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Abstract

We have developed a class of peptide amphiphile (PA) molecules that self-assemble into three-dimensional nanofiber networks

under physiological conditions in the presence of polyvalent metal ions. The assembly can be triggered by adding PA solutions to

cell culture media or other synthetic physiological fluids containing polyvalent metal ions. When the fluids contain suspended cells,

PA self-assembly entraps cells in the nanofibrillar matrix, and the cells survive in culture for at least three weeks. We also show that

entrapment does not arrest cell proliferation and motility. Biochemical and ultrastructural analysis by electron microscopy indicate

that entrapped cells internalize the nanofibers and possibly utilize PA molecules in their metabolic pathways. These results demon-

strate that PA nanofibrillar matrices have the potential to be used for cell transplantation or other tissue engineering applications.

� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The rapidly developing field of regenerative medicine

[1–5] will require rational molecular and supramolecular

design of temporary scaffold materials for cells to con-

trol their bioactivity and physical properties. In our

view, along with biocompatibility requirements, these
synthetic materials also need to resemble biological

extracellular matrices and interact with cells at molecu-

lar level in order to effectively control the processes of

tissue regeneration. Developments in the field of materi-

als chemistry [1–9] now offer synthetic strategies for bio-

mimetic materials to meet the challenges of designing

artificial extracellular matrices. The use of self-assembly
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to generate hierarchical supramolecular structures [10–

12] is a biomimetic strategy now receiving growing

attention in the field of biomaterials [13–16]. One group

of novel materials for tissue engineering applications are

peptide-based self-assembling fibrous networks

[6,7,9,16,17]. Our laboratory has developed a series of

peptide amphiphile (PA) molecules as materials for tis-
sue engineering [6–9]. These amphiphilic molecules are

composed of a peptide segment containing 6–12 amino

acids coupled via an amide bond to a fatty acid chain

that varies in length from 10 to 22 carbon atoms. At

concentrations as low as 0.25% by weight [6,7], these

molecules self-assemble into self-supporting gels. The

gels are formed by a network of cylindrical nanofibers,

ranging from 5 to 8 nm in diameter, depending on the
length of the self-assembling molecules that form them.

The basic building block of these networks, a nanofiber,

forms with the hydrophobic alkyl tails of the molecules

at its core and the hydrophilic peptide segments com-

prising the outer surface [6,7]. Our laboratory has previ-

ously reported on peptide amphiphile nanofiber
sevier Ltd. All rights reserved.
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networks that can be mineralized with hydroxyapatite to

recreate the nanoscale structure of bone [6], and we have

recently reported on the use of bioactive peptide amphi-

phile nanofibers to promote rapid and selective differen-

tiation of neural progenitor cells into neurons [9].

In our original work on these systems, self-assembly
was induced through pH change [6]; however, PA supra-

molecular assemblies produced by this method are

unstable at physiological pH unless they are internally

cross-linked through covalent bonds. Recently, we re-

ported on a new approach to self-assemble PA mole-

cules into nanofibers at physiological pH based on the

electrostatic attraction of molecules containing opposite

charge [8]. Formation of intermolecular bonds through
metal ions has been shown to be a powerful strategy

for supramolecular assembly and aggregation in natural

and synthetic systems [18–20]. In this paper, we describe

the mechanism of metal ion mediated self-assembly of

PA molecules at physiological pH and its applications

in cell entrapment.
2. Materials and methods

2.1. Synthesis of peptide amphiphiles (PAs)

PAs were synthesized using a method previously de-

scribed [6,7]. Briefly, automated, Fmoc-protected solid-

phase peptide synthesis was used to produce the peptide

portion of the molecule followed by a manual coupling
reaction to couple the N-terminus of the peptide to pal-

mitic acid via the formation of an amide bond. The
Fig. 1. Chemical structure of RGD

Table 1

Gelation of peptide amphiphiles with metal cations; 10 mM aqueous PA solu

PA Sequence Charge K+a Mg2+b

1 Alkyl-C4G3S
(P)RGD-COOH �3 Viscous liquid Gel

2 Alkyl-A4G3S
(P)RGD-COOH �3 Viscous liquid Gel

3 Alkyl-A4G3S
(P)KGE-COOH �3 Viscous liquid Gel

4 Alkyl-C4G3SRGD-COOH �1 Viscous liquid Viscous l

5 Alkyl-A3G2EQS-COOH �2 Viscous liquid Gel

6 Alkyl-A4G3ERGDS-COOH �2 Viscous liquid Viscous l

7 Alkyl-C4G3EIKVAV-COOH �1 Gel Gel

8 Alkyl-C4G3KIKVAV-NH2 +2 Gel Viscous l

a 200 mM KCl.
b 20 mM for all polyvalent cations.
structure of a PA molecule is shown in Fig. 1 and a list

of the PA molecules used in this study is shown in

Table 1.

2.2. Formation of PA gels

A basic assessment of self-assembly was conducted

for PA molecules 1–8. Self-assembly was induced by

the addition of 1 M solutions of NaCl, KCl, MgCl2,

CaCl2, BaCl2, ZnBr2, Cu(ClO4)2, and GdCl3 to 200 lL
volumes of 10 mM aqueous PA solutions at pH 7.5 (Ta-

ble 1). The final metal ion concentrations were 20 mM

for polyvalent ions and 200 mM for monovalent ions.

In addition, 10 mM solutions of PA molecules 1 and 2
were exposed to KCl and NaCl at concentrations up

to 6 M. The effect of polyvalent metal salt concentration

on PA 1 and 2 assembly was also assessed with 5–

50 mM GdCl3 and CaCl2. Finally, in order to test the

ability of physiological solutions to induce assembly,

10 mM PA solutions were mixed with equal amounts

of the following: minimum essential medium alpha

(MEMa) with 10% fetal bovine serum (FBS), Dul-
becco�s modified Eagle�s medium (DMEM) with 10%

FBS, phosphate buffered saline (PBS) without Ca2+

and Mg2+, and Hank�s balanced salt solution (HBSS)

without Ca2+ and Mg2+ (Gibco). Mechanical integrity

of the self-assembled materials was gauged by their abil-

ity to resist gravitational stresses when the vials were in-

verted. ‘‘Self-supporting gels’’ were identified as those

that remained attached to the bottom of the vial for at
least 30 s with little or no observable viscous flow. Mate-

rials with primarily viscous character were defined as
-containing PA molecule 1.

tions were mixed with cations and the gelation behavior was observed

Ca2+ Ba2+ Cu2+ Zn2+ Gd3+

Gel Gel N/A Gel Gel

Gel Gel Gel Gel Gel

Gel Gel Gel Gel Gel

iquid Gel Gel N/A Gel Gel

Gel Gel Gel Gel Gel

iquid Viscous liquid Viscous liquid N/A Gel Gel

Gel N/A N/A Gel Gel

iquid Viscous liquid Viscous liquid N/A Viscous

liquid

Viscous

liquid
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those that exhibited observable viscous flow upon

inversion.

2.3. Oscillating rheometry

Materials formed by self-assembly of PA molecule 3
were examined via oscillatory rheology. Data were

collected with a Paar Physica Modular Compact Rhe-

ometer 300 operating in a 20 mm parallel plate configu-

ration. All samples contained 120 lL of 2 wt.% solution

of 3 added to the bottom plate. Assembly was initiated

by gradually pipetting 60 lL of 60 mM aqueous ion

solutions while stirring with the pipette tip (final ion

concentrations 20 mM). The following ion salts were
tested: KCl, MgCl2, CaCl2, BaCl2, CuCl2, ZnBr2, and

GdCl3. After mixing, the top plate was lowered onto

samples to a gap distance of 0.5 mm. The stage temper-

ature was maintained at 25 �C and a hydrated chamber

containing saturated tissues was placed around gels to

minimize evaporation. All samples were allowed to

equilibrate 30 min before testing at 3% oscillatory strain

from 100 to 0.1 rad/s. Storage moduli (G 0), loss moduli
(G00), and complex viscosities (g*) were averaged over a

minimum of two trials and plotted versus angular fre-

quency with errors of one standard deviation.

2.4. FTIR studies

For FTIR studies, PA gels were lyophilized and

mounted in KBr pellets. Spectra were collected on a
Bio-Rad FTS-40 FTIR spectrometer at a resolution of

2 cm�1, with 32 scans for each sample. Spectra were

analyzed using the program Microcal Origin 6.0.

2.5. Cell culture

MC3T3-E1 cells were maintained in MEMa media

supplemented with 10% fetal bovine serum and 1% pen-
icillin/streptomycin in T25 culture flasks at 37 �C and

5% CO2. For encapsulation experiments, 10 mg/mL

PA solutions in distilled water were filtered through

0.25 lm syringe filters, sterilized under UV light over-

night, and then 100 lL of PA solution was placed in

each chamber of an eight well multi-chamber slide (Fish-

er). Cells were trypsinised, centrifuged, re-suspended at

a density of 20,000 cells/mL, and supplemented with
CaCl2 to bring the Ca2+ concentration in the medium

to 10 mM. Cell suspension (100 lL) was added to each

well of the multi-chamber slide and mixed with the PA

solution. Immediately upon mixing, the viscosity of

the solution increased, effectively entrapping the cells

in the PA matrix. The slides were then placed into a

37 �C incubator for 30 min for maturation of the nano-

fibrillar matrix, after which time, 0.5 mL of cell media
was added to each well of the multi-chamber slide. Med-

ia exchanges were made every fourth day. In control
experiments, the cells were grown in the wells of the mul-

tichamber slides in the absence of PA nanofibrillar

matrices.

2.6. TEM studies

Acellular nanofibrillar assemblies for TEM studies

were prepared by standard techniques described previ-

ously [6,7]. For matrices containing cells, the gels were

prefixed, with 2% glutaraldehyde in MEMa medium

without FBS or antibiotics, directly in the multichamber

slides for 1 h at 4 �C. Samples were then fixed in modi-

fied Karnovsky fixative (2% glutaraldehyde, 2% formal-

dehyde, 0.1 M cacodylate buffer, pH 7.5) for 5 h at room
temperature, followed by 12 h at 4 �C. After fixation,

samples were washed with 0.1 M cacodylate buffer twice

for 30 min, post-fixed with 1% OsO4 in 0.1 M cacodylate

buffer for 30 min at room temperature and then rinsed in

0.1 M cacodylate buffer for 10 min and twice with dis-

tilled water for 10 min. Samples were then removed

from the multichamber slide, placed into 20 mL glass

vials and dehydrated twice for 20 min in a sequence of
20%, 40%, 70%, and 95% ethanol solutions and twice

for 10 min in 100% ethanol. For embedding, samples

were incubated twice for 10 min in propylene oxide,

transferred to a 1:1 mixture of propylene oxide and Spi-

pon 812 embedding resin (SPI), and left in closed vials

for 12 h followed by 8 h in open vials. Samples were then

transferred into pure Spipon, and left at ambient tem-

perature for 24 h, with one resin exchange, after which
time, samples were transferred into fresh resin and poly-

merized at 40, 50 and 70 �C for 24 h each. Finally, sam-

ples were cut using a diamond knife (Diatome) on the

Leica Ultracut ultramicrotome. The sections were con-

trasted with 1% lead citrate and 2% uranyl acetate and

examined on a JEOL 100C electron microscope at

100 kV.

2.7. Light microscopy

Samples were monitored during the experiments

using a Nikon TE200 inverted microscope equipped

with a Spot RT CCD camera controlled with Meta-

morph digital analysis software at magnifications 200·
and 400·. For viability assays, cell were reacted with

LIVE/DEAD reagent (Molecular Probes) for 15 min at
37 �C, rinsed and imaged using an epifluorescence

attachment on a Nikon TE200 inverted microscope.

2.8. Cell proliferation assay

Cell proliferation assays were carried out based on

the method of Allen et al. [21]. Briefly, two PA gels con-

taining cells were removed from cultures at selected
time points stored at �80 �C until all samples could

be assayed together. Cells were digested in papain



Fig. 2. (A) Mechanical spectrum for gels of PA molecule 3 prepared

with 20 mM MgCl2. (B) Complex viscosities at x = 17.8 rads�1 for PA

molecule 3 assembled with various ion salts.
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(0.125 mg/mL, Sigma) with 0.1 M cysteine in PBE buffer

(pH 6.5) at 60 �C for 16 h. The digested samples (5 lL)
were reacted with 195 lL Hoechst 33258 dye in TNE

buffer (0.1 lg/mL, pH 7.5, Molecular Probes) and fluo-

rescence emission at 460 nm (with excitation at

346 nm) was monitored on a Molecular Devices Gemini
EM fluorescence plate reader. All data were collected

using Costar opaque white clear bottom 96-well plates

(Fisher), and each measurement repeated in triplicate.

Total DNA in each sample was determined from a cal-

ibration curve of intensity vs. DNA content of calf thy-

mus DNA, and the number of cells was calculated by

estimating 7.7 ng of DNA per cell [22].

2.9. Analysis of cellular metabolism

Glucose and lactate concentration were measured in

the media from PA experiments as well as in initial media

and media from the controls using a YSI 2700 Select Bio-

chemical Analyzer. The media from three experimental

multichamber slides and two controls were analyzed

every four days upon media exchange. For each multi-
chamber slide, the media from all eight wells was mixed

together and then analyzed. Themedia was collected with

sterile syringes, filtered through 0.2 lm syringe filters

(Whatman) and analyzed immediately after collection.
3. Results and discussion

3.1. Studies of metal ion triggered PA assembly at

physiological conditions

Metal ions are a common component of body fluids

and cell culture media and are used in a number of cell

entrapment systems to trigger gelation [23,24]. We have

previously briefly described the ability of the PA mole-

cules to assemble into nanofibers in the presence of cal-
cium ions [7]. In the present work, we have studied this

mode of self-assembly in depth, using a broad range of

the PA molecules, as well as a number of metal ions,

with special focus on the basic mechanisms of this

assembly and structural organization of the nanofibrils.

We have examined the potential of several PA molecules

to assemble in the presence of metal ions. PA molecule 3

was studied in detail with oscillatory rheology to gain a
better perspective of the material�s mechanical proper-

ties when self-assembly is triggered by different metal

ions. Rheological data indicate that all PA 3 specimens

prepared with polyvalent metal ions formed gels. In each

mechanical spectrum, G 0 and G00 were only minimally

sensitive to x, with G 0 constantly greater than G00

(Fig. 2). This confirms that these materials are gels with

predominately elastic character, rather than viscous liq-
uids. On the other hand, G00 was consistently greater

than G 0 in specimens prepared with monovalent ions,
and thus, these materials are more appropriately classi-

fied as viscous liquids. Among gels of PA 3 prepared
with different polyvalent ions, there were significant dif-

ferences in moduli (Fig. 2). Gels prepared with alkaline

earth metals had significantly lower moduli than those

prepared with transition metals. Overall, however, the

mechanical properties of PA gels formed with polyva-

lent metal ions appear to be comparable to those of bio-

polymer gels [25,26] and self-assembled peptide gels [27].

Results of inverted vial experiments to gauge self-
assembly in PA molecules 1–8 are summarized in Table

1. In general, self-assembly behavior of other negatively

charged PAs was similar to that which was observed for

3. With the exception of PA molecule 7, negatively

charged PAs did not form self-supporting gels in the

presence of KCl at a molar ratio of 1:20. Further exper-

iments showed that 10 mM solutions of molecules 1 and

2 did not form self-supporting materials even in the
presence of 6 M KCl or NaCl. However, most nega-

tively charged PAs were found to form self-supporting

gels in the presence of polyvalent metal ions, such as

Ca2+, Mg2+, and Cu2+. Thus, it appears that polyvalent

ions are significantly more effective initiators of self-

assembly than monovalent species. For the dilutions of

molecules 1 and 2 used in these experiments, the mini-

mum concentrations of polyvalent ions required for
assembly of self-supporting gels appears to be roughly

equal to the molarity of PA molecules. In contrast to

PAs 1–6, IKVAV-containing molecules 7 and 8 were

shown to form self-supporting gels at KCl concentra-

tions of 200 mM. Interestingly, molecule 8, which is pos-

itively charged and does not contain any acidic amino

acids, did not form self-supporting gels upon addition



E. Beniash et al. / Acta Biomaterialia 1 (2005) 387–397 391
of polyvalent metal ions. This suggests that interactions

between acidic groups in PAs 1–6 and positively charged

counterions play a key role in their self-assembly. The

ability of molecules 7 and 8 to form self-supporting gels

in the presence of monovalent ions may be related to the

sequence of their peptides. The IKVAV sequence fea-
tures the hydrophobic amino acids isoleucine and valine

interspersed among the more hydrophilic residues ala-

nine and lysine. Since the side chains of adjacent amino

acids are located on opposite sides of the peptide back-

bone, this sequence should facilitate intermolecular con-

tact of like components. This effect may enhance the

driving force for self-assembly via close association of

hydrophobic side chains. Amphiphilic peptides have
been previously shown to assemble into ribbon-like

structures, forming 3-D networks upon addition of

monovalent salts [28,29].

The gels formed by addition of polyvalent metal ions

to PA solutions are remarkably stable under a variety of

conditions. In our experiments, CaCl2 induced gels of

molecules 1 and 2 were stable in a broad pH range from

4 to 11. In contrast, gels formed by the pH-triggered
mechanism we reported earlier [6], are stable only below

pH 3.5. Furthermore, metal ion triggered gels survive

heating up to 100 �C, and only shrink slightly as temper-

ature rises. This remarkable stability of the PA gels is in

contrast with other hydrogels forming via ionic bonds

with polyvalent metal ions such as, for example, Ca-algi-

nate, which is stable only in the narrow pH window

around neutrality and is affected by heating [30,31].
We surmise that such high stability of PA gels is deter-

mined by diversity of intermolecular interactions in the

nanofibers, including hydrophobic, ionic and hydrogen

bonds (see below). We have also found that gels of mol-

ecules 1 and 2 formed at a 2:1 ratio of metal ions to PA

remain intact for at least 14 days when exposed to a vol-

ume of deionized water 10 times greater than the volume

of the gel. These results suggest that strong interactions
occur between polyvalent metal ions and PA molecules

in the self-assembled state. Evidence for the formation

of bonds between PA and metal ions is provided by gela-

tion experiments in the presence of Cu2+ ions. We ob-

served that addition of 20 mM Cu(ClO4)2 to 10 mM

solutions of PA molecules 3 or 5 resulted in a color

change from transparent to blue upon gelation. UV–

Vis spectra of the gels show a 60-nm blue shift and an
increase in intensity compared to aqueous solutions of

Cu(ClO4)2 of the same concentration, suggesting forma-

tion of copper–peptide complexes [32,33].

Many of the metal cations tested as gelators for PA

molecules are present in culture media used to maintain

cells in vitro and in a variety of bodily fluids. By using

cation-mediated PA gelation, we can trigger PA self-

assembly upon contact with living tissues or upon addi-
tion of cell suspensions in culture medium in vitro.

Self-supporting gels form upon mixing of equal volumes
of cell culture media and aqueous solutions of molecules

2 and 3. When solutions of molecules 2 and 3 were

mixed with PBS or HBSS depleted of Ca2+ and Mg2+,

gelation was not observed. These experiments indicate

that polyvalent metal ions present in cell culture media

can induce self-assembly of negatively charged PAs.

3.2. Structural characterization of PA nanofibrillar

assemblies

We have used transmission electron microscopy

(TEM) to characterize the ultrastructural organization

of metal-ion-induced PA gels. Electron micrographs of

positively stained samples and resin embedded sections
show that gels are comprised of three-dimensional net-

works of fibers that are 5–6 nm in diameter (Fig. 3). This

is consistent with our previous measurements of dehy-

drated nanofibers [6]. Analysis of TEM micrographs of

positively stained nanofibers assembled directly on a

TEM grid reveal that uranyl acetate stains only periph-

eral parts of nanofibers, while the core remains un-

stained (Fig. 3A). TEM of resin embedded sections of
a gel assembled in culture medium shows the same orga-

nization (Fig. 3B and C). Additionally, micrographs of

fibers sectioned transversely have a doughnut appear-

ance, with an unstained central part and an intensely

stained outer circle (Fig. 3D). Since uranyl acetate stains

mainly charged groups and does not react with satu-

rated hydrocarbons, these TEM data demonstrate fur-

ther that in the presence of polyvalent metal ions, PA
molecules assemble into nanofibers with their aliphatic

tails in the core and peptide segments on the periphery.

This structural organization of the metal ion-induced

PA nanofibers is similar to that of nanofibers formed

by pH changes [6].

FTIR spectroscopy of the metal ion-induced PA gels

was carried out in order to characterize the conforma-

tion of peptide segments in the nanofibers. The observa-
tion of an amide A band located near 3290 cm�1

indicates formation of strong hydrogen bonding in the

nanofibers, and the position of the amide I band maxi-

mum between 1630 and 1640 cm�1 in all samples (Fig.

4A), indicates that the peptide segments in the nanofi-

bers adopt a mainly b-sheet conformation [34,35]. At

the same time, no secondary peaks were observed

around 1690 cm�1, which suggests a parallel b-sheet
arrangement [34,36]. Given that the peptide chains

comprising b-sheets are parallel to each other [34,37],

we assume that the planar peptide groups should be

co-aligned with the long axes of the nanofibers

(Fig. 4B and C). Most importantly, in contrast to well-

known cylindrical micelles formed by common surfac-

tants [38–41], these nanofibers display their hydrophilic

segments with a significant degree of order, determined
by the inter-chain hydrogen bonds and ionic interac-

tions [42–44].



Fig. 3. TEM micrographs of metal-induced PA gels. (A) Gel formed

by addition of 20 mM of CaCl2 to a 10 mM solution of molecule 2

directly on a TEM grid. (B) Section of PA nanofiber matrix formed by

mixing solution of molecule 3 with culture medium embedded in resin

and stained with uranyl acetate. (C) Close up showing two nanofibers

in the plane of the section, with electron dense peripheries and

transparent cores. (D) Close up of PA matrix revealing nanofiber cross

sections, with intensively stained peripheries and unstained core.

Fig. 4. (A) FT-IR spectrum of a gel formed by addition of 20 mM

CaCl2 to a 10 mM solution of molecule 2. (B) Schematic representation

of the parallel arrangement of peptide chains in the plane parallel to

the long axis of a nanofiber essential for formation of b-sheet. (C)
Schematic representation of the cross section of a nanofiber showing

that the peptide chains cannot form highly hydrogen bonded network.
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3.3. Cell entrapment in PA nanofibrillar matrix

We have previously studied neuron progenitor cells

entrapped in the gel formed by molecule 7, which con-

tains laminin signaling motif [9]. As mentioned above
the mechanism of assembly of molecules 7 and 8 is dif-

ferent from other PA molecules, and requires amphi-

philic peptide motifs. In the present study, we focused

on cell entrapment in PA gels assembled via interactions
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with polyvalent metal ions. We primarily focused here

on general properties of the PA nanofibrillar matrices

as materials for cell entrapment and not on the effect

of specific signaling motifs on cell behavior.

PA molecules 3 and 5 were chosen for cell entrapment

experiments because they do not contain any known cell
adhesion or signaling sequences. The C-terminal se-

quence of molecule 3 is Lys-Gly-Glu (KGE), which

has a charge distribution similar to the integrin binding

motif Arg-Gly-Asp (RGD) [45]. It has been reported
Fig. 5. Cell viability and proliferation in PA gels. (A) Fluorescent

micrograph displaying a live-dead assay of MC3T3-E1 cells entrapped

in a nanofibrillar matrix formed by molecule 5 after 20 days in culture.

(B) Fluorescent micrograph displaying a live–dead assay of MC3T3-E1

cells entrapped in a nanofibrillar matrix formed by molecule 3 after 20

days in culture. (C) Box chart showing changes in concentration of

cells embedded in a nanofibrillar matrix formed by molecule 3 during

the course of the experiment. The box is the 75% distribution range;

the error bars indicate one standard deviation.
that substitution of the Asp residue for Glu in RGD re-

duces the cell-binding activity of the peptide by more

than 100-fold [46]; therefore, we assume that KGE se-

quences on nanofibers will have no specific integrin

binding activity. The sequence Glu-Gln-Ser (EQS) at

the C-terminus of the molecule 5 was randomly selected,
and as far as we know is not a cell adhesion or signaling

epitope.
Fig. 6. Optical micrographs of MC3T3-E1 cells in a nanofibrillar

matrix composed of molecule 3 after (A) 3 h; (B) 6 days and (C) 13

days in culture. All images were collected at the same magnification.
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Cell behavior in nanofibers networks was dependent

on the PA molecule used to form the network. Cells en-

trapped in EQS-terminated fibrils remained spherical for

the duration of the experiment. The cells did not prolif-

erate and the viability assay performed at day 20 of the

experiment showed that all the cells were dead (Fig. 5A).
In contrast, cells encapsulated in networks of KGE-ter-

minated nanofibers survived and proliferated over the

course of the experiment. A viability assay performed

on cells after 20 days inside a KGE gel indicated that

a vast majority of cells tolerate entrapment conditions

reasonably well (Fig. 5B). Furthermore, cell density in-

creases 6-fold during the first eight days reaching a pla-

teau at ca. 60,000 cells/mL (Fig. 5C). These data indicate
that cell entrapment in a KGE-containing PA nanofibr-

illar matrix does not arrest cell proliferation.

The morphology of cells encapsulated in KGE PA

gels was observed by light microscopy. Cell morphology

begins to change almost immediately after entrapment
Fig. 7. (A) TEM micrograph of a cell entrapped in the nanofibrillar matrix

region marked b in Fig. 5A showing the formation of intracellular membrane

micrograph of the nanofibers in the area marked c in Fig. 5B.
(Fig. 6A). Over time, a majority of cells lose their spher-

ical appearance, adopt a spindle-like shape, aggregate

and send processes to adjacent cells (Fig. 6B). The

aggregation among cells becomes even more apparent

throughout the duration of the experiment (Fig. 6C).

Therefore, it is clear that the entrapment in the KGE
nanofiber matrix does not arrest cell motility and

aggregation.

TEM analysis of cells entrapped in a KGE matrix re-

veals a normal morphology (Fig. 7). The nuclei appear

normal, while mitochondria and smooth and rough

endoplasmic reticulum are abundant in the cells, imply-

ing high levels of metabolism and protein synthesis.

Interestingly, TEM analysis reveals that cells readily
internalize the nanofibers via endocytosis and accumu-

late them in membrane-delineated compartments, most

likely lysosomes (Fig. 7B). The fact that cells internalize

PA nanofibers has a number of important implications.

First, it suggests that PA nanofibers can be degraded by
internalizing the PA nanofibers. (B) Intermediate magnification of the

delineated compartments filled with nanofibers; (C) High magnification



Fig. 8. Histograms showing changes in lactate DL (red) and glucose

DG (blue) concentrations in control cultures (A) and cultures contain-

ing PA gels (B). Green bars correspond to the sum of DG and DL
(RDG,DL). Note that RDG,DL is negative in controls and positive in the

experiments with PA gels, implying that there is a source other than

glucose for lactate production. (For interpretation of the references in

color in this figure legend, the reader is referred to the web version of

this article.)
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natural mechanisms without being cytotoxic, which is

crucial for in vivo tissue engineering applications. Sec-

ondly, it suggests that cells may be able to utilize the

nanofibers in their metabolic pathways as a source of

nutrients. The delivery of nutrients in developing artifi-

cial tissue is one of the challenges facing tissue regener-
ation. The limited availability of nutrients tends to limit

the thickness of the artificial tissues that can be grown in

vitro to a few cell layers [47,48].

In order to test the hypothesis that cells are able to

metabolize PA molecules, we measured glucose and lac-

tate concentrations in the culture medium after exposure

to the cells entrapped by PA gels. The differences in glu-

cose (DG) and lactate (DL) mass concentrations in cul-
ture media were used as a measure of metabolic

activity of cultured cells [49–51]. In cell cultures, glycol-

ysis is the major catabolic pathway [52,53], and in this

pathway, two lactate molecules are formed per molecule

of glucose consumed. Analysis of changes in concentra-

tions of glucose and lactate in the media is widely used

in basic studies of cell physiology [54,55], as well as in

the fields of biotechnology [49,56–58] and tissue engi-
neering [59–62] to monitor a metabolic activity in cell

cultures. Since the molecular weight of lactic acid is half

that of glucose, the mass of lactic acid produced in gly-

colysis is equal to the mass of glucose reacted. There-

fore, under typical cell culture conditions the sum of

DG and DL (RDG,DL) is equal to or less than zero. A

number of amino acids can be metabolized by cells

and converted into lactic acid under tissue culture condi-
tions [61,63,64]. In this case, the amount of lactate pro-

duced will be higher than the amount of glucose reacted,

resulting in positive values of RDG,DL. Our analysis

shows that in control cell cultures grown in the absence

of PA gels, RDG,DL is less than zero at all time points, as

expected (Fig. 8A). In contrast, in cultures of cells with

PA nanofibers RDG,DL was found to be positive at all

time points (Fig. 8B). These observations suggest that
cells entrapped in the gels are able to utilize the PA mol-

ecules in their metabolic pathways.

Our results show that MC3T3-E1 cells entrapped in

PA matrices can survive for prolonged periods of time,

and that entrapment does not arrest cell proliferation

and motility. This observation together with results of

our previous studies [9] demonstrate the suitability of

PA gels for tissue engineering and cell entrapment.
Our data also suggest that not all peptide sequences in

PAs are equally appropriate for cell entrapment. It is

not clear, at this point, why molecule 5 is toxic to

MC3T3-E1 cells and continued studies of this observa-

tion are planned. While toxic PA molecules may not

be useful for tissue engineering applications, they may

however be useful in other applications such as cancer

therapy. Finally, our results on glucose/lactate metabo-
lism by MC3T3-E1 cells embedded in gels support

TEM observations that nanofibers are endocytosed by
the cells and indicate that nanofibers could be used as

a source of nutrients.
4. Conclusions

Peptide amphiphile molecules can assemble into ro-

bust nanofibrillar networks at physiological pH with
the addition of polyvalent metal ions, and in some cases

in the presence of monovalent ions. These nanostruc-

tured networks can therefore form in the presence of tis-

sue fluids or cell culture media that contain these ions.

Cells entrapped in the networks can survive and prolif-

erate, and also internalize the nanofibers likely for use

in metabolic pathways. The nanofiber networks could

be useful in biotechnology applications, including cell
transplantation and tissue engineering.
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