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We present a high-throughput infrastructure for the automated calculation of molecular properties with
a focus on battery electrolytes. The infrastructure is largely open-source and handles both practical
aspects (input file generation, output file parsing, and information management) as well as more complex
problems (structure matching, salt complex generation, and failure recovery). Using this infrastructure,
we have computed the ionization potential (IP) and electron affinities (EA) of 4830 molecules relevant
to battery electrolytes (encompassing almost 55,000 quantum mechanics calculations) at the B3LYP/
6-31+G⁄ level. We describe automated workflows for computing redox potential, dissociation constant,
and salt-molecule binding complex structure generation. We present routines for automatic recovery
from calculation errors, which brings the failure rate from 9.2% to 0.8% for the QChem DFT code.
Automated algorithms to check duplication between two arbitrary molecules and structures are
described. We present benchmark data on basis sets and functionals on the G2-97 test set; one finding
is that a IP/EA calculation method that combines PBE geometry optimization and B3LYP energy evalua-
tion requires less computational cost and yields nearly identical results as compared to a full B3LYP cal-
culation, and could be suitable for the calculation of large molecules. Our data indicates that among the 8
functionals tested, XYGJ-OS and B3LYP are the two best functionals to predict IP/EA with an RMSE of 0.12
and 0.27 eV, respectively. Application of our automated workflow to a large set of quinoxaline derivative
molecules shows that functional group effect and substitution position effect can be separated for IP/EA
of quinoxaline derivatives, and the most sensitive position is different for IP and EA.

Published by Elsevier B.V.
1. Introduction

The development of high-performance computing and increas-
ingly sophisticated quantum chemistry software is enabling a
paradigm shift in material science whereby ab initio calculations
can be performed on large chemical and structural spaces to aid
and guide materials discovery research [1]. However, while the
computing resources and available algorithms present a tremen-
dous opportunity, they also bring new challenges. For example,
how can one practically generate such large data sets such that
the results are easy to query and analyze?

To address this challenge, software infrastructure beyond simple
scripting has recently emerged within the computational materials
science community. A few efforts in this category are noteworthy in
that they use their capabilities to also provide either free data and/
or open-source codes to the community as part of their mission and
delivery goals. The Material Project (www.materialsproject.org) [2]
provides open access to a user-friendly web interface, automated
materials analysis codes, and workflow tools operating on a set of
more than 50,000 calculated materials and their properties. Other
examples include Harvard Clean Energy Project [3,4] which has
focused on electrochemical windows for photovoltaic applications,
AFLOWlib [5], which specializes in electronic structure, and the
OQMD [6] which specializes in alloy stability data.

In this paper, we describe an effort to develop a high-throughput
computational workflow and analysis code for multi-component
liquid electrolytes within the framework of the Materials Project
infrastructure. We initially focus on organic liquid electrolytes for
next-generation energy storage solutions, although inorganic liquid

http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2015.02.050&domain=pdf
http://www.materialsproject.org
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electrolytes have many technological applications. Properties
important for future battery electrolytes including wide electro-
chemical window, high ion conductivity, high solubility, chemical
stability towards electrode components, low flammability, environ-
mental friendliness, and low cost.

Many of these important electrolyte properties can now be
calculated for targeted electrolyte systems, generally one at a time
or in low-throughput. Particularly, electrochemical window
calculations for electrolyte components have been pioneered by
several other authors [7–13]. Our work is more closely related to
two previous high-throughput studies of molecular systems: (1)
Aspuru-Guzik and coworkers screened 2.3 million organic photo-
voltaic candidates using a hierarchical screening procedure,
including chemo-informatics descriptors, semi-empirical quantum
mechanical calculation and basic highest occupied molecular orbi-
tal/lowest unoccupied molecular orbital (HOMO/LUMO) density
functional theory (DFT) calculations [3,4,14]. (2) Korth carried
out a high-throughput screening of 11,000 organic solvent mole-
cules using a combination of semi-empirical quantum mechanical
and DFT calculations [15]. A major difference between our infras-
tructure and that of Aspuru-Guzik et al. and Korth is its emphasis
on high-fidelity calculations of full DFT treatment of IP/EA includ-
ing the effects of structural relaxation and frequency calculation.
This approach emphasizes greater accuracy per calculation, in con-
trast to the semi-empirical or HOMO/LUMO-based descriptor
screening of earlier works that are intended for quick screening
of a large number of molecules.

The goal of our project (Electrolyte Genome) [16] is to ultimately
address all chemical components present in the electrolyte as well
as the interactions between them, including redox active mole-
cules, solvent, salt, impurities and additives. In addition, we aim
to eventually couple first-principles calculations with classical
molecular dynamics simulations, enabling one to compute more
complex properties such as solvation structure, solubility, and
chemical and electrochemical stability.
2. Software framework and algorithms

The Materials Project [2] has developed very flexible modules
for materials analysis, workflow management and error manage-
ment. By leveraging these efforts, we add support for molecular
properties analysis and the execution of QChem [17,18] to auto-
mate the electrolyte properties calculation/screening in the
Electrolyte Genome project. This is done by extending 3 Python
packages that have been developed in Materials Project and imple-
menting 1 Python package from scratch: (1) pymatgen [19] handles
input file generation, output file parsing and molecular compar-
isons – both chemical as well as structural. (2) FireWorks [20] han-
dles job/workflow control and storage but is completely agnostic to
the specifics of the code used, e.g. QChem [17,18], Gaussian [21]
etc. (3) custodian monitors and applies recipe-like fixes to common
errors within a calculation using ‘‘plug-ins’’ specific to the code
used and (4) rubicon combines the 3 previous codebases to define
the calculation workflows, database operations, property
calculations, and job submission application programming inter-
face (API). pymatgen, FireWorks and custodian are developed by
the Materials Project, while rubicon is developed specifically for
the Electrolyte Genome project. All codes are available at https://
github.com/materialsproject.

At the backend, the infrastructure uses the QChem [17,18]
quantum chemistry software package to perform the ab initio cal-
culations. We have also built NWChem [22] and Gaussian [21]
adapters into our codes. It is important to note that the calculations
are made transparent by encapsulating the input file generation
and output file parsing into a QChem I/O module. For example,
the following code demonstrates how to submit an IP/EA (ioniza-
tion potential/electron affinity) calculation for a water molecule
defined in the SDF file format:

from pymatgen.core.structure import Molecule

from pymatgen.matproj.snl import StructureNL

from rubicon.submission.submission_mongo_eg

import SubmissionMongoAdapterEG

from rubicon.utils.snl.egsnl_mongo import

EGSNLMongoAdapter

mol = Molecule.from_file(‘‘mols/h2o.sdf’’)

snl = StructureNL(mol, ‘‘Xiaohui Qu

<xqu@lbl.gov>’’, ‘‘Electrolyte Genome’’)

sma = SubmissionMongoAdapterEG.auto_load()

sma.submit_snl(snl,

‘‘xqu@lbl.gov’’,

parameters={‘‘priority’’: 1,

‘‘ref_charge’’: 0,

‘‘nick_name’’: ‘‘Water’’,

‘‘solvent’’: ‘‘thf’’,

‘‘solvent_method’’: ‘‘ief-pcm’’,

‘‘qm_method’’: ‘‘B3LYP/6-31+G⁄//PBE-D3/6-
31+G⁄’’,
‘‘workflow’’: ‘‘ipea’’,

‘‘mission’’: ‘‘Test Simple Molecule’’})

In this example, the coordinates of the molecule are loaded by
pymatgen; many input formats are supported via the OpenBabel
library. Next, metadata on the submission (e.g., author, project)
are encapsulated within the StructureNL object representation.
Finally, this object is submitted to a database along with higher-
level instructions. Subsequently, the infrastructure will use the sub-
mitted data to map the molecule to a workflow and execute it over
computing resources (see Fig. 1). The user can tune the calculation
procedure by specifying certain parameters, for example, the initial
charges, the solvent models or functionals, or by programming a
custom workflow. Note that many parameters shown above are
not mandatory and default values will be used if the corresponding
parameter is not specified.

It is worth noting that our infrastructure code is designed for
flexibility – both in terms of computing resources and workflow.
It is not a simple one-shot script, which must finish all the cal-
culations once launched. In contrast, our infrastructure is able to
save intermediate results, execute seamless re-starts, by-pass
selected steps and decouple the workflows to several executable
sub steps. In addition, more advanced execution modes, such as
packing many small molecule jobs over many nodes for supercom-
puting resources, are provided by using FireWorks [20] as the
execution manager.

All inputs, outputs, and workflow related objects are stored in
MongoDB [23], which is a document-based schema-less database.
Thus, the user typically does not need to refer to flat files (e.g. out-
put files) for analyses and data mining. In contrast to the more
common SQL databases, MongoDB stores data as JSON-style [24]
documents with a flexible schema. This makes it easy to extend
the database to new data types by allowing objects to easily map
to a database representation without the need for a separate layer
as object-relational mapper. One can design complex data
structures as well as store and query them in a simple and straight-
forward manner.

https://github.com/materialsproject
https://github.com/materialsproject


Fig. 1. The Electrolyte Genome project computation infrastructure. Submitted molecules (top-left) are mapped to workflows (top-right), and computed automatically over
several supercomputing resources. The results are automatically parsed and put in several MongoDB collections. For more details, see the text.
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At the time of writing, 4830 IP/EAs have been successfully cal-
culated using the schemes described above. Simple quantities such
as the SCF energy, geometry, and thermodynamic corrections are
parsed by the qchemio module in the pymatgen package, as
exemplified below:

from pymatgen.io.qchemio import QcOutput

qcout = QcOutput(‘‘filename.qcout’’)

final_energy = qcout.final_energy

optimized_mol = qcout.final_structure

In this example, first, a multiple jobs QChem output file is loaded to
a QcOutput object. The above code retrieves the final energy and
geometry in a geometry optimization job, which involves multiple
energies and geometries as a function of the structure relaxation
iterations.

Furthermore, the infrastructure automatically calculates and
stores several derived properties, such as the IP/EA in vacuum/
solution phase as a function of different reference electrodes. The
database also contains auxiliary information (e.g. INCHI code,
SMILES, molecular charge, molecular formula), which facilitates
the query, and data mining of molecular structural-chemical prop-
erty trends. An example of code to query the information in the
database is provided below:

from pymongo import MongoClient

conn = MongoClient(db_ip_address,

db_listening_port)

db.authenticate(your_user_name, your_password)

db = conn[db_name]

molecules = db[‘‘molecules’’]

quinoxaline_doc = list(molecules.find(

{‘‘user_tags.molname’’: ‘‘quinoxaline’’}))

print quinoxaline_doc
An example MongoDB document looks like:

{

‘‘elements’’: [‘‘H’’, ‘‘C’’, ‘‘N’’],

‘‘user_tags’’: {‘‘molname’’: ‘‘quinoxaline’’,

. . .},

‘‘inchi_root’’: ‘‘InChI=1S/C8H6N2/c1-2-4-8-

7(3-1)9-5-6-10-8/h1-6H’’,

‘‘solvated_properties’’: {

‘‘water’’: {

‘‘IP’’: 6.859902868147401,

‘‘EA’’: 2.6703552769304224,

‘‘electrode_potentials’’: {

‘‘oxidation’’: {

‘‘lithium’’: 5.459902868147401,

‘‘hydrogen’’: 2.4199028681474006,

‘‘magnesium’’: 4.789902868147401

},

‘‘reduction’’: {

‘‘lithium’’: 1.2703552769304225,

‘‘hydrogen’’: -1.769644723069578,

‘‘magnesium’’: 0.6003552769304226

}

},

. . .

},

. . .

}, ‘‘pointgroup’’: ‘‘C2v’’,

‘‘vacuum_properties’’: {

‘‘IP’’: 8.708162265142164,

‘‘EA’’: 0.632506682730309,

. . .

},

‘‘charge’’: 0,

‘‘formula’’: ‘‘H6 C8 N2’’,

. . .

}
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Note that for brevity, some fields have been omitted as indicated by
ellipses (. . .).

The goal of our infrastructure is to enable rapid, robust and
accurate calculations of critical properties relevant for electrolyte
screening and design; and furthermore, providing automatic dis-
semination of the results through a user-friendly web interface
as well as database access. Hence, the data and query structure
have been implemented as a separate Molecule Explorer ‘App’
under the Materials Project, which provides a user-friendly way
for internal collaborators to directly access and search the large
amount of data. Our intention is to also open this dataset publicly
at the end of the Electrolyte Genome project. A snapshot of the web
page is shown in Fig. 2.

Before describing specific workflow implementations for elec-
trolyte molecule screening, we describe in the next section general
aspects of our workflow software that are of use across several
applications.
2.1. Molecule matcher

In many instances, it is useful to have an algorithm to check the
equivalence of molecules within a given tolerance. For example,
such an algorithm is used by our infrastructure to automatically
avoid duplicate calculations. The Kabsch algorithm [25] is able to
superimpose two molecules if the order of the atoms is the same
in the two molecules. However, the atom order may well be differ-
ent if the structural information of the molecules is obtained from
different sources. To remedy this issue, the INCHI code auxiliary
information [26] is employed. Starting from a topological/graph
symmetry, the INCHI algorithm – provided by the OpenBabel
[27] software package – is able to generate a canonical atom order
that is independent of the initially provided atom order.

Fig. 3(a–f) exemplify the steps of the algorithm applied to two
identical molecules A and B with different initial atom order. As
shown, if we directly superimpose the two molecules via the
Kabsch algorithm, without adjusting the atom orders, an erro-
neous, non-matching result will be obtained. Hence, in step (c)
Fig. 2. Snapshot of the Electrolyte G
the atoms are labeled in the INCHI canonical order and subse-
quently matched through the Kabsch algorithm. Finally, the root
mean square deviation (RMSD) is calculated as a measure of the
difference between the two molecules. The function is available
in the molecule_matcher module of the pymatgen package [19]. By
default, the function categorizes the two molecules to be identical
if the RMSD is less than 0.01 Å (although this tolerance can be
changed). As an example, the equivalence of the two molecules
with XYZ files ‘‘mol1.xyz’’ and ‘‘mol2.xyz’’ can be checked using
the following code:

from pymatgen.core.structure import Molecule

from pymatgen.analysis.molecule_matcher import

MoleculeMatcher

mm = MoleculeMatcher()

mol1 = Molecule.from_file(‘‘t3.xyz’’)

mol2 = Molecule.from_file(‘‘t4.xyz’’)

is_equal = mm.fit(mol1, mol2)
2.2. Structural change detector

If the structure of a molecule changes fundamentally (e.g. in a
geometry optimization job), it is important to register that a major
change occurred during calculation. Such calculations may, for
example, be responsible for outliers and anomalies in the final
results. The INCHI code provides some information in this respect;
however, if an equilibrium bond length is slightly longer than the
normal bond length, the INCHI code will occasionally give a false
negative. Hence, an in-house algorithm that makes use of the
human knowledge embedded in the initial structure is utilized.
The structural change is divided into two sub problems: new bond
formation and bond breaking. Taking the covalent bond length [28]
as a reference, a threshold of 30% is used to record all bonds in the
initial molecular structure. When checking for new bond forma-
tion, we use the same 30% threshold to find any new bonds that
enome Project Web Interface.



Fig. 3. Identical Molecules Detection. Example of steps in ‘Molecule Matching’ algorithm: Step (a) the hydrogen atoms are removed to facilitate the matching of the backbone
molecule. Step (b) the INCHI auxiliary labels are assigned. The output ‘‘AuxInfo = 1/0/N: 3, 4, 1, 2, 5, 6, 7/E:(1, 2)(6, 7)’’ from OpenBabel [27] indicates that the atoms in
canonical order are the 3rd, 4th, 1st, 2nd, 5th, 6th, 7th atoms from the original molecule, for which the 1st and 2nd and 6th and 7th are topologically equivalent, respectively.
It is worth noting that the group as a whole is unique, and hence the centroids of these groups are unique. Step (c) the centroid information is added. In Step (d), the best
rotation and translation to superimpose the molecules are determined by the unique atoms (3, 4, 5) and the centroids of the equivalent groups (1, 2 and 6, 7). In step (e), pair
heavy atoms by closest point and superimpose the molecules by heave atoms. In Step (f), pair the hydrogen atoms and superimpose the molecules by all the atoms.

Table 1
QChem DFT calculation failure fixing methods. The chosen fix depends not only on the error type but also on the calculation status.

Error type Fixing method

SCF failure (a) Increase the SCF max iteration cycles to 200
DIIS error < 10�3 (b) Set SCF iteration algorithm to DIIS_GDM

(c) Set SCF initial guess to GWH
(d) Set SCF iteration algorithm to GDM
(e) Set SCF iteration algorithm to RCA
(f) Set SCF initial guess to Core and SCF iteration algorithm to GDM

DIIS error P 10�3 (b) Set SCF iteration algorithm to RCA_DIIS
(c) Set SCF initial guess to GWH
(d) Set SCF iteration algorithm to RCA
(e) Set SCF iteration algorithm to GDM
(f) Set SCF initial guess to Core and SCF iteration algorithm to RCA

In geometry optimization (b) Set initial geometry to the last frame of the optimization; Reset SCF initial guess to default value;
Reset SCF iteration algorithm to default value

Geometry optimization failure (a) Increase maximum iteration cycles (100 for small molecules/300 for large molecules)
(b) Use GDIIS geometry optimization iteration algorithm
(c) Use Cartesian coordinates in geometry updating

Insufficient memory OpenMP compatible jobs Use OpenMP parallelism and increase QChem total memory setting to physical memory limit
MPI compatible jobs Reduce number of processes to half of the physical CPU cores and double memory usage per process

Symmetry detecting failure Disable symmetry
Floating point overflow (NAN values) Use denser integration grid
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are formed during structure optimization. Meanwhile, for detec-
tion of a bond breaking, a default large threshold of 80% of the
covalent bond length [28] is used to check whether any existing
bonds are now broken (substantially elongated). These thresholds
can be modified as needed by the user.

2.3. QChem custodian error handler

To computationally screen many molecular properties for a cer-
tain application requires automatic error handling and efficient use
of computational resources. Of the 54,789 quantum mechanical
calculations executed to date, 5045 QChem jobs encountered criti-
cal errors, such as self-consistent field (SCF) convergence errors or
memory allocation errors. For such large computational investiga-
tions, it would be impossible to use human intervention to perform
routine tasks such as parsing the error message, applying a series
of recommended failure fixes and re-starting the job. We have
implemented a QChem plugin to the custodian codebase to apply
automatic error checking and correction through well-defined
rules and intelligent dynamic workflows.

Table 1 summarizes in detail the recommended fixes for common
single task level QChem errors. The types of errors addressed are SCF
failures, geometry optimization failures, symmetry detection fail-
ures, floating point overflows, and insufficient memory. The current
ensemble of automatic error handling renders 90.9% (4587 out of the
5045) failed quantum mechanical calculations successful, and lead-
ing to an overall success rate of 99.2%. We should emphasize that
additional strategies are straightforward to implement by extending
the rules defined in the plug-in.

2.4. Dynamic job creation

Even if a calculation is converged, it is still possible that the
result is not physical. For example, a stable molecular structure



Table 2
Imaginary frequency elimination methods as implemented in the rubicon package.

Stationary
type

Elimination method

Minimum (a) Perturb the geometry by 0.3 Å along direction of the vibration
mode with the largest imaginary frequency, and use the
perturbed geometry as initial geometry to perform a new
geometry optimization and vibrational frequency analysis
(b) Use a tighter integration threshold (10�12) and a denser grid
(Lebedev grid with 128 radial points, 302 angular points), then
follow option (a) to re-optimize the geometry. A tighter
geometry optimization criterion is imposed by adjusting the
threshold to 10% of the default value
(c) Similar to (b), but use a different integration grid (Lebedev
grid with 90 radial points, 590 angular points)

Transition
state

Pick out the second largest imaginary frequency, and use the
corresponding vibrational vector to perturb the molecular
geometry following the methods for ‘‘Minimum’’

Fig. 5. Dynamic workflow for imaginary frequency elimination. The asterisk
denotes jobs created automatically during runtime that are not present when the
workflow is first defined.

X. Qu et al. / Computational Materials Science 103 (2015) 56–67 61
should have no imaginary frequencies, while a transition state
should have exactly one imaginary frequency. The infrastructure
code is able to check whether a stationary point has the desired
number of imaginary frequencies and fix it automatically through
a tested, dynamic change in the workflow. These dynamic changes
to the job sequence are a feature of the FireWorks [20] workflow
software that allows the workflow graph to be automatically modi-
fied and appended to during its execution.

To determine the best workflow strategy and parameters for the
imaginary frequency elimination, we tested four different methods
for 72 molecules with imaginary frequencies. These molecules origi-
nated from 576 geometry optimizations and represent common
redox-active electrolyte molecule types (e.g., quinoxaline,
bipyridine, and DMSO). The four methods evaluated for our work-
flow were: (1) Re-optimization of the molecular geometry using
improved accuracy settings; (2) Direct re-calculation of the
vibrational frequency using improved accuracy settings without
re-optimizing the geometry; (3) Perturbation of the molecular
geometry along the direction of the imaginary frequency vibrational
mode, followed by normalization of the vibrational vector by adjust-
ing the maximum atomic displacement to 0.3 Å and re-optimization
of the geometry; and finally, (4) Perturbation of the molecular
geometry by directly adding the raw vibration vector to the molecu-
lar coordinates and then re-optimizing the geometry.

The 72 molecules were clustered into 3 bins (with a bin size of
24 molecules) based on amplitude of the imaginary frequency. The
results, shown in Fig. 4, demonstrate that if the frequency is very
low (<39.0 cm�1), a high-accuracy frequency calculation can
remove up to 42% of the imaginary frequencies. However, high
accuracy re-optimization is less helpful for larger imaginary fre-
quencies. In contrast, the two molecular geometry perturbation
strategies work extremely well: they remove at least 21 out of
the 24 imaginary frequencies for the whole range of imaginary fre-
quencies. The perturbation of 0.3 Å performs slightly better than
the perturbation with the raw vibrational vector (the latter can
break the structure and is thereby less robust).

Hence, for automated imaginary frequency elimination, we first
perturb the molecule by 0.3 Å along the direction of the undesired
vibrational mode (see Table 2). Both geometry optimization and
frequency calculations are re-performed for the perturbed struc-
ture. A direct consequence of the dynamic workflow is that the
number of calculations is not necessarily the same for different
molecules. As shown in Fig. 5, these dynamically spawned jobs
are additional calculations employed to recover stable structures
from dynamically unstable ones.
2.5. Symmetry detection

Symmetry plays an important role in the performance of DFT
calculations, particularly for properties such as vibrational spectra.
Fig. 4. Number of successfully recovered failures from imaginary frequency errors
on 72 total test cases distributed among 3 frequency bins. Methods 3 and 4 are the
most effective across all frequencies, and in particular at higher frequencies.

Fig. 6. Fully operational workflows as implemented in the rubicon package.
The pymatgen [19] package has already implemented a module
(pymatgen.symmetry.analyzer.PointGroupAnalyzer) that can detect
the maximum point group symmetry of the given molecule.
This module is used to parse the molecular symmetry in the
Electrolyte Genome project.



Fig. 7. Free energy cycle for computing the oxidation/reduction potential. R denotes the molecule of interest.
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3. Workflows for electrolyte screening

We use the term ‘‘workflow’’ to refer to the procedure to calcu-
late a specific property, including all the steps and the correspond-
ing parameters in the calculation. All workflows are developed in a
modular way in which elementary tasks are connected into a larger
whole, making it very easy to program new workflows. Users can
also change pre-programmed behaviors of existing workflows
within the molecule submission parameters.

Currently, there exist three fully operational workflows imple-
mented for molecular calculations: IP/EA Calculation, Salt Complex
Generator and Ion Pair Dissociation Constant Calculation (see
Fig. 6). Other workflows are in development and are discussed in
the Future Work section.

3.1. IP/EA

The ionization potential (IP) is the energy required to oxidize a
molecule while the electron affinity (EA) is the energy to reduce a
molecule. The IP and EA are two of most important properties of an
electrolyte component [29]. For a salt or solvent, these properties
can determine the electrochemical window, which limits the
potential within which the battery can operate [29]. For redox
active molecules, it is a proxy for the oxidation/reduction potential,
which determines the operating voltage of a redox flow battery
[30–32]. The cathodic limit (VCL) is set by reduction of the molecule
of interest, whereas the anodic limit (VAL) is set by oxidation of the
molecule of interest:

VCL ¼ EA ¼ �DGredðsolÞ
nF

VAL ¼ IP ¼ �DGoxðsolÞ
nF

where F is the Faraday constant, and DGox(sol) and DGred(sol) are
the Gibbs free energy change of oxidation and reduction in the
solution phase, respectively.
Table 3
Comparison of adiabatic IP/EA Prediction as compared to CCSD(T) computed with XYGJ-O
geometries for 15 molecules derived from thiophene.

IP

CCSD(T) XYGJ-OS B3LYP

2-Thiophenamine 7.40 7.43 7.20
2-Thiophenecarboxylic acid 9.08 9.13 8.99
2-Thiophenecarbonitrile
N,N-Dimethyl-2-thiophenamine 6.93 6.97 6.75
2-Acetamidothiophene
2-Ethylthiophene 8.34 8.39 8.13
2-Ethynylthiophene 8.44 8.48 8.16
2-Fluorothiophene 8.72 8.79 8.61
2-Thiopheneol 8.07 8.13 7.91
2-Methoxythiophene 7.76 7.80 7.58
2-Methylthiophene 8.38 8.46 8.21
N-Methyl-2-thiophenamine 7.16 7.20 6.96
2-Nitrothiophene 9.60 9.59 9.53
2-(Trichloromethyl)thiophene 8.84 8.96 8.76
2-Vinylthiophene 8.11 8.12 7.83
According to the following thermodynamic cycle in Fig. 7,
DGox(sol) and DGred(sol) can be calculated from the Gibbs free
energy change of gas phase:

DGoxðsolÞ ¼ DGoxðgasÞ þ DGsolvðRþÞ � DGsolvðRÞ

DGredðsolÞ ¼ DGredðgasÞ þ DGsolvðR�Þ � DGsolvðRÞ

DGsolv is the energy to solvate a molecule/ion from vacuum to solu-
tion phase. Several methods to obtain the solvation energy exist
with varying degrees of accuracy and computational cost [33–36].
A commonly used approximation is the dielectric continuum model
[37], which models the solvent as a dielectric continuum and gen-
erates results that match qualitatively with trends obtained from
higher accuracy methods [35,38,39]. In the current study, the inte-
gral equation formalism polarizable continuum model (IEF-PCM)
[40] implicit solvent model is employed to include solvation effects.
DGox(gas) and DGred(gas) can be calculated from the Gibbs free
energy of individual molecule/ion:

DGoxðgasÞ ¼ GðRþðgasÞÞ � GðRðgasÞÞ

DGoxðgasÞ ¼ GðRðgasÞÞ � GðR�ðgasÞÞ

The individual Gibbs free energies can be computed from the fol-
lowing equation:

G ¼ H � TDS ¼ ESCF þ EZPVE þ Hcorr � TDScorr � ESCF

where ESCF, EZPVE, Hcorr and Scorr are the calculated DFT energy, zero-
point vibrational energy correction, thermal enthalpic correction
and entropic correction, respectively. The correction values are typi-
cally small, and usually cancel out to a large extent since the geo-
metric configurations are expected to be similar. In the current
study, they are not included in the final IP/EA calculation.

Theoretically, the ideal method to calculate IP/EA is the adiabatic
IP/EA [41], which optimizes the geometry at different charge states
S and B3LYP based on B3LYP geometries, B3LYP//PBE hybrid approach based on PBE

EA

B3LYP//PBE CCSD(T) XYGJ-OS B3LYP B3LYP//PBE

7.20 �1.07 �1.07 �0.95 �0.95
9.01 0.01 0.07 0.34 0.34

�0.05 0.03 0.28 0.28
6.75 �1.12 �1.14 �1.00 �1.00

�0.86 �0.84 �0.57 �0.58
8.13 �1.09 �1.07 �0.84 �0.84
8.16 �0.44 �0.37 �0.06 �0.06
8.61 �0.91 �0.88 �0.58 �0.59
7.91 �1.05 �1.02 �0.90 �0.91
7.58 �1.16 �1.14 �0.90 �0.90
8.18 �1.21 �1.20 �1.01 �0.98
6.96 �1.14 �1.14 �0.98 �0.98
9.54 0.92 0.93 1.36 1.36
8.73 1.05 1.11 1.62 1.64
7.82 �0.44 �0.36 �0.15 �0.15
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(cation, anion, neutral). This is the default method implemented in
our workflow, which emphasizes high-fidelity results. An approx-
imation to the adiabatic IP/EA is the vertical IP/EA, in which all
the energy calculations use neutral state geometry. A further
approximation would be to rule out the single point energy at the
cation and anion state, and use the HOMO/LUMO for the neutral
state as an approximation to IP/EA. These approximated methods
can also be used by setting the appropriate submission parameters
when submitting a molecule, and are related to methods used by
the Harvard Clean Energy project [3,4] and Korth’s project [15].
3.1.1. Special Treatment for Large Molecules
Although B3LYP works very well for small molecules, its formal

computational cost scaling is O(N4). Even with accelerating algo-
rithms, such as integral screening, the computational cost scales
as O(N2) for numerical integrals with large prefactors and O(N3)
for density matrix diagonalization with small prefactors. In prac-
tice, the computational cost scaling of B3LYP is usually close to
O(N2.5) for medium sized molecules [42], which makes large mole-
cules difficult to handle in high-throughput. Furthermore, the
exclusive memory requirements of vibrational frequency analysis
and IEF-PCM solvation energy calculation can also cause workflow
failures for large molecules. To remedy this issue, we developed a
hybrid procedure for molecules with more than 50 atoms: (1) opti-
mize the geometry at the PBE/6-31+G⁄ level [43] with Grimme’s
dispersion correction [44], which is a pure density functional and
more computationally economical since the evaluation of HF
exchange is not required. However, the final energy is still evalu-
ated at B3LYP/6-31+G⁄ level; (2) Discard vibrational frequency cal-
culation; (3) Use less grid points in the discretization of the cavity
surface of IEF-PCM calculation (194 points per atom, default value
is 594 for QChem 3.� and 302 for QChem 4.�); 4) Loosen the con-
vergence threshold of geometry optimization (the threshold of
energy change and maximum atomic displacement is increased
ten times; the threshold of maximum gradient is kept unchanged).
As can be seen from Table 3, the predicted IP/EAs from the B3LYP//
PBE hybrid approach and full B3LYP predicted IP/EAs are very
Fig. 8. Result of automated salt complex generator on a quinoxaline base molecule. Th
model docks both monovalent and multivalent salts.
close; the maximum deviation is only 0.04 eV. Therefore, the
B3LYP//PBE hybrid approach is a suitable alternative to calculate
IP/EA for large molecules.
3.2. Salt complex generator

A physically relevant structure is a prerequisite for computa-
tional study. However, due to the multiple component nature of
the electrolyte, it is challenging to find the lowest energy con-
formations that likely represent physical systems. The salt complex
generator module attempts to determine the lowest energy com-
plex configuration automatically in the presence of multiple salt
ions, additives, and solvent molecules [29,31,45].

The salt complex generator is composed of two basic parts: an
optimizer and an energy evaluator. For the optimizer we chose
artificial intelligence based Particle Swarm Optimization (PSO)
[46–50] in preference over Conjugate Gradient (CG) and
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithms because
the aim is to search for a global minimum energy structure rather
than a local minimum/conformation. Compared to other artificial
intelligence algorithms, such as Stratified Sampling (SS) [51] and
Genetic Algorithm (GA) [52], which work best for combinatorial
searches, PSO performs well for both continuous as well as combi-
natorial search spaces. As the salt complex generation is a continu-
ous problem, PSO is more suitable. Furthermore, SS require that the
solution space be exhaustively partitioned into disjoint subgroups,
which is in itself a challenging algorithmic exercise for the salt
complex generation space. We developed two variants of energy
evaluators to quickly screen conformations: (1) an electrostatics-
only model, which is very simple and fast, and (2) a range-sepa-
rated hybrid model, which is a hybrid of PM7 [53] semi-empirical
quantum mechanical energy and empirical gravitational force.

The electrostatic model captures the essence of the interaction
of charged particles through the Coulomb potential. The system
energy is calculated via Coulomb’s Law, while the overlapping of
atoms is excluded by a hard sphere based algorithm. As can be seen
from Fig. 8, the electrostatic model can dock monovalent salt ions
e electrostatic-only model (top) fails for multivalent Mg(BF4)2, whereas the hybrid



64 X. Qu et al. / Computational Materials Science 103 (2015) 56–67
to redox active molecules, however, it fails for multivalent salts,
e.g. magnesium salts.

The hybrid model calculates the system energy either by empiri-
cal gravitational force or by PM7 depending on the distance between
ions/molecules. Empirical gravitational force will be used if they are
well-separated, which forms a funnel to bring the ions/molecule
close to one other. After the ion/molecules are in contact, the more
accurate PM7 method is employed. In our codebase, a PM7 based
local energy minimization (steepest decent) is performed via the
MOPAC package [54,55] in each macro iteration and serves the final
energy as the fitness value of PSO. This renders our salt algorithm to
be a hybrid optimization algorithm that combines PSO and steepest
decent, which results in a more effective lowest energy
conformation search toolkit.

The result of the hybrid model is also shown in Fig. 8 for com-
parison. For the quinoxaline test case, the hybrid model is superior
to the electrostatic model: it is not only able to dock the monova-
lent LiBF4 salt, but is also able to dock the multivalent MgBF4 salt.

3.3. Ion pair dissociation constant

Ion pairing is the phenomena by which the cation and anion are
associated together in an electrolyte. In contrast to a fully solvated
salt in which each cation/anion has a complete solvent shell and
exists as free ions, in an ion pair, the cation is in direct contact with
the anion and shares the solvent shell. Ion pairs are observed in
many electrolyte systems, particularly at higher salt concentra-
tions [56,57]. To understand ion pair interactions [58] in elec-
trolytes, it is important to calculate the ion-pair formation
driving force, which is captured by the ion pair dissociation
constant [45]. The dissociation constant is defined by the molar
ratio of free ions and ion pair:

K ¼ ½cation�½anion�
½ion pair�

and can be deduced from the change in Gibbs free energy between
the products and reactants:

K ¼ e�DG=RT
Table 4
Comparison of prediction errors as compared to experiment for two basis sets (6-
31+G(d) and 6-311+G(2d, 2p)) computed with the B3LYP functional over the G2-97
basis set. RMSD: root mean square deviation, MAE: Mean Absolute Deviation, ME:
Max Error, R2: Coefficient of Determination.

IP (eV) EA (eV)

6-31+G(d) 6-311+G(2d, 2p) 6-31+G(d) 6-311+G(2d, 2p)

RMSD 0.27 0.28 0.25 0.23
MAE 0.16 0.16 0.16 0.13
ME 1.52 1.66 1.04 1.10
R2 0.985 0.984 0.947 0.956

Table 5
Comparison of IP/EA prediction error as compared to experiment over G2-97 test set co
Absolute Deviation, ME: Max Error, R2: Coefficient of Determination.

XYGJ-OS PW6B95 B3LYP

IP (eV) RMSE 0.10 0.25 0.27
MAE 0.07 0.13 0.16
Max 0.39 1.54 1.52
R2 0.998 0.986 0.985

EA (eV) RMSE 0.12 0.23 0.25
MAE 0.10 0.16 0.16
Max 0.52 0.96 1.04
R2 0.986 0.953 0.947
DG ¼
X

product

Gi �
X

reactant

Gj

G is the total free energy of the individual free ions or ion pair,
and can be computed from a similar procedure as discussed in the
IP/EA workflow. In our code base, the equilibrium constant cal-
culation is decoupled to single point energy workflows for the
cation, anion and ion pair, respectively. By decoupling the work-
flows, we reuse existing workflows and de-convolute the sub tasks.
The counterpoise correction (CP) is applied to eliminate the basis
set superposition error (BSSE) [59,60]. To obtain the dissociation
constant, the user needs to specify the structure and molar ratios
of the cation, anion and ion pair. The equilibrium constants are
then automatically calculated and stored in MongoDB.
4. Results

We have calculated thousands of molecules from different
sources: (i) systematic structure generation through substitution
of functional groups in a base molecule; (ii) molecules from public
databases such as SciFinder [61] and Reaxys [62]; (iii) molecules
submitted by collaborators (see Fig. 1).

We also tested the proposed method and workflow against
available experimental results in the G2-97 [63] test set, and the
results of these calculations are described next. All calculations
were automatically carried out by the infrastructure and the failed
(16 IPs and 13 EAs) molecules were excluded in the final analysis.
4.1. IP/EA benchmarking

First, we evaluated the accuracy of two basis sets, 6-31+G(d) and
6-311++G(2d,2p), in combination with B3LYP functional. The
B3LYP/6-31+G(d) and 6-311++G(2d,2p) basis sets both predict IP/
EA within a mean absolute error (MAE) of 0.16 eV and root mean
squared deviation (RMSD) of 0.28 eV as compared to experimental
values in the G2-97 test set (see Table 4). Because the 6-
311++G(2d,2p) is significantly more computationally expensive
but its accuracy gain is negligible over this test set, we chose to
employ the 6-31+G(d) basis set for further IP/EA calculations.

In addition to the basis set, the choice of functional also plays a
critical role in the accuracy and computational cost of the IP/EA
prediction. Using our infrastructure, we tested a series of function-
als on the G2-97 test set, including the XYGJ-OS [64], PW6B95 [65],
B3LYP [66], M06 [67], M06-2X [67], PBE0 [68], TPSSh [69], and
B97-D [70] functionals. As can be seen from Table 5, the XYGJ-OS
functional, which is a double hybrid density functional containing
both Hartree–Fock exchange and electron correlation information
from an MP2-like term [71], performed significantly better than
the B3LYP functional, while computationally scaling at a similar
level. For the prediction of both IP and EA, the RMS error of
XYGJ-OS (0.1 eV) was less than half of the others (0.25–0.38 eV)
and it was the only functional with a maximum error of less than
mputed with different functionals. RMSD: root mean square deviation, MAE: Mean

M06-2X M06 PBE0 TPSSh B97-D

0.28 0.27 0.29 0.29 0.38
0.13 0.18 0.18 0.21 0.26
1.76 1.31 1.61 1.35 1.57
0.984 0.987 0.982 0.982 0.968

0.25 0.32 0.38 0.46 0.82
0.16 0.18 0.25 0.26 0.29
0.96 1.64 1.76 2.59 4.74
0.951 0.903 0.868 0.816 0.646



Fig. 9. IP/EA of the single functional group and two identical functional group
substituted quinoxaline derivatives. Green and blue dots denote the IP of single and
substituted derivatives respectively. Red and orange dots denote the EA of single
and double substituted derivatives respectively.

Table 6
Fitted parameters of Hammett equation for quinoxaline derivatives IP/EA prediction.
For more information obtained for structure-property trends of redox active
molecule, see Ref. [16].

IP EA

Position constant (Kp)
a 0.86 1.07
b 1.21 0.87
c 1.02 0.79

Group constant (Kg)
AN(CH3)2 �1.00 ANH2 �0.25
ANHCH3 �1.00 ANHCH3 �0.23
ANH4 �0.83 AN(CH3)2 �0.23
AOCH �0.46 AOCH3 �0.10
AOH �0.42 ACH2CH3 �0.10
ANHC(O)CH3 �0.41 AC5H6 �0.02
AC5H6 �0.38 AOH 0.02
AC@CH2 �0.35 ACH3 0.03
ACH3 �0.26 ANHC(O)CH3 0.05
ACH2CH3 �0.19 AC@CH2 0.12
ACCH �0.13 ACCH 0.19
AF �0.08 AF 0.30
ACN �0.05 ACOOH 0.36
ACOOH 0.12 ACCl3 1.00
ACCl3 0.24 ACN 1.00
ANO2 0.27 ANO2 1.00
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1.0 eV (0.39 eV for IP and 0.52 eV for EA). Furthermore, it was
found that XYGJ-OS also performs excellently in the prediction of
redox active molecules. A set of 15 thiophene derivatives was used
to calculate the IP/EA at the CCSD(T) [72], B3LYP and XYGJ-OS level,
respectively. The results are shown in Table 3. The Spearman’s rank
correlation coefficient [73] was utilized to evaluate the degree of
the similarity between two rankings where a value of 1.0 repre-
sents a perfect agreement between two rankings, and conversely,
0.0 indicates no agreement. Both XYGJ-OS and B3LYP show excel-
lent rank correlation coefficients (0.995 and 0.989) as compared
to CSSD(T) predictions. We note that for the EA prediction, the
B3LYP rank correlation coefficient was slightly less, with a value
of 0.952.

Although XYGJ-OS unambiguously performed the best in the
benchmark prediction of IP/EA, while PW6B95 and B3LYP ranked
as second best, the decision was made to use B3LYP as our main
computational method due to the following pragmatic reasons:
(1) B3LYP is widely supported by most quantum chemistry soft-
wares and has been extensively tested [74] and used which makes
it is very easy to compare with other results. In contrast, XYGJ-OS is
currently only implemented by the QChem [17,18] and FireFly [75]
software packages. (2) Several third-party algorithms, such as
Truhlar’s Minnesota solvation model [33] is known to work with
B3LYP, but is not tested with XYGJ-OS. (3) XYGJ-OS lacks a 2nd
order analytical derivative, which is preferred for fast thermody-
namics correction calculation and makes XYGJ-OS unfavorable
for vibrational frequency analysis. (4) B3LYP ranks as the second
best in the benchmark data, and its accuracy is still fairly good.
In summary, our final choice for the default functional for use in
IP/EA calculations is the B3LYP density functional with the 6-
31+G(d) basis set.

4.2. Example quinoxaline structure-property trends

To demonstrate a potential use of our infrastructure, we per-
formed 55,000 quantum mechanical calculations, leading to 4830
IP/EAs. 1536 redox active molecules were derived by systematically
adding functional groups to the base molecules quinoxaline,
anthrachinon, thiane, thiophene and bipyridine [16]. Fig. 9 shows
the results for the quinoxaline derivatives, which demonstrate that
the addition of an electron-withdrawing functional group increases
both IP and EA, while an electron-donating functional group
decreases both of them. By using two identical functional groups
in different positions, this trend can sometimes be enhanced.

The raw data can also be used to build higher level models. For
example, to further study and quantify the effect of functional
group and substitution position, we fit our results to the
Hammett equation [76], in this case for the IP:
IP ¼ IP0 þ p � g

where IP0 is the ionization potential of quinoxaline without any
substituent, p is a constant that depends only on substituent posi-
tion, and g is a constant determined solely by the functional group
type. The p ⁄ g term essentially serves as a correction to the base
molecule’s ionization potential. The EA can be fitted to a
corresponding equation. Table 6 shows the Hammett fit parameters
for 300 calculated quinoxaline derivatives yielding a predicted IP
and EA with average error of 0.161 and 0.286 eV, respectively. The
success of the Hammett algorithm suggests that the chemical and
position effect for the IP/EA quinoxaline derivatives can be sepa-
rated such that each group and each position can be represented
by a simple constant factor. This method could also be used to pre-
dict promising functional group substitutions for a specific base
molecule by calculating a subset of functional group/position com-
binations to fit the model, and then using the model to predict the
remaining values.

5. Future workflows

5.1. Diffusion coefficient and solvation structure

Other key properties for electrolyte performance are the diffu-
sion coefficients of the individual molecular components and the
overall viscosity of the solution. Additionally, radial distribution
functions (RDFs) and spatial distribution functions (SDFs) serve
as intuitive tools to understand preferred dynamic molecule inter-
actions and configurations. Furthermore, the snapshot of the first
solvation shell can be used as input to ab initio solvation energy
calculations [58].

The goal of the rubicon package is to automate and expedite not
only molecular and electrolyte property calculations obtained
through ab initio calculations, such as the prediction of the IP/EA,
but also those that can be derived through classical molecular
dynamics (MD) simulations. The ultimate goal is to seamlessly
integrate ab initio and through force field generation and
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information flow between the two length scales. Currently, the
ab initio atomic charges are fitted by a Restrained Electrostatic
Potential (RESP) [77] procedure and used as input in force field
generation. In turn, the structures of the first solvation shell from
MD ensembles are used to obtain accurate energetics for the solva-
tion energy. While pieces of this workflow are operational, it is still
under testing.

5.2. Artificial intelligence molecular design

The design of novel electrolyte still relies heavily on human
intuition. To make use of the information provided by ‘‘big data’’,
the Electrolyte Genome project is developing a novel molecule
design module based on statistical learning, which combines the
prediction power of machine learning models and the solution
generation ability of artificial intelligence. The module will be used
to search chemical space that is not intuitive to humans, or when
the solution space is too large for human search.

5.3. Other workflows

Several workflows are under development and will be succes-
sively implemented. A few examples include the Decomposition
pathfinder, Solubility Workflow, and Quantitative Structure Activity
Relationship (QSAR) which contain different step-wise property cal-
culations, dynamic decisions on calculation sequences, and feed-
back between ab initio and MD length scale domains.
6. Summary

We have developed an open source infrastructure for large scale
molecule screening that leverages the resources available, in com-
bination with best practices in information software development
and high-performance computing. A variety of techniques and sup-
porting code are established to robustly and efficiently calculate,
analyze and organize molecular properties including: (1) redox
potential which is helpful for high-voltage battery electrolyte screen-
ing, (2) ion pair dissociation constants which is helpful for electrolyte
stability studies, (3) salt complex structure which can contribute to
the fundamental scientific understanding of electrolytes.

We have successful applied the infrastructure to the calculation
of 4830 IP/EAs. The benchmark on the G2-97 test set shows that
our calculation procedure is able to give reliable results for both
small and large molecules. We have fitted the quinoxaline deriva-
tives IP/EA to the Hammett equation which reveals that the posi-
tion effect and functional group effect can be separated and that
the most sensitive positions for IP and EA are different. The auto-
matic error handling module fixes 90.9% of the calculation failures
and improves the success rate from 90.8% to 99.2%. Our molecular
matcher is able to identify identical molecules irrespective of atom
order in the molecule description. By leveraging artificial intelli-
gence approaches, the salt complex generator is able to find the
lowest energy conformation for complicated multi-composition
systems.

As demonstrated by the application example, the infrastructure
developed in this project is able to process large amounts of mole-
cules. We hope this infrastructure can help to accelerate the pro-
cess of design and screen for electrolyte with enhanced
properties and aid in the fundamental science study of electrolytes.
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