We found a similar be- 
havior in most liquid, amorphous and bulk systems. 

In Fig. 8 the convergence for the CGa routine, 
which minimizes the KS functional directly and up- 
dates all bands simultaneously, is also shown. To 
have approximately the same initial error in the start 
configuration the initial electronic configuration was 
calculated doing a random initialization and 3 se- 
quential CG steps on the wavefunctions for a fixed 
charge density. One step in the CGa routine takes 
approximately the same time as one RMM step (see 
Table 3). The total convergence is reasonable but 
still slower by a factor 3-5 than for the RMM 
routine. 

In Fig. 9 we compare the CGa approach with a 
simple steepest descent @Da) approach. In the SDa- 
148 approach (148 corresponds to the number of 
bands included) the size of the final step was opti- 
mized, although an un-optimized step gives almost 
the same convergence (compare the two lines given 
for SDa-128). In addition we also show the results 
for the case of treating I-Ge as an insulator, i.e. 
including only Nb = Ne,_,,,,/2 bands in the calcula- 
tion @Da-128, CGa- 128). Of course the reduced 
number of bands also results in a reduced computa- 
tional time. One steepest descent step without opti- 
mization of the trial step for 128 bands (this step is 
similar to a Car-Paninello step) takes approximately 

half the time of a CGa or RMM step for 148 bands. 
Timings for all cases treated here are also compiled 
in Table 3. The additional computational time arising 
from the metallic treatment is more than made up by 
the improved convergence. 

The results of this section can be compared with 
results recently published by Tassone et al. [7] and 
Grumbach et al. [62]. Tassone used two different 
algorithms a preconditioned steepest-descent (SD P) 
and a preconditioned damped second-order (D P) 
algorithm. The start configuration also differs from 
our calculation, but the total error in the energy at 
the beginning is comparable to our case. Our SDa- 128 
(without optimization of the step-size) shows almost 
the same convergence as the SD P scheme in Ref. 
[7], indicating that both algorithms are comparable. 
The CGa-128 scheme requires approximately half 
the number of steps as the D P scheme, but one 
CGa- 128 step is probably more expensive, leading to 
a similar efficiency in terms of computing time. It is 
clear that the CGa-148 and especially the RMM 
scheme are much faster than any of the schemes 
discussed in Ref. [7]. Even if we take into account 
that one step in the methods relying on a selfconsis- 
tency cycle (RMM scheme) takes twice as long as 
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Fig. 9. Convergence of the total free energy per atom E (in eV) 
for different algorithms for I-Ge (64 atoms), selfconsistent case. 
‘CGa’ and ‘SDa’ are the conjugate gradient and steepest descent 
algorithms applied directly to the KS-functional for 128 or 148 
bands. For ‘SDa-128’ two lines ate shown, for the lower line the 
step size was optimized at each iteration, for the upper line a fixed 
step size with As= 0.3 was used. 
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one D P step in Ref. [7] our algorithms should be 
faster by more than a factor 10. Similar conclusion 
might be drawn from a comparison with the tech- 
nique proposed by Grumbach et al. [62], once again 
the algorithm based on the selfconsistency cycle 
outperforms other algorithms by more than a factor 
of 10. 

We want to point out that the situation is different 
for insulating systems: The performance of the 
schemes using the selfconsistency cycle is almost the 
same for metallic and insulating systems and gener- 
ally the standard algorithms (like the D P algorithm 
discussed by Tassone et al.) are fast and efficient for 
those systems. Therefore, the algorithm proposed in 
Ref. [7] should be comparable - maybe slower by a 
factor 2 - to our algorithms for insulating systems. 

6.2.2. Metallic su$ace 
The Pd(ll1) surface with hydrogen is the system 

with the strongest charge sloshing we have encoun- 
tered up to now. The charge sloshing is the only 
limiting factor for the selfconsistent calculation and 
the convergence does not depend on the fact whether 
the CG, RMM or DAV2 algorithm is used for the 
calculation of the electronic eigenstates. In Fig. 10 
results for the Pulay mixing are shown. In all cases 
we used the same initial wavefunctions as in the 
non-selfconsistent calculation, and the initial charge 
density is calculated from the charge density of the 
atomic constituents. The initial matrix G’ was set to 
Kerker’s mixing matrix with q,, = 1.5 A- ’ , A = 0.8 
(the default value), and to a linear mixing with 
A = 0.1. We have found that Pulay’s scheme is 
robust with respect to changes in the initial mi$ing 
matrix. The value of q,, may vary between 0.5 A-’ 
and 2.0 A-’ without a significant influence, and a 
simple linear mixing G’ = A with A = 0.05-0.5 
works equally well. Nevertheless, it is very impor- 
tant to make A not too small in Pulay’s method, 
because this might slow the convergence consider- 
ably (A < 0.05). The inclusion of a metric in the 
evaluation of the scalar products was found to be 
very important for this system, and in addition Broy- 
den’s second method was less stable than Pulay’s 
algorithm (see Fig. 11). 

Finally we have also tested the CGa scheme for 
this system and found a reasonable convergence 
behavior. To have a reasonable small error in the 
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Fig. 10. Convergence for the Pd(l11) surface, selfconsistent case. 
Top panel total free energy per atom E (in eV), second panel 

charge density residual vector, last panel forces (in eV/i/atom). 

For the calculations of the charge density residual vector no 

metric was included (see text). Pulay’s method was used for the 

mixing. For ‘Ker 1.5’ the initial matrix G’ was set to Kerker’s 

mixing matrix with q0 = 1.5 A- ‘, and for ‘lin 0.1’ to a linear 

mixing G’ = 0.1. Results for the conjugate gradient approach 

applied directly to the KS-functional (CGa) are also shown. 
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Fig. 11. Convergence of the charge density residual vector for 
different mixing algorithms for the Pd(ll1) surface. The initial 
matrix G’ was set to G’ = 0.1. For ‘nometric’ Pulay’s method 
without metric was used, ‘Pulay’ corresponds to Pulay’s method 
with metric, and ‘Broyden 2.’ to Broyden’s second method with 
metric. 

initial configuration we used the converged eigen- 
functions of a non-selfconsistent calculation as the 
start configuration. 

Especially interesting is the convergence of the 
forces. For the SC-methods the Harris Foulkes func- 
tional is used for the evaluation of the energy, 
whereas the exact KS energy is evaluated for the 
CGa scheme. Therefore it might be possible that the 
CGa scheme is superior with respect to the conver- 
gence of the forces. We found that this is not the 
case: For the SC-methods we have included the 
correction terms, discussed in section II D (method 
‘opt’). But even if no correction terms are included 
and if the mixed charge density is used for the 
calculation of the local contributions to the forces 
(method ‘mix’), the SC methods are superior (see 
Fig. 4, there is only a small difference between 
methods ‘mix’ and ‘opt’, and only if the output 
charge density without corrections is used (method 
‘out’) the convergence suffers seriously). 

6.2.3. Diamond surface 
The clean C( 100X1 X 2) surface shows also sig- 

nificant charge instabilities, although the problems 
are less severe than for the metallic surface. In Fig. 
12 results for the Fulay mixing are shown. The initial 
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Fig. 12. Convergence for the C(lOOx1 X 2) surface, selfconsistent 
case. Top panel total tiee energy per atom E (in eV), second 
panel charge density residual vector, last panel forces (in 
eV/A/atom). In all cases Pulay’s method was used for the 
mixing. For ‘Ker 1.5’ the initial matrix G’ was set to Kerker’s 
mixing matrix with q,, = 1.5 A-‘, and for ‘lin 0.2’ to a linear 
mixing G’ = 0.2. Results for the conjugate gradient approach 
applied din&y to the KS functional (CGa) are also shown. 
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matrix G’ was set to Kerker’s mixing matrix with 
q. = 1.5 A-‘, A = 0.8 (the default value), and to a 
linear mixing with A = 0.2. As for Pd, Pulay’s 
scheme is very robust with respect to changes in the 
initial mixing matrix. The inclusion of a metric was 
found to be less important for this case, and Broy- 
den’s second method was almost as efficient as 
Pulay’s method, showing that the charge instabilities 
are less severe in insulating systems than in metallic 
systems. In Fig. 12 results for the conjugate gradient 
approach applied directly to the KS-functional (CGa) 
are also shown. The same number of bands as in the 
other approaches was included. It can be seen, that 
the convergence is quite good, but still not compara- 
ble to that of the CG or RMM scheme, especially 
forces converge significantly slower than within the 
SC-schemes. 

7. Conclusion 

We have presented a complete and detailed de- 
scription of algorithms which allows to perform ab 
initio calculations of the electronic structure and the 
total energy using a plane-wave basis set. Although 
most ingredients of our method have been proposed 
by other authors in different contexts, we are not 
aware of any implementation which allows to achieve 
a similar efficiency especially if metallic systems are 
considered. 

In obtaining this high stability and speed several 
points have been considered: First partial occupan- 
cies are extremely important for treating metallic 
systems. Only additional orbitals well above the 
Fermi level allow for an efficient calculation of the 
states close to and beneath the Fermi level. The main 
reason for this lies in the fact that the highest wave- 
functions included in the calculation always con- 
verge slowest, if no gap exists right above these 
states. Inclusion of additional states above the Fermi 
level moves the ‘difficult’ region to the unoccupied 
states. 

We have also shown that the selfconsistency cycle 
(SC) seems to be the most efficient way for calculat- 
ing the KS-groundstate of metallic systems. Together 
with an efficient iterative matrix diagonalization 
scheme an algorithm which is close to an order 

NaLl, ln N,,,, scaling is possible, at least for the 

problems currently tractable and of interest (Nelecr < 
1000). For instance we have performed calculations 
on liquid Te, and when we increased the number of 
atoms from 64 to 125, the computing time per 
molecular dynamics step increased by a factor 4.5 on 
an IBM workstation, to be compared with 3.8 if we 
had a pure order N2 scaling. This rather favorable 
scaling is only possible in conjunction with the 
efficient RMM-DIIS method. 

An alternative to the SC-method is the direct 
minimization of the KS functional if all degrees of 
freedom are treated consistently on the same footing. 
Despite the fact that the direct method is mathemati- 
cally very appealing, it is currently still slower by a 
factor 1 S- 10 than the SC method. The main prob- 
lems in this scheme are: (i) The exact line minimiza- 
tion, which is necessary for an efficient conjugate 
gradient algorithm, is subtle. (ii) Different compo- 
nents (wavefunctions, sub-space rotation and partial 
occupancies) are optimized at the same time, which 
requires a careful choice of the search vectors of 
each component and of the length of each compo- 
nent with respect to the other components. We think 
that there is still some room left for further optimiza- 
tion of the direct methods, but it will be hard to beat 
the performance of the SC method. Finally one 
remaining problem of the direct methods - which we 
have not mentioned up to now - is that they require 
considerably more storage than SC methods. At the 
moment memory for computers is still relatively 
expensive, and ab-initio calculations are usually per- 
formed at the memory limit. Using the direct meth- 
ods would sometimes force us to reduce the system 
size substantially. 

In the introduction we have already pointed out, 
that the SC techniques discussed here have been 
used for a large number of problems. The essentials 
of the algorithm are unchanged since our first work 
[15], although several points have been improved 
(i.e. more efficient matrix diagonalization, Pulay 
mixing, ultrasoft pseudopotentials and tetrahedron 
method etc.>. We are optimistic that our current 
implementation can be used for most problems 
tractable with the pseudopotential local density func- 
tional approach. We have also shown in previous 
papers, that ab-initio molecular dynamics can be 
performed with an efficiency that is comparable with 
the standard CP approach. But our method has sev- 
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eral advantages in this respect: (i) The electrons are 
always in their instantaneous electronic groundstate, 
deviations from the Born-Oppenheimer surface can 
be controlled easily. (ii) Metals can be treated with- 
out the adiabatic@ problem existing within the CP- 
method and there is no need to introduce artificial 
thermostats which control the temperature of the 
electrons. 

It is also clear that the algorithms discussed here 
are easy to implement in any existing CP-like code. 
Our method is not limited to the pseudopotential 
approach, but can also be used within Bl6chl’s pro- 
jector augmented-wave method (PAW) [64] or the 
linearized augmented plane wave method (LAPW) if 
projector functions are used [43]. For the efficiency 
of the iterative matrix diagonalization scheme based 
on the RMM-DIIS scheme the key point is the fast 
evaluation of (H - d)I$). If this operation is of 
the order G(N’) then the RMM scheme will outper- 
form any other iterative technique for large systems, 
where order N 3 operations determine the overall 
performance. 

For the mixing of charge densities, we also rely 
on Pulay’s RMM method. The general advantages of 
the RMM-DIIS approach lie in the fact that this 
scheme does not require the evaluation of an exact 
gradient, but any search direction pointing to the 
‘right’ direction is sufficient. Pulay’s method is also 
not restricted to the minimization (or maximization) 
of a function but it can also be used to find saddle 
points of functions (in our case the stationary points 
of the Rayleigh quotient for the iterative matrix 
diagonalization and the stationary point of the Har- 
ris-Foulkes functional for the charge density mix- 
ing). Pulay’s method allows to retain information 
from an unlimited number of previous steps. All 
together, we think that the RMM-DIIS technique - 
which lies at the heart of most of our computational 
algorithms is among the most powerful optimization 
techniques currently available. 
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Appendix A. Total derivatives of a constrained 
function 

The electronic groundstate is defined as the mini- 
mum of a function A(X), {R]] under a constraint (for 
simplicity we assume only one constraint, but gener- 
alization to more than one constraint is straightfor- 
ward) 

dbWl1 =o* (A-1) 
Using the Lagrange formalism a function f 

i[{x), {R], Al =f[{x). WI - hdbL WI 
(A4 

has to be minimized with respect to h and x to 
obtain the minimal X, under the constraint g = 0. 
We now show that the total derivative of f with 
respect to R might be written as 

dMin.. f[(f) v Ml1 

d Ri 

where Min,, f denotes the value of the function f at 
its minimum with respect to x under the constraint 
g = 0. To first-order df is given by 

df= -$dRi + gdx+ 
I 

$dA, (A4 

and at the minimum of f with respect to x and A 
(denoted by Min,. f> this simply reduces to 

. - 
dMln,h f = aRi afdR,. (A-5) 

Second, from the definition of f we can write 

dj= df - h(dg) - (dh)g. (A-6) 
At the minimum of f the constraint g = 0 holds, and 
for a change along a direction with dg = 0 the 
equation 

dMin,, f= dMin,, f (A-7) 
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is obtained. Combining Eqs. (A.4) and (A.7) we 
obtain E!q. (A.3). 

Appendix B. Forces within the linear tetrahedron 
method 

We will show in this appendix, that the total 
energy is variational with respect to the partial occu- 
pancies f within the standard linear tetrahedron (LT) 
method, whereas the introduction of the correction 
terms by Blijchl (LT-C) results in a total energy 
which is not variational with respect to the partial 
occupancies. Within the LT-C method derivatives 
with respect to the partial occupancies have to be 
evaluated for the calculation of the forces acting on 
the ions. If these terms are omitted energy and forces 
are no longer consistent for a specific k-point mesh. 

To address the problem we write the energy as a 
functional of the wavefunctions 4, the partial occu- 
pancies f, the chemical potential p and the ionic 
positions R. The partial occupancies depend on the 
chemical potential I_L and via the eigenvalues of the 
Hamiltonian on the wavefunctions and on the ionic 
position R. It is simplest to treat the chemical poten- 
tial as an additional variational degree of freedom, 
and to incorporate the orthonormality constraint and 
the constraint on the occupancies using the Lagrange 
formalism (see also Section 2.4). In this way a new 
variational quantity 

E[ICJ* M. 1.0. CL, WI 

can be defined, where Cn4 is the expansion coeffi- 
cient of the state 14,) for the plane wave 14) 
(compare with Eq. (32)). To first-order the change in 
total energy at the groundstate is given by the change 
of the Lagrangian E (see Appendix A) and can be 
written as 

- 

di?= xg 
aE 

SC,, + c -dR, 
nq nq N aRN 

- - 

+ c aE %de”, + Edp. 
Tut af" %J 

(B-2) 

where n is a compound index for the band index n 
and the k-point index k, the weighting factor wL has 
been dropped for simplicity. The first term describes 
the change of the energy due to changes in the 
wavefunctions, and is zero at the KS-groundstate for 
arbitrary i?C,,,. The third term corresponds to the 
energy change due to changes in the partial occupan- 
cies. We can rewrite 

aE aE %4&f, - 4,) -= -- 
afn af" afn 

) = E, - /J+ (B-3) 

where we have used the fact that iYE/af, = E,. The 
fourth term represents the energy change due to a 
change of the chemical potential, and can be written 
as 

a.E aE 34Lfn - 4) --- 
z- ap aP 

= g+4-(~fn-N,,) (B.4) 
” 

where the last term is 0, considering that C, f, - A’,, 
= 0 for the correct occupancies. 

Inserting the equations for the standard LT-method 
for f, given in Bliichl’s paper [36] it is easy to show 
that 

and 

(B-5) 

VW 

for each individual tetrahedron, and the only term 
which survives in Eq. (B.2) is aE/aR,. As ex- 
pected, the evaluation of first-order energy changes 
is indeed very simple and for the calculation of 
forces the variational degrees of freedom + and p 
and the partial occupancies f, can be kept fixed. 

The left hand sides in Eqs. (B.5) and (B.6) are no 
longer equal to zero if the additional correction terms 
(LT-C), which take into account the curvature of the 
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bands at the Fermi surface, are included. According 
to BlGchl (361 these correction terms are given by 

P.7) 

where D,( CL) is the density of states for the tetrahe- 
dron T at the Fermi-level. The magnitude of this 
correction term depends on the spacing S of the 
k-point mesh, and is of second-order in 6. The 
correction to the forces is therefore also of the order 
O(S2). 

We want to point out that Blijchl’s method is still 
variational with respect to the ‘real’ degrees of free- 
dom, i.e. with respect to the wavefunctions: a first- 
order change in the wavefunctions will only result in 
a second-order change of the eigenvalues E, and 
second-order change of the chemical potential CL. 
From Eq. (B.2) it can be recognized that the change 
of the total energy with respect to arbitrary variations 
in the wavefunctions is therefore also of second 
order. The only inconvenience added by Blijchl’s 
method is that the derivatives of the partial occupan- 
cies (and of the chemical potential /.L) with respect to 
the ionic positions must be calculated in order to get 
exact forces. To first-order the change of the eigen- 
value E, is given by (see Eq. 38) 

(B.8) 
Eq. (B.8) makes the evaluation of forces possible 

at least in principle, but Eq. (B.8) is also extremely 
inconvenient - especially the evaluation of the 
local part W,,,/~R, requires large additional work 
arrays to store the charge density of each band. For 
ultrasoft pseudopotentials the calculation of the aug- 
mentation part corresponding to each band is almost 
intractable, making Blijchl’s method not applicable 
for US PP if accurate forces have to be calculated. 
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