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We present a first-principles computer code package (ABACUS) that is based on density functional theory
and numerical atomic basis sets. Theoretical foundations and numerical techniques used in the code are
described, with focus on the accuracy and transferability of the hierarchical atomic basis sets as
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1. Introduction

The density functional theory [1,2] (DFT) based first-principles
methods are becoming increasingly important in the research
fields of condensed matter physics, material sciences, chemistry,
and biology. With the rapid development of supercomputers and
the advances of numerical algorithms, nowadays it is possible to
study the electronic, structural and dynamical properties of com-
plicated physical systems containing thousands of atoms using
DFT. In these cases, the efficiency of widely used plane wave
(PW) basis is largely limited, because of its extended nature.
Instead, local bases, such as atomic orbitals, are the better choices.

Atomic orbitals have several advantages as basis sets for the
ab initio electronic structure calculations in the Kohn-Sham
scheme [1,2]. First, the basis size of atomic orbitals is much smaller
compared to other basis sets, such as PW or real-space mesh.
Second, the atomic orbitals are strictly localized and therefore
can be combined with either the so-called linear scaling algorithms
[3] for electronic calculations, or any other algorithm with a better
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scaling behavior than O(N?). For example, Lin et al. have recently
developed a so-called Pole EXpansion and Selected Inversion
(PEXSI) technique [4,5], which takes advantage of the sparsity of
the Hamiltonian and the overlap matrices obtained with local orbi-
tals, and allows to solve the Kohn-Sham equations with numerical
effort that scales as N* (« < 2) for both insulating and metallic sys-
tems, with N being the number of atoms.

While the analytical Gaussian-type orbitals have been well
established for ab initio calculations in the quantum chemistry
community for decades, the numerically tabulated atomic orbitals
are getting more and more popular in the computational physics
community. Several first-principles codes based on the numerical
atomic orbitals have been developed in recent years, e.g., SIESTA
[6], OpenMX [7], FHI-aims [8], to name just a few, which aim at
large-scale DFT calculations by exploiting the compactness and
locality of numerical atomic orbitals. However, the numerical
atomic orbitals must be constructed very carefully to ensure both
good accuracy and transferability. Furthermore, it would be highly
desirable if the quality of the basis sets can be systematically
improved in an unbiased way. Recently, some of us [Chen, Guo,
and He (CGH)] proposed a new scheme [9,10] to construct system-
atically improvable optimized atomic basis sets for DFT calcula-
tions. Based on the CGH procedure for basis set generations, we
have developed a DFT package [11] from scratch, named
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Atomic-orbital Based Ab-initio Computation at UStc (ABACUS) here in
the Key Laboratory of Quantum Information, University of Science
and Technology of China (USTC). In the ABACUS package, besides
the primary option of using numerical atomic orbitals as basis
functions, PW basis can also be employed as an alternative choice.
This dual basis feature is very useful for accuracy and consistency
checks in benchmark calculations. For both basis set choices, the
package uses norm-conserving pseudopotential in the Unified
Pseudopotential Format (UPF) that has been used in Quantum
ESPRESSO [12]. The UPF pseudopotentials can be generated from
the Opium package [13]. Regarding the exchange-correlation func-
tionals, we have implemented the local (spin) density approxima-
tion [L(S) DA], and the generalized gradient approximation (GGA)
as constructed by Perdew, Burke, and Ernzerhof (PBE). In addition,
semi-empirical van der Waals (vdW) corrected DFT scheme as pro-
posed by Grimme (DFT-D2) [14] has also been implemented. Other
advanced functionals such as hybrid functionals are currently
under development and will be reported in a later work. At the
level of local-density approximation (LDA) and generalized gradi-
ent approximation (GGA), the ABACUS package can do typical elec-
tronic structure calculations, structure relaxations, and molecular
dynamics.

In this paper, we first describe the main features of the ABACUS
package, as well as the major techniques that are used to imple-
ment DFT algorithms with atomic basis sets. In a previous study
[9], the CGH orbitals have been demonstrated to be accurate and
transferable for the group IV and group III-V semiconductors.
Here, we extend the tested systems to a larger range of elements,
including the alkali elements, 3d transition metals, group VI and
group VII elements, with focus on the structural and electronic
properties of molecules, solids, surfaces, and defects. The results
demonstrate that ABACUS with the CGH orbitals are highly reliable
for both finite and extended systems. In particular, the basis set at
the level of double-{ plus polarization function (DZP) is an excel-
lent choice to compromise between accuracy and computational
cost, and can be safely used in production calculations in most
situations.

The rest of paper is organized as follows. In Section 2, we intro-
duce the basic algorithms and numerical techniques. In Section 3,
we will demonstrate the performance of the ABACUS package,
focusing on the accuracy of the atomic orbitals generated using
the CGH scheme, for a variety of benchmark systems. The scaling
behavior of ABACUS for DFT-LDA calculations as a function of
the system size is also presented in this section. Finally, we sum-
marize our work in Section 4.

2. Methods

In this section, we first briefly recapitulate the basic formulation
of solving Kohn-Sham equations in atomic basis (Section 2.1) to set
up the stage. This is followed by a description of the main tech-
niques used in ABACUS. Topics to be covered include the genera-
tion of the CGH atomic orbitals (Section 2.2), the construction of
Hamiltonian matrix and overlap matrix (Section 2.3), the solvers
for Kohn-Sham equations (Section 2.4), and finally the total energy
and force calculations (Section 2.5).

2.1. The Kohn-Sham equation in atomic basis

The central task in DFT calculations is to solve the Kohn-Sham
equation [1,2],

His (1) = €,n(T), (1)

where €, and ¥, (r) are the Kohn-Sham eigenvalues and eigenfunc-
tions for state n. Hartree atomic unit (e = h = m, = 1) is used here

and throughout the paper. The Kohn-Sham Hamiltonian Hys can
be written as,

Hys = T+ V() + V¥ [p(r)] + V<[p(r), 2)

where T = -1v2, Vext(r), VH[p(r)], and V*[p(r)] are the kinetic
energy operator, the external potential, the Hartree potential, and
the exchange-correlation potential, respectively. The Kohn-Sham
Hamiltonian Hys thus depends on the electron density p(r), which
can be determined from the occupied Kohn-Sham orbitals

0ocCC.

p(r) =2 | Pa(r). 3)
n=1

Here for simplicity we assume that the system is spin-degenerate,
and hence the spin index is omitted. Extending the algorithm
described here to the spin-polarized case is straightforward and
has been implemented in ABACUS.

Norm-conserving pseudopotentials are used to describe the

jon-electron interactions. The external potential V< (r) in Eq. (2)
contains the summation of the ion-electron potentials of all atoms
plus, when they exist, applied external potentials. Therefore (in the
absence of the applied external potential),

V) = 3N oh(r - — R), (4)
R i

where #£] is a norm-conserving pseudopotential [15] for the i-th
atom of element type o, and 7,; is the atomic coordinate in the cell
R. The pseudopotential can split into a local part of the potential %,
and separable fully non-local potentials [16] ¥,

= ik (5)

The applied external potentials, e.g., electric fields, can be easily
added to the local part of the potential, while the non-local pseu-
dopotential can be written as,

Inax 1 Nmax

@QIL = ZZZ‘X(xlmnMXxlmn'v (6)

1=0 m=-In=1

where |y,,.,) are non-local projectors, with I, m, n being the angu-
lar momentum, the magnetic momentum, and the multiplicity of
projectors, respectively. In Eq. (6), I and ny. are the maximal
angular momentum and the maximal multiplicity of projectors for
each angular momentum channel, respectively.

The Kohn-Sham equation is usually solved within certain basis
sets. The ABACUS package offers two choices of basis sets: the PW
basis set and the atomic basis set. The advantage to do so is that
the results obtained using atomic basis sets can be directly com-
pared to those obtained from PW basis sets for small systems,
and thus provides valuable benchmarks for the former. This will
be clearly seen in Section 3 where the benchmark results for a vari-
ety of systems are presented. However, since the PW algorithm has
been well developed and documented, here we only focus on the
algorithms of the atomic-basis implementation.

Without losing generality, we consider crystalline systems
under periodic boundary conditions. The Kohn-Sham eigenfunc-
tions in Eq. (1) then become Bloch orbitals which, within
atom-centered basis set, can be expanded as,

Poule) = =5 Y a5 - ), @)
R A

where ¢, (r — 7, — R) are the atomic orbitals centering on the i-th
atom of type o in the unit cell R. The orbital index u is a compact
one, u = {o,i,I,m,{} with [ being the angular momentum, m the
magnetic quantum number, and { the number of atomic orbitals
for a given L. Here n and k are the band index and Bloch wave vector,
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and cn, are the Kohn-Sham eigen-coefficients. Finally N is the
number of unit cells in the Born-von-Karmen supercell under the
periodic boundary conditions. Using Eq. (7), the electron density
within atom-centered basis sets can be computed as

1 .
p(r) = N 2 e ¥t (0) ¥ ()
k Tk

N ZZZfﬂk un, kcn\'ke Ide) (l‘ — Toi — R)d)v(r - T/U)
kR

uv nk

= ZZP#V ¢u (r— T4 — R)g, (r - T/f}‘)ﬂ (8)
R

where f, is the Fermi occupation factor, and Ny is the number of k
points in the Brillouin zone (BZ) sampling, which is typically equiv-
alent to the number of real-space unit cells N in the Bloch summa-
tion. pm,(R) in Eq. (8) is the density matrix in real space, defined as

p,uv N Zfﬂkcny KCnv) ke (9)

Please note that in the last line of Eq. (8), we have assumed, without
losing generality, the atomic orbitals to be real, ie., ¢}, = ¢,.

Given the expansion of the Kohn-Sham states in terms of
atomic orbitals in Eq. (7), the Kohn-Sham equation Eq. (1) becomes
a generalized eigenvalue problem,

H(K)c, = ExS(K)c, (10)
where H(k), S(k) and c are the Hamiltonian matrix, overlap matrix
and eigenvectors at a given Kk point, respectively. Ex is a diagonal

matrix whose entries are the Kohn-Sham eigenenergies. To obtain
the Hamiltonian matrix H(k), we first calculate

H,(R)

where p, v are atomic orbital indices within one unit cell, and
g = ¢t —R —1y), ¢y = ¢,(r — T4). The Hamiltonian matrix at
a given k point can be obtained as,

H,y(k) = Ze &RH . (R) (12)

= (| T + V= 4 VH £ V), (11)

Similarly, the overlap matrix at a given Kk point is obtained as,

S (K) = Ze kRS, (R) (13)
where
Suv(R) = (Purldro)- (14)

The construction of H(k) and S(k), as well as solving Eq. (10) take
most of the computational time. These two aspects will be dis-
cussed in more details in Sections 2.3 and 2.4.

In many cases, when the investigated unit cell is large enough, a
single I'-point in the BZ is enough to get converged results. In these
cases, both the Hamiltonian and overlap matrices are real symmet-
ric matrices. In the ABACUS package, we treat the I"-point only cal-
culations separately to improve the efficiency.

2.2. Systematically improvable atomic basis sets

Before going into the construction processes of H,,(R) and
Suw(R), here we introduce the CGH atomic orbitals that are used
in ABACUS. The quality of atomic basis is essential to obtain accu-
rate results. Unlike PW basis, with which the quality of the calcu-
lations can be systematically improved by simply increasing the
PW energy cutoff, the way to generate high-quality atomic basis
functions is much more complicated. In the last decades, consider-
able efforts have been devoted to developing high quality atomic

orbitals [7,17-20]. ABACUS adopts a scheme proposed by CGH
[9] to generate systematically improvable, optimized atomic basis
sets.

An atomic basis function can be written as a radial function
multiplied by spherical harmonics (in practice we use solid spher-
ical harmonic functions, which are real functions),

Dime(X) = f1(N)Yim (), (15)

where the indices I, m, and { have the usual meanings of angular
momentum quantum number, magnetic quantum number, and
the multiplicity of the orbitals for I. One usually needs more than
one radial functions for each angular momentum to improve the
quality and transferability of the atomic basis sets.

In the CGH scheme, the radial function f(r) is expanded in
terms of a set of spherical Bessel functions (SBFs), with the coeffi-
cients of the SBFs yet to be determined, i.e.,

Cigf)(qr), T<T¢
fi() = 2 Cllan) (16)

0 r=re,

where ji(qr,) is the SBF with radius cutoff r.. The possible q values
are chosen such that j(qr,) = 0. A kinetic energy cutoff is chosen
to determine the maximal value of g, and thus the number of
SBFs. We set the SBFs to be strictly zero beyond the radius cutoff
r.. In fact, they have been used directly as short-ranged basis set
in first-principles calculations [21,22]. Because (almost) any func-
tion within the radius cutoff r. can be represented as a linear com-
bination of SBFs, this gives us a large number of degrees of freedom
for optimizing the atomic basis set.

To obtain optimized atomic basis, we vary the coefficients of the
SBFs to minimize the spillage between the atomic basis set and a
set of selected reference systems. The spillage S is a positive num-
ber defined as the difference between the Hilbert space spanned
the atomic basis set and the wave functions calculated by PW
basis,

Nn_ Ng

ZZ Yo 1 — PPk, (17)

K k=1

where P is a projector spanned by the atomic orbitals,

131( = Z|¢uk>s;ul (k)<¢v,k|' (18)
uv

Here, S™!(K) is the inverse of overlap matrix S(k) between numeri-
cal atomic orbitals. The spillage has been proposed before to mea-
sure the quality of a set of atomic basis [18,23,24]. We then use
simulated annealing method to determine the coefficients that min-
imize the spillage. Sometimes the numerical orbitals obtained from
this procedure have unphysical oscillations, which may lower the
transferability of the basis set. To eliminate these unphysical oscil-
lations, we further minimize the kinetic energy of each atomic orbi-
tal while keeping the spillage almost unchanged. More details of
this procedure can be found in Ref. [9].

The reference systems used in the basis-generation procedure
are very important to ensure the transferability of numerical
atomic orbitals. The CGH scheme allows the users to choose freely
the target systems to generate high-quality basis sets for different
purposes. From our experience, homonuclear dimers are very good
reference systems [17,25] for generating transferable atomic orbi-
tals for general purposes. To avoid any possible bias of the basis set
towards certain geometrical structure, an average over dimers of
several different bond lengths (compressed or elongated) is taken
as the target in the optimization procedure. We provide scripts
to generate the atomic bases using diatomic molecules as reference
systems. The scripts set up PW calculations provided in the code
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for the dimers at various bond lengths. We remark that after the
atomic basis sets are generated, for consistency, one must use
the same pseudopotential and energy cutoff in later atomic orbitals
based calculations as those used in the basis generation.

The CGH scheme is very flexible and easy to implement. One
can choose freely the angular momentum of the orbitals, and the
multiplicity of the radial functions for each angular momentum.
All atomic orbitals are generated from the same procedure and cri-
teria. These orbitals form a sequence of hierarchial basis sets,
which have a systematic convergence behavior towards the PW
reference. Furthermore, without any assumptions of the shapes
of radial functions f(r), in principle we can get the fully optimized
radial functions. As will be shown in Section 3, the atomic orbitals
generated in this way indeed show excellent accuracy and trans-
ferability for various systems.

2.3. Hamiltonian and overlap matrices construction

As mentioned above, in order to construct H(k) and S(k) at
given k points using Eqs. (12) and (13), we need to first calculate
H,,(R) and S, (R). During the processes, we take the full advantage
of the short-range nature of the atomic orbitals, i.e., only the matrix
elements whose corresponding atomic orbitals have non-zero
overlaps are evaluated. This is because each matrix element could
be written as an integral in real-space grids, if this integral involves
two spatially well-separated basis functions that are not overlap-
ping, then the result of the integral should be zero. This feature
leads to a sparse matrix and then O(N) scaling of the number of
integrals, which is a significant advantage compared to PW based
methods.

Now we briefly discuss how each term in H,,(R) and S, (R) is
calculated. As is clear from Eq. (11), the Hamiltonian matrix has
several components, which are computed by two different tech-
niques, namely the two-center integral technique and the grid
integral technique, respectively. First, the kinetic energy matrix

Tw(R) = (%leldho), the non-local pseudopotential matrix
VIL(R) = (¢,&|VM|d,), as well as the overlap matrix Sy, (R) =

nv
(¢l ¢vo) can be efficiently calculated by the two-center integral
technique [26], which has been described thoroughly in Ref. [6].
The two-center integrals can be split into two parts: a
one-dimensional integral over radial functions and an angular inte-
gral involving spherical harmonic functions. The radial integrals
are tabulated for a wide range of distances between two orbitals
once for all. The value for two orbitals within a reasonable distance
can then be interpolated from the table. The angular integral
involving spherical harmonic functions leads to quantities of
so-called the Gaunt coefficients, which can also be easily calcu-
lated. Therefore, the two center integrals can be evaluated very
efficiently [6]. Further details on the two-center integral technique
are given in Appendix A.1.

The matrix elements of the local potentials, V‘;‘C,(R):
(| V| 0), with

V() = VHr) + V() + V() (19)

are evaluated on a uniform grid in real space. Here V*(r) is the sum
of all local pseudopotentials. We first evaluate the local potential
VP (r) on each grid point: the local pseudopotentials and Hartree
potentials are calculated using techniques adapted from PW basis,
ie., they are first calculated in the reciprocal space, and then
Fourier transformed to the real-space grid. The exchange-correla-
tion potential can be directly evaluated on the real-space grid.
Once we have V'(r), the matrix elements V[(R) are directly
summed over the real-space grid. More details on the grid-based

integral technique for the local potentials are given in Appendix
A.2. The grid integrals are one of the most time consuming parts
in the algorithms based on atomic orbitals. However, the computa-
tion efforts of the grid integrals only scale linearly with the system
size, and can be easily parallelized.

2.4. Kohn-Sham equation solvers

After the Hamiltonian and overlap matrices are constructed, the
Kohn-Sham equations are solved separately at each k-point, which
amounts to solving a generalized eigenvalue problem. This consti-
tutes the major computational bottleneck for systems larger than a
few hundreds of atoms. Standard diagonalization method scales as
O(N?), where N is the matrix dimension. There are a few parallel
matrix eigenvalue solvers available. ABACUS uses a package named
High Performance Symmetric Eigenproblem Solvers (HPSEPS)
developed by the Supercomputing Center of Chinese Academy of
Science, to diagonalize the Kohn-Sham Hamiltonian [27]. HPSEPS
provides parallel solvers for generalized eigenvalue problems con-
cerning large dimensions of matrix.

Recently, Lin et al. [28-30] developed the PEXSI technique,
which provides an alternative way for solving the Kohn-Sham
problem without using a diagonalization procedure. Compared to
linear scaling approach, PEXSI does not rely on the nearsightedness
principle either to truncate density matrix elements. In a I"-point
calculation, the basic idea of PEXSI can be illustrated as follows.
Denote by M the number of atomic orbitals, &(r)=
[¢1(x), ..., ¢u(r)] the collection of all atomic orbitals in the real
space, and y(r,r’) the single particle density matrix in the real
space. Then the PEXSI approach first expands j(r,r) using a
P-term pole expansion as

of

P
Hrr) = OO (V) ~ ‘D(r)[m<ZH(z,+eF)s) > (r). (20)
=1

Here H, S, I' are the Hamiltonian matrix, the overlap matrix and
the single particle density matrix represented under the atomic
orbital basis set @, respectively. €r is the chemical potential or
Fermi energy. The complex shifts {z;} and weights {0/} are deter-
mined through a simple semi-analytic formula, and takes negligible
amount of time to compute. The number of terms of the pole expan-
sion is proportional to log(BAE), where § is the inverse of tempera-
ture and AE is the spectral radius, which can be approximated by
the largest eigenvalue of the (H,S) matrix pencil. The logarithmic
scaling makes the pole expansion a highly efficient approach to
expand the Fermi operator.

At first it may seem that the entire Green'’s function-like object

[H— (z + €)S] " needs to be computed. However, if we target the
electron density p(r) = j(r,r), then only {[(Hf (z1 + eF)S)”]
v

| Hyy # 0} are actually needed. A selected inversion algorithm can
be used to efficiently compute these selected elements of the
Green’s function, and therefore the entire electron density. The
computational cost of the PEXSI technique scales at most as
O(N?*). The actual computational cost depends on the dimensional-
ity of the system: the cost for quasi-1D systems such as nanotubes
is O(N) i.e. linear scaling; for quasi-two-dimensional systems such
as graphene and surfaces (slabs) the cost is O(N'?); for general
three-dimensional bulk systems the cost is O(N?). This favorable
scaling hinges on the sparse character of the Hamiltonian and over-
lap matrices, but not on any fundamental assumption about the
localization properties of the single particle density matrix. This
method is not only applicable to the efficient computation of elec-
tron density, but also to other physical quantities such as free
energy, atomic forces, density of states and local density of states.
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All these quantities can be obtained without computing any eigen-
values or eigenvectors. For instance, the atomic force for atom i in
species o can be computed as

oH : 0S
Fyi~—Tr [r 8%} 4 Tr {r 8%}, (21)

where the first part is independent of PEXSI algorithm and will be
discussed in the next subsection. The second term in Eq. (21)
depends on the energy density matrix, which is written as

lmZH ares (22)

This matrix is given again by pole expansions with the same poles as
those used for computing the charge density, with different weights
{wf}. For more detailed information we refer readers to Refs.
[30,31]. In order to use the PEXSI technique for multiple k-point cal-
culations, we need to work with the Green’s function of a
non-Hermitian Hamiltonian that is only structurally symmetric.
The massively parallel selected inversion method for
non-Hermitian but structurally symmetric matrices are currently
under development, and will be integrated into ABACUS in the
future to perform large scale electronic structure calculations with
multiple k-point sampling.

Compared to existing techniques, the PEXSI method has some
notable features: (1) The efficiency of the PEXSI technique does
not depend on the existence of a finite Highest Occupied
Molecular Orbital (HOMO)-Lowest Unoccupied Molecular Orbital
(LUMO) gap, and can be accurately applied to general materials
systems including small gapped systems and metallic systems.
The method remains accurate at low temperatures. (2) The PEXSI
method has a two-level parallelism structure and is by design
highly scalable. The recently developed massively parallel PEXSI
technique can make efficient use of 10,000-100,000 processors
on high performance machines. (3) As a Fermi operator expansion
based method, PEXSI allows the use of a hybrid scheme that com-
bines density of states estimation based on Sylvester’s law of iner-
tia with Newton’s method to obtain the chemical potential. This is
a highly efficient and robust approach with respect to the initial
guess of the chemical potential, and is independent of the presence
of gap states. (4) PEXSI can be controlled with a few input param-
eters, and can act nearly as a black-box substitution of the diago-
nalization procedure commonly used in electronic structure
calculations.

In order to benefit from the PEXSI method, the Hamiltonian and
overlap matrices must be sparse, and this requirement is satisfied
when atomic orbitals are used to discretize the Kohn-Sham
Hamiltonian. The sequential version of PEXSI has been demon-
strated before with ABACUS [30], and the massively parallel ver-
sion of PEXSI is recently integrated with SIESTA [31] for studying
large scale systems with more than 10,000 atoms with insulating
and metallic characters on more than 10,000 processors. The paral-
lel PEXSI method is to be integrated with ABACUS.

2.5. Total energy and force calculations

Once the Kohn-Sham equation is solved, one can obtain the
total energy of the system using the Harris functional [32],

E[ot _ Eband _ / VHXC(r)p(r)dr—i- EH + EX¢ + E", (23)

where E?™ is the Kohn-Sham band energy, which is the summation
over occupied Kohn-Sham orbital energies. E¥, E* and E" are the
Hartree energy, the exchange-correlation energy, and the
Coulomb energy between ions respectively. The second term in
the above equation is the so-called double-counting energy arising

from the Hartree and exchange-correlation potential, which have
been included in the band energy term. If the Kohn-Sham equation
is solved by matrix diagonalization, then the band energy is the
summation of the Kohn-Sham eigenvalues €, of all occupied
bands, i.e.,

1
pand _ menkenk_ (24)
nk

Alternatively, if the PEXSI method is chosen to be the Kohn-Sham
equation solver, the band energy is calculated as (only for I'-point
now)

E"" = Tr[pH], (25)

where p is the density matrix and H is the Hamiltonian matrix. The
Hartree and exchange-correlation energies are calculated on a uni-
form real-space grid, and E" are calculated by the Ewald summation
technique [33].

The forces acting on the ions are given by the derivative of the
total energy with respect to the atomic coordinates. Analytical
expressions for forces computed with atomic basis sets are more
sophisticated than those with the PW basis sets. Besides the
Feynman-Hellmann forces, Pulay forces [34] due to the change
of the atomic basis sets during a structural relaxation should also
be considered.

Therefore, we rewrite the total energy as the sum of two parts:
E™ = E + E" where E® is the electronic part of the total energy in
Eq. (23), while E" is the energy due to the Coulomb interactions
between ions. Then the total force experienced by the i-ion of type
o is
F) Etat F) EI(S K EII

Fp=-2 & &
. OTyi 0Ty OTyi

(26)

After some derivations (more details are given in Appendix A.3), we
arrive at

OE®

= , R
0Ty ZR:%:[) ol arm
with

oH,,(R OH 9¢ o,rlH v0
au c{(i ) <¢uR|a—m‘¢"0> + < #R |H|</)‘o> < ,uR| ‘d(i) >
(28)

5} v
%) ST RE )

R w

Note that u = {o,1,1,m,{} is the compact index for the atomic orbi-
tals. The first term of the above equation is the Feynman-Hellmann
force [35], whereas the rest two terms yield the so-called Pulay

forces [34]. Following Ref. [6], one can prove that the term related
opu(R)
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is the element of “energy density matrix”. In the above equation, €
is the band energy for band n at wave vector k. This term arises
because the atomic orbitals are not orthogonal.

Similar to the total energy evaluation, different force terms are
also evaluated using different techniques to maximize the effi-
ciency of force calculations. Specifically, due to the long range tail
of local pseudopotential in real space, it is better to calculate it in
reciprocal space using PW basis set, and this is how Feynman-
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Hellmann force associated with the local pseudopotentials is
implemented. Another advantage of this implementation is that
the derivative of the local pseudopotential can be easily done in
reciprocal space. By taking advantage of the short-range character
of the non-local pseudopotential operators and atomic orbitals, the
force terms including the Feynman-Hellmann force arising from
the non-local pseudopotential operator, the Pulay forces arising
from the kinetic energy operator, as well as the non-orthogonal
forces, are calculated using two-center integral techniques.
Finally, the Pulay forces associated with the local potentials are
evaluated by grid integrals. Here the local pseudopotentials are
first evaluated in reciprocal space and Fourier transformed to a
real-space mesh. Technical details on the force calculations can
be found in Appendix A.3.

With the capability of calculating forces efficiently, a structural
relaxation can be done by searching the local minimum in poten-
tial energy surface. Two algorithms for structural relaxations are
implemented, namely the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method [36] and the conjugate gradient (CG) method [37].

3. Results

In this section, benchmark results obtained from ABACUS are
presented for a variety of systems, including molecules, crystalline
solids, surfaces, and defects. The tested atomic species cover both
main-group elements and transition metal elements. In particular,
the convergence of calculated physical properties are tested with
respect to the size of CGH orbitals. The tested basis sets form a
hierarchy by spanning from single-{ (SZ), double-{ (DZ), double-{
plus polarization functions (DZP), to triple-{ plus double polariza-
tion functions (TZDP), and quadrupole-{ plus triple polarization
functions (QZTP). In the following tests, we refer to these basis sets
as atomic basis sets, or equivalently, as linear combination of
atomic orbitals (LCAO). The references for the tested properties
are chosen to be those calculated by converged PW basis set with
the same pseudopotentials. Available experimental results are also
included for comparisons.

The naming of basis sets depends on the valence electrons of
each element. For example, SZ refers to a single s orbital for ele-
ments that have only s valence electrons, such as alkali metal ele-
ments. For elements that have p valence electrons, SZ refers to a
single s orbital plus three p orbitals, such as first- and
second-row non-metal elements. Furthermore, for transition metal
elements, SZ refers to one s orbital, three p orbitals plus five d orbi-
tals. Here the number of orbitals on each angular momentum
channel is (2] + 1), where [ is the angular momentum quantum
number. The polarization functions refer to orbitals that have
higher [ than the maximal one used in a SZ basis set. Specifically,
in a SZ basis set that contains only one s orbital, the p orbitals
are referred to the polarization functions; in a SZ basis set that
has both s and p orbitals, the d orbitals are indicated as the polar-
ization functions. Finally, for transition metals which use all s, p, d
orbitals in a SZ basis set, the f orbitals are the polarization
functions.

Two more parameters are needed to define a CGH atomic orbi-
tal. First, because CGH atomic orbitals are generated by an opti-
mization procedure that is based on the results from PW
calculations of target systems (typically diatomic molecules here),
thus the generated set of atomic orbitals depend on a specific
energy cutoff (E.,) used in PW calculations. Second, all CGH atomic
orbitals are enforced to be strictly localized within a radius Rcy,
beyond which the atomic orbitals are set to be exactly zero.
Table 1 lists both parameters for 24 elements that will be used in
the followings to test physical properties of systems.

Table 1
Energy cutoff E (in Ry) and radius cutoff R.,¢ (in Bohr) parameters of the LCAO basis
functions for 24 different elements used in this paper.

Element Ecut (Ry) Recye (Bohr) Element Ecut (Ry) Reue (Bohr)
H 50 6 Cl 50 8
Li 30 12 Ti 100 10
C 50 8 Fe 100 10
N 50 8 Cu 100 8
(o] 50 8 Ga 50 9
F 50 8 Ge 50 9
Na 20 12 As 50 9
Mg 20 12 Br 50 9
Al 50 9 Br 50 9
Si 50 8 In 50 9
P 50 9 Sb 50 9
S 50 8 1 50 9

Compared to a PW basis set which can be systematically
increased to reach arbitrary accuracy in a calculation, the accuracy
of the existing LCAO basis sets are known to be difficult to improve
systematically. However, our construction strategy for numerical
atomic orbitals described in Section 2.2 can in principle guarantees
a systematic convergence towards the PW accuracy for the target
system. We note that, for general systems, the convergence behav-
ior of an atomic basis set should be checked a posteriori. This is car-
ried out separately for molecules in Section 3.2 and for solids in
Section 3.3. Among all these tests, first of all, let us look into one
numerical issue that is very common in atomic-orbital based calcu-
lations - the so-called eggbox effect [38]| - which occurs when the
integrals of matrix elements are evaluated on a finite, uniformly
spaced real-space grid.

3.1. Eggbox effect

The eggbox effect refers to the artificial rippling of the
ground-state total energy as a function of the atomic displace-
ments relative to an uniform real-space grid points [38,39].
Specifically, it arises from the numerical errors in evaluating the
integrals of a Hamiltonian operator with respect to the local orbi-
tals on a finite uniform real-space grid. This effect is completely
artificial but considerably complicates the calculations of forces
acting on atoms and phonon dispersions. Naturally, the denser
the real-space grid is - corresponding to a higher energy cutoff
in the reciprocal space, the smaller in magnitude that the rippling
of the ground-state total energy will be. Conversely, if an atomic
orbital in the real space is designed in a cautious way that the
high-energy components of its Fourier transform are suppressed,
then a less denser real-space grid is needed. Based on this princi-
ple, Anglada and Soler proposed an efficient filtering procedure
[38] to effectively suppress the high-energy components of their
local orbitals, without sacrificing the locality of these basis func-
tions. This procedure has been shown to work well in the SIESTA
package [40]. In the ABACUS package, our basis functions are auto-
matically confined in the reciprocal space below a certain energy
cutoff during the construction processes.

Consequently, we show the simulated results for diatomic
molecules Si;, 0, and Mn, at their equilibrium distances in
Fig. 1. Unless otherwise stated, the molecular calculations are all
done under the periodic boundary conditions. A cubic box with a
side length of 20 Bohr is chosen for all three molecules. The atomic
basis set is chosen to be DZP. As illustrated in Fig. 1, the eggbox
effects are exceedingly small for these molecules. In particular,
for Si; and O,, the oscillations of the total energy are within
1 meV, while the force oscillations are within 1 meV/A. The oscilla-
tion of force for Mn, is most pronounced, but is still within
10 meV/A. This accuracy is sufficient for most practical purposes.
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Fig. 1. Eggbox effects for Siy, O,, and Mn, molecules. The unit in the x axis is the
spacing between neighboring real-space grid points, which amounts to 0.21 Bohr
for an energy cutoff of 50 Ry.
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Fig. 2. Total energy of the N, molecule as a function of the bond length for a
sequence of increasing LCAO basis sets. The PW results are also shown for
comparison.

On top of these oscillation patterns, the additional wiggling pat-
terns of the energy and force curves for O, and Mn, have not been
well understood, but these only occur at a smaller energy scale and
have not caused any problems so far. As will be shown in
Section 3.4, accurate structural relaxations can be carried out with-
out further corrections for the eggbox effect.

3.2. Molecules

Having the eggbox effect under control, we now look into the
convergence quality of atomic basis set for small molecules.
Similar to the eggbox test cases, a cubic cell with a side length
20 Bohr is chosen here to avoid the artificial interactions between
a molecule and its images. Taking N, as an example, we plot its
ground-state energy versus its bond distance in Fig. 2. The hierar-
chical basis sets using in this calculation range from SZ to QZTP.
The reference is obtained from PW calculations. As illustrated in
Fig. 2, as the size of the atomic basis set increases, the total energy
of the N, molecule converges systematically towards the PW limit.
From these curves, one can deduce the equilibrium bond length,
atomization energy, and vibrational frequency of the N, molecule.
These quantities obtained with atomic basis sets for a selected
molecular set can be used to validate the convergence quality of
the localized basis sets, when compared to the corresponding
results obtained from PW calculations.

In the followings, we present the benchmark results for bond
lengths, atomization energies, and vibrational frequencies for 11
chemically bonded diatomic molecules. Followed by the interac-
tion energies of the S22 molecular test set [41], obtained by the
DFT-D method [14] as implemented in ABACUS. The first test is
used to validate our methods for chemically bonded dimers while
the second one is for weakly bonded systems.

3.2.1. Bond lengths

The bond length of a molecule is an important quantity. In
Table 2, the calculated bond lengths of 11 diatomic molecules are
presented for atomic basis sets range from SZ to QZTP. The PW
results are also shown, and the experimental data are taken from
Refs. [42,43]. Both LDA [2,44] and PBE [45] exchange-correlation
functionals are used.

As shown in Table 2, all the calculated equilibrium bond lengths
systematically approach the corresponding PW results with
increased atomic orbital basis sets. Specifically, the mean absolute
error (MAE) for the DZP basis set is 0.018 A for both LDA and PBE
calculations. This accuracy is sufficiently good for most practical
purposes. When going beyond DZP to TZDP and QZTP basis sets,
the MAEs become even smaller; at the QZTP level, the MAE is only
0.004 A for LDA and 0.003 A for PBE.

For alkali-metal elements, the construction of high-quality
localized atomic orbitals [6,46] is highly challenging because these
orbitals tend to be very diffusive and have a longer tail than the
atomic orbitals of other elements. However, by using CGH orbitals,
we found that a rather satisfactory description of the molecular
bonding involving alkali metal atoms can be achieved, as can be
seen from the examples of Na, and LiH in Table 2, if a large cutoff
radius, i.e.,, between 10 Bohr and 12 Bohr, is used. The same obser-
vation holds for alkali metal elements in bulk materials, as will be
shown in Section 3.3.

The experimental values in Table 2 are only shown for compar-
ison purpose, and not for benchmark purpose. In all tests of bond

Table 2

Bond lengths (in A) of diatomic molecules obtained with various sets of atomic
orbitals, in comparison with PW results and experimental data (EXP). Both LDA and
PBE results are shown. The MAEs of atomic basis sets are obtained with reference to
the PW results.

Molecules  SZ Dz DZP TZDP QZTP PW EXP
LDA

N, 1.227 1.121 1.107 1.098 1.096 1.095 1.098
0, 1.086 1.132 1.192 1.195 1.196 1.198 1.208
Sz 1.683 1.724 1.852 1.869 1.870 1.871 1.889
F, 1.304 1.331 1.398 1.402 1.402 1.405 1.412
Cl, 1.848 1.877 1.932 1.949 1.951 1.952 1.988
Br, 2035 2184 2211 2226 2233 2240 2.281
I 2479 2563 2608 2.623 2.634 2.641 2.665
Li, 2.503 2,570 2.627 2639 2639 2642 2.673
Na, 2.901 2972  3.028 3.038 3.041 3.053  3.079
co 1.271 1.157 1.136 1.125 1.125 1.123 1.128
LiH 1.659 1.688 1.621 1.597 1.597 1.599 1.595
MAE 0.137  0.072 0.018  0.006 0.004 / /

PBE

N, 1.253 1.167 1.109 1.103 1.103 1.101 1.098
0, 1.289  1.251 1.225 1.218 1214 1.211 1.208
Sz 1.981 1.929 1.903 1.892 1.891 1.891 1.889
F» 1.319 1.352 1.402 1.413 1.416 1.418 1.412
Cl, 2195 2,087 2019 2,006 2.003 2.001 1.988
Br, 2457 2396 2330 2313 2304 2292  2.281
I 2837 2782 2718 2693  2.681 2674  2.665
Li, 2770 2710 2,699 2690 2.690 2.687 2.673
Na, 3265 3.187 3.103 3.094 3.094 3.092 3.079
co 1.140 1.133 1.130 1.129 1.129 1.129 1.128
LiH 1.748 1.668 1.612 1.608 1.607 1.605 1.595
MAE 0.133  0.065 0.018  0.007 0.003 / /
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Table 3

Atomization energies (in eV) of molecules obtained with various sets of atomic
orbitals, in comparison with PW and experimental results (EXP). The MAEs of atomic
basis sets are obtained with reference to the PW basis set.

Molecule SZ DZ DZP TZDP QZTP PW EXP
LDA

N, 6.882 9.566 11.007 11.162 11.183 11.193 9.759
0, 5.636 6.495 7.437 7.491 7.506 7.542 5.117
S, 3.990 4.540 4.850 4.944 4.985 5.006 4.370
F, 0.746 0.995 1.834 1.876 1.886 1.917 1.601
Cl, 1.430 1.648 2.871 2912 2912 2943 2.480
Br, 1.698 2.086 2342 2.381 2393 2412 1.971
I 1.179 1.457 1.931 1.943 1.965 1.984 1.542
Li, 1.323 1.135 1.111 1.106 1.104 1.083 1.037
Na, 1.134 0.998 0.964 0.933 0.933 0.902 0.735
co 10.252 11.099 12.722 12.741 12.754 12.758 11.108
LiH 1.585 2.218 2.633 2.684 2.684 2664 2415
MAE 1.408 0.769 0.080 0.034 0.022 / /

PBE

N, 6.389 8.727 10375 10.592 10.592 10.623 9.759
0, 4.712 5.183 6.043 6.133 6.145 6.190 5.117
S, 4.032 4.467 4.602 4.664 4.747 4788 4370
F, 0.852 1.239 1.786 1.815 1.820 1.834 1.601
Cl, 1.552 2.196 2.682 2.714 2721 2734 2480
Br, 1.329 1.783 2.024 2.065 2.086 2.105 1.971
I 1.085 1.293 1.642 1.685 1.704 1.728 1.542
Li, 1.306 1.124 1.096 1.088 1.087 1.062 1.037
Na, 1.106 0.943 0.902 0.881 0.881 0.850 0.735
co 10.622 10969 11.518 11.569 11.576 11.609 11.108
LiH 2.975 2684  2.643 2.622 2.612 2.601 2415
MAE 1.083 0.545 0.097 0.041 0.026 / /

lengths, as expected, the converged LDA bond lengths are system-
atically smaller than the corresponding experimental values, while
the converged PBE values show the opposite behavior.

3.2.2. Atomization energies

The atomization energy refers to the energy cost to split a mole-
cule into individual atoms. It is an important property in thermo-
chemistry. The benchmark for the atomization energy are done
using the same diatomic molecular set and hierarchal atomic orbitals
as used for bond-length tests. The results are presented in Table 3. For
open-shell atoms, the spin-polarized, symmetry-broken solution
usually has the lowest ground-state energy, and is thus taken here
as the reference of calculated atomization energy. As can be seen from
Table 3, for all molecules, the atomization energies obtained with the
atomic basis sets converge systematically towards the PW limit.

Quantitatively, however, the accuracy of atomization energies
obtained with atomic basis sets is not so spectacular as the one of
geometrical properties. In particular, the atomization energies from
SZ basis are indeed too small; the corresponding MAE is over 1 eV.
The MAE is improved by about a factor of 2 when the basis set goes
from SZ to DZ, but is still far from satisfactory. A dramatic improve-
ment is achieved at the DZP level where a MAE around 0.1 eV is an
acceptable accuracy for most practical purposes. Nevertheless, to
reach the “chemical accuracy” (1 kcal/mol ~ 0.043 eV), one has to
go further in the hierarchy of atomic basis sets. The “chemical accu-
racy” is almost reached with the TZDP basis (0.034 eV for LDA and
0.041 eV for PBE) and well reached with QZTP (0.022 eV for LDA and
0.026 eV for PBE). Here, the so-called basis-set error is much smal-
ler than the errors of the energy functionals. For this diatomic
molecular test set listed in Table 3, on average PBE overbinds by
0.36 eV and LDA overbinds by 0.75 eV by comparing the converged
PW results to the experimental ones.

3.2.3. Vibrational frequency

For a given molecule, the equilibrium bond length and the
atomization energy reflect the position and depth of the minimum
in its potential energy surface, respectively, and the vibrational

frequency probes the curvature of the potential energy surface
around the equilibrium geometry. The vibrational frequency can
be measured directly by experiment and is a powerful probe of
structural and bonding characteristics of a molecule.

In Table 4, we present the calculated vibrational frequencies for
the same molecular test set and basis sets used before. Compared
to the PW reference results, the MAE is reduced dramatically when
the basis set goes from SZ to DZP. Specifically, at the DZ level the
MAEs are 65 cm™! for LDA and 47 cm~! for PBE, and these numbers
are further reduced to 6 cm~' when the basis set increased from
the DZ to DZP. The results indicate the importance of polarization
functions in an atomic basis set to accurately describe the curva-
ture of the potential energy surface. Nevertheless, unlike the tests
for bond lengths and atomization energies of molecules, increasing
the size of basis set does not guarantee a better description of these
vibrational frequencies. We see that when CGH basis set goes
beyond DZ, it still introduces around 6 cm™! error for the vibra-
tional frequencies of molecules comparing to PW calculation
results. We suspect that the remaining (almost a constant) error
comes from the finite difference approach used in our vibrational
frequency calculations, but this still needs to be checked in future.
Overall speaking, this accuracy is already excellent for most prac-
tical purposes.

3.2.4. Weak interaction energy

In the previous tests, we have demonstrated the convergence
behavior of our basis sets for chemically bonded diatomic mole-
cules. In a sense, the good performance of these atomic basis sets
for the tested molecules is not surprising, since the
homo-nuclear diatomic molecules are the target systems when
generating atomic orbitals. Now we turn to the study of bigger
and more weakly bonded molecules - the S22 test set [41]. This
test set contains 22 weakly interacting molecular complexes that
include hydrogen bonding, dispersion interaction, and mixed
bonding types. Since its inception, the S22 test set has been widely

Table 4

Vibrational frequencies (in cm™') of molecules obtained with various sets of atomic
orbitals, in comparison with PW and experimental results (EXP). Results from both
LDA and PBE are shown. The MAEs are calculated based on the results from atomic
basis set and PW basis set.

Molecules  SZ DZ DZP  TZDP QZIP PW EXP
LDA

N, 1857 2261 2378 2394 2391 2370 2359
0, 1246 1329 1558 1581 1582 1567 1580
S, 517 675 717 719 719 721 726
F, 813 885 920 915 917 924 917
cl, 498 524 561 560 562 567 560
B2, 471 382 341 341 339 332 325
I, 345 234 199 199 201 206 215
Li 306 331 342 340 340 339 351
Na, 129 141 151 148 150 147 159
co 1631 1998 2130 2130 2130 2130 2170
LiH 1107 1286 1327 1330 1334 1341 1406
MAE 207 69 6 8 7 / /
PBE

N, 1938 2397 2374 2378 2380 2365 2359
0, 1297 1414 1567 1567 1566 1572 1580
S, 546 684 721 718 716 723 726
F, 758 872 914 917 918 920 917
cl, 47 517 562 566 564 563 560
B2, 459 374 339 340 333 329 325
I, 318 249 224 224 222 219 215
Li, 313 335 345 345 344 342 351
Na, 132 145 151 151 150 149 159
co 1728 2075 2147 2149 2147 2144 2170
LiH 1104 1296 1332 1339 1341 1348 1406
MAE 192 48 6 6 5 / /
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Fig. 3. PBE-D2 interaction energies of the S22 molecules obtained with increasing
LCAO basis sets, with reference to the CCSD(T) results (the zero dash line). The
results from PW basis set and Gaussian TZV(2df,2pd) (Ref. [47]) basis set are shown
for comparison. Lines are used to guide the eye.

Table 5

Lattice constants (in A) of 20 solids obtained from various LCAO basis sets, compared
to the PW and experimental (EXP) results. Experimental data (corrected for zero-
point anharmonic effects) are taken from Refs. [51,52].

Solid sz DZ DZP  TZ(DP)  QZ(P) PW EXP
GaAs 563 559 557 555 5.55 554 564
GaP 543 540 535 533 5.34 534 544
GaN 430 435 440 441 441 441 452
InAs 601 597 597 596 5.96 596  6.05
InP 584 581 579 578 5.78 578 586
InSb 646 640 639 639 6.39 638 647
AlAs 576 570 562 561 5.61 560 565
AlP 555 551 542 541 5.41 540 545
AIN 439 433 429 427 427 427 437
C 363 355 351 350 3.50 350 355
Si 559 553 541 540 5.40 540  5.42
Ge 573 569 564 561 5.61 561 564
LiF 415 394 390 388 3.88 388 397
NaCl 562 554 551 550 5.50 550 557
MgO 396 402 406 407 4.07 407 419
Na(bcc) 351 394 405 406 4.06 408 421
Al (fcc) 371 381 387 390 3.91 393 402
Cu(fcc) 326 351 3.52 3.53 353  3.60
Fe(bcc) 245 258 2.72 2.72 273 286
Ti(hcp) 261 278 2.80 2.80 281 296
MAE 016 007 002 001 0.01 / /

used to benchmark computational methods that deal with van der
Waals (vdW) interactions.

Each member in the S22 test set is a molecular dimer that con-
tains two monomers interacting with each other. The interaction
energy is defined as the difference between the total energy of
the dimer and the sum of the total energies of the two individual
monomers in their fully relaxed geometries. In this work, the inter-
action energies of the S22 molecules are calculated using the
DFT-D2 method of Grimme [47], specifically PBE-D2, as recently
implemented in ABACUS.

The calculations for S22 molecules are still done with the super-
cell approach with cubic boxes that are sufficiently large (up to
50 Bohr side length) to avoid artificial interactions between the
molecule and it the periodic images. Fig. 3 presents the interaction
energy differences of the S22 molecules calculated from two meth-
ods. The first is PBE-D2 with various atomic basis sets and PW basis
set, while the second is the coupled-cluster theory with singles,
doubles, and perturbative triples [CCSD(T)] [48] in the complete
basis set limit. The results of Grimme as reported in Ref. [49],
obtained using the Gaussian TZV(2df,2pd) basis set [50], are also
plotted in Fig. 3 for comparison. The CCSD(T) reference is indicated

in Fig. 3 by the dash line at energy zero. It can be seen that by
increasing the number of atomic orbitals, the results from atomic
orbitals systematically approach the PW results, and on average
get closer to the CCSD(T) references. This trend again validates
the transferability of our atomic basis set. The quality of the
Gaussian TZV(2df,2pd) is somewhere between the qualities of
DZP and TZDP basis sets. Regarding the performance of the
PBE-D2 method itself, it can be concluded that the ABACUS pack-
age with atomic basis set is very suitable for describing vdW forces.

3.3. Solids

In Section 3.2, we have validated the accuracy of ABACUS with
its associated atomic basis sets for molecular properties. Here we
turn to the test of crystalline solids. This is a crucial check for the
transferability of the atomic basis sets, because they are generated
from diatomic systems and are now used to test solid systems. In
analogy to the bond lengths, atomization energies, and vibrational
frequencies for molecules, here we benchmark the lattice con-
stants, cohesive energies, and bulk moduli for solids.

Twenty crystalline solids are chosen as a test set that covers
group III-V and group IV semiconductors, alkaline and
alkaline-earth metals, alkaline chloride, as well as transition met-
als. The lattice constants and bulk moduli of group III-IV and group
IV semiconductors obtained using ABACUS have already been
reported in Ref. [9]. They are included here for completeness.
Since here we are mainly interested in the convergence behavior
of the LCAO basis sets instead of the performance of the
exchange-correlation functionals, in this test only the LDA is used
for simplicity, except for Fe we choose PBE which yields the correct
body-centered-cubic (bcc) ground-state crystal structure. For tran-
sition metal elements, TZ (3s3p3d) and QZ (4s4p4d) basis sets are
used because adding the polarization functions (f orbitals) does
not make a noticeable difference. Note that these TZ/QZ basis sets
are grouped together with other TZDP/QZTP basis sets for the sta-
tistical error analysis of energy differences in Tables 5-7. Similar to
the molecular test case, PW basis results are also reported in these
tables as references using the same energy cutoffs and pseudopo-
tentials as in LCAO calculation. The MAEs are obtained between
the results from atomic basis sets and the PW basis set. Both sim-
ulations were carried by ABACUS.

Monkhorst-Pack (MP) k-point meshes are used for the BZ sam-
pling. Specifically, a 4 x 4 x 4 k-point mesh is used for semicon-
ductors range from GaAs to Ge. A 6 x 6 x 6 k-point mesh is used
for LiH, NaCl, and MgO. A denser 10 x 10 x 10 k-point mesh is used
for metals include bcc Na, face-centered-cubic (fcc) Al, fcc Cu, and
bcc Fe. Finally, a 10x 10 x7 Kk-point mesh is used for
hexagonal-close-packed (hcp) Ti. For transition metals, the
semi-core electrons are treated as valence electrons for Ti, but
not for Fe and Cu. For the geometry optimization of Ti hcp struc-
ture, the optimal c/a ratio is 1.590 by determining the minimum
of a two dimensional (a, ¢) energy landscape, with a and ¢ being
the lengths of the lattice vectors in the hcp structure.

3.3.1. Lattice constants

Table 5 shows the lattice constants of tested crystalline solids
obtained with our hierarchical LCAO basis sets, in comparison with
the PW results, as well as experimental data as collected in Refs.
[51,52]. As illustrated in Table 5, the calculated lattice constants
of solids converge systematically with respect to the LCAO basis
set size. For the tested solids, an MAE of 0.02 A can be achieved
with the DZP basis set, while an MAE of 0.01 A can be reached at
the level of TZ(DP) basis set. This accuracy is comparable to that
achieved for bond lengths of molecules, and confirms that the
structural properties are well described with the LCAO basis sets.
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Table 6

Cohesive energies (in eV/atom) of 20 solids at their equilibrium lattice constants
obtained from various LCAO basis sets, compared to the PW and experimental (EXP)
results. The experimental data are taken from Ref. [53], corrected for the zero-
temperature vibration effect as done in Ref. [51].

Solid Sz DZ DzP  TZ(DP)  QZTP) PW EXP
GaAs 3.14 3.73 3.99 4.01 4.01 4.01 3.34
GaP 3.42 4.01 4.16 4.18 418 4.18 3.61
GaN 433 5.03 5.25 5.27 5.28 5.28 4.55
InAs 2.72 3.47 3.78 3.82 3.83 3.84 3.08
InP 3.15 3.95 417 4.21 4.21 4.22 3.47
InSb 247 3.20 3.48 3.53 3.55 3.55 2.81
AlAs 3.69 418 4.34 4.57 437 437 3.82
AlIP 4.08 4.57 4.75 4.77 4.77 4.77 4.32
AIN 5.34 6.29 6.46 6.48 6.49 6.49 5.85
C 8.06 8.53 8.72 8.74 8.75 8.75 7.55
Si 4.08 4.76 5.20 5.22 5.24 5.25 4.68
Ge 3.75 424 4.55 4.58 4.59 4.60 3.92
LiF 417 4.62 4.88 4.90 4.90 4.90 4.46
Nacl 2.49 3.20 3.51 3.52 3.52 3.56 3.34
MgO 4.63 5.46 5.72 5.74 5.74 5.77 5.20
Na(bcc) 0.98 1.10 1.25 1.27 1.27 1.27 1.12
Al(fcc) 3.18 3.79 3.95 3.96 3.96 3.97 3.43
Cu(fcc) 3.65 417 / 4.46 4.48 4.50 3.52
Fe(bcc) 554 518 5.10 5.08 508 430
Ti(hcp) 4.82 5.24 / 5.33 5.35 5.36 4.88
MAE 0.85 0.26 0.04 0.01 0.01 / /
Table 7

Bulk Moduli (in GPa) of 20 solids at their equilibrium lattice constants obtained from
various LCAO basis sets, compared to the PW and experimental (EXP) results. The
experimental data are taken from Ref. [51] except for Fe and Ti (Ref. [54]).

Solid sz DZ DZP TZ(DP)  QZTP) PW EXP
GaAs 66.5 683  75.1 76.8 768 772 76
GaP 80.7 823 898 94.1 937 924 89
GaN 187.5 2038 2096  207.3 2079 2082 210
InAs 59.5 658 672 67.3 67.2 679 60
InP 743 758  77.2 79.5 80.3 81.4 71
InSb 450 486 499 499 50.2 514 47
AlAs 62.9 714 742 74.6 746 753 77
AlP 70.1 785 862 87.4 87.7 883 86
AIN 1929 2027 2053 2084 2078 2072 202
C 4287 4428 4593 45904 4585 4582 443
Si 72.3 782 939 93.9 93.5 93.3 99
Ge 534 673  71.1 72.0 728 735 76
LiF 441 585 602 61.1 61.3 62.6 70
NaCl 147 221 294 296 208 301 27
MgO 1286 1654 1677 1719 1713 1702 165
Na(bcc) 59 68 7.0 7.0 70 71 8
Al(fec) 70.2 749 758 76.0 760 762 79
Cu(fcc) 1208 1473/ 149.4 150.2 1506 142
Fe(bcc) 968 1604 / 161.1 161.8 1650 170
Ti(hcp) 528 1133 / 1224 1229 1245 110
MAE 21.2 58 21 12 0.8 / /

In addition, it can be seen that the convergence behavior of the
basis sets for simple and transition metal elements are very similar
to that for group III-V and group IV elements.

3.3.2. Cohesive energies

The cohesive energies of the tested solids at their equilibrium
lattice constants are presented in Table 6. Again, the general trend
that the LCAO results systematically approach the PW limit can be
observed. It is also interesting to point out that the LCAO basis sets
show even better convergence behavior for cohesive energies of
solids than atomization energies of molecules. For example, at
the DZP level, the MAE is only 0.04 eV for the cohesive energies
of solids, compared to 0.09 eV for the atomization energies of
molecules. The same behavior holds for higher levels of basis sets

such as TZDP and QZTP, where the MAEs of 0.01 eV for solids are
also twice smaller than those of molecules.

3.3.3. Bulk moduli

The bulk modulus is another key property of solids, reflecting
the variation of the ground-state energy with respect to the unit
cell volume around the equilibrium state. In Table 7, the bulk mod-
uli of the tested solid are presented. Compared to the PW results,
the SZ basis set yields a large MAE of 21.2 GPa. However, this is
quickly reduced to 5.8 GPa at DZ level and 2.1 GPa at DZP levels,
this accuracy is sufficiently accurate for most purposes. For basis
sets larger than the DZP basis set, the MAEs are further reduced
to around 1.0 GPa, which are highly accurate. This convergence
behavior of the LCAO basis sets is similar to what was observed
for the calculated vibrational frequencies for tested molecules in
Section 3.2. In addition, similar to the cases of testing lattice con-
stants and cohesive energies, the quality of the basis sets is equally
good for transition metal elements as for main-group elements.

3.4. Si(100) surface reconstruction

In the previous tests for molecules and solids, we have estab-
lished the reliability of the ABACUS package and the accuracy of
its associated LCAO basis sets. Here we test a more “challenging”
problem - the reconstruction of the Si(100) surface. This surface
is technologically important for fabricating silicon-based devices
and has been intensively studied both theoretically and experi-
mentally. Different reconstruction models for the Si(100) surface
have been proposed in the past [55-58], and the energy hierarchy
among these different reconstructions have been examined by
both DFT (LDA) calculations [59] and by quantum Monte Carlo
[60] calculations. The small magnitude of energy differences
between these reconstructions offers an excellent testing ground
for ABACUS with the LCAO basis sets.

Three reconstructions of the Si(100) surface are considered in
the work, namely the p(2 x 1) symmetric [denoted as p(2 x 1)s
below], p(2 x 1) asymmetric [p(2 x 1)a], and p(2 x 2) reconstruc-
tions, as shown in Fig. 4(a-c). It is well known that the Si atoms
on the surface layer form dimers to lower the energy of the system
by removing one of the two dangling bonds [61]. In the p(2 x 1)s
reconstruction structure, the two atoms on the top layer come clo-
ser symmetrically, with bond length between them becomes
slightly shorter than the nearest neighbor distance in the Si bulk.
In the p(2 x 1)a case, the dimers buckle out of the Si(100) surface.
Finally, in the p(2 x 2) case, the buckled dimers change their orien-
tations alternatively (see Fig. 4(c)). Note that another c(2 x 4)
reconstruction exists where the adjacent buckled dimer rows

Fig. 4. Side view of three reconstruction structures for the Si(100) surface: (a)
p(2 x 1)s; (b) p(2 x 1)a; (c) p(2 x 2); and (d) zoom-in of the top three layers of the
p(2 x 1)a reconstruction structure.
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orientate oppositely. However, the energy lowering of this recon-
struction is almost identical to that of p(2 x 2) when using DFT
with LDA [59], thus this fourth reconstruction structure is not con-
sidered in this work.

Next we describe the computational setup of our simulations.
ABACUS is used with both LCAO DZP basis set and PW basis set.
Also, the Quantum ESPRESSO (QE) package [12] is used, which
serves as an independent check for the ABACUS package. The same
pseudopotential for Si is used for all three simulations. We model
the Si(100) surface by using a repeated slab which contains 12
atomic layers, because the structural distortion below the surface
layer extends 4-5 layers into the bulk as noticed before [62]. The
central two layers are fixed during the structural relaxation, and
only atoms in the outermost five layers on each side are allowed
to relax. The conjugate gradient algorithm is used for structural
relaxation with a force threshold of 0.01 eV/A. The slabs are sepa-
rated by a vacuum of 30 A thick to avoid artificial interactions
between neighboring slabs. When computing the energy differ-
ences of the p(2 x 1)s and p(2 x 1)a reconstructions with respect
to the ideal surface, the (2x1) unit cell in the x-y plane is used,
while in the case of the p(2 x 2) reconstruction, the (2x2) unit cell
is used for both relaxed and ideal surfaces. In all calculations, a
(6 x 6 x 1) k-point mesh is used.

Table 8 reports the energy lowings of the p(2 x 1)s, p(2 x 1)a,
and p(2 x 2) reconstructions with respect to the ideal Si(100) sur-
face. For the ideal Si(100) surface, we fix the surface structure
using the bond lengths in Si bulk. Table 8 shows an excellent agree-
ment between the ABACUS/PW results and the QE results. First,
from QE calculations, the successive energy decreases of the three
relaxation steps, ie., from the ideal surface to the p(2x1)s,
p(2x1) a, and p(2 x 2) reconstructed surfaces, are 1.504 eV,
0.086 eV, and 0.063 eV per Si dimer, respectively. These numbers
can be compared to the 1.80eV, 0.12 eV, and 0.05eV ones as
reported in Ref. [59]. The differences between results from QE
and Ref. [59] are presumably due to the usage of different pseu-
dopotentials, energy cutoff and BZ k-point sampling. However,
both methods lead to the same energy orderings of the three
reconstructions with respect to the ideal Si(100) surface. Also it
is assuring that ABACUS with the PW basis set gives almost identi-
cal results compared to QE calculations as can be seen in Table 8.
Finally, ABACUS with DZP basis set yields 1.481 eV, 0.078 eV,
0.070 eV per Si dimer energy lowerings, which are in excellent
agreement with the other two PW results.

Next we examine the relaxed structures obtained by the three
methods. We choose the p(2 x 1) reconstruction because its struc-
ture distortion is most pronounced among the three. Specifically,
we look at the pentagon pattern formed by the atoms from the
top three layers of the p(2 x 1) structure, as illustrated in
Fig. 4(d). In Table 9, we listed the bond lengths and bond angles
(the five edge lengths and angles) of the pentagon as yielded by
the three types of calculations. Again, an almost perfect agreement
is obtained between the results obtained by the ABACUS/PW calcu-
lations and the QE calculation. In this case, the bond lengths from
the two methods agree within 0.001 A, while the bond angles
agree within 0.1° (Deg). The results from the DZP basis set are also
in excellent agreement with the PW results. The bond lengths from
former calculation are slightly longer than the latter ones by

Table 8
Energy lowerings per dimer (in eV) of three different reconstructions of the Si(100)
surface, with respect to the ideal Si(100) surface.

Surface ABACUS/DZP ABACUS/PW Quantum ESPRESSO
P2 x 1)s —1.481 ~1.505 ~1.504
P2 x 1)a ~1.559 ~1.591 ~1.590
P2 x 2) ~1.629 ~1.652 ~1.653

Table 9

Bond lengths between the atoms in the top three layers of the p(2 x 1)a reconstruc-
tion. aj is the bond length (in A) between the i-th and j-th atoms as shown in Fig. 4(d).
0; is the bond angle (in Deg.) formed by the two bonds sharing the i-th atom.

Parameter ABACUS/DZP ABACUS/PW Quantum ESPRESSO
ary 2.366 2.360 2.360
a3 2.337 2.334 2.335
Q34 2.405 2.401 2.401
ays 2.307 2.303 2.302
asq 2.290 2.283 2.283
01 90.13 89.88 89.94
0 104.55 104.24 104.21
03 100.19 99.51 100.49
04 81.34 80.42 80.48
23 121.80 122.15 122.09

0.003-0.007 A, and the bond angles differ by 0.4 Deg at most. In
conclusion, for all the tested properties of the three reconstructions
of Si(100) surface, the ABACUS package with the DZP basis set
gives accurate results compared to PW results, demonstrating
again the ability of ABACUS to do reliable surface calculations.

3.5. N defect in bulk GaAs

Real materials contain various types of defects, and their pres-
ence greatly affects, and often decisively determines the physical
properties of materials. In recent years, DFT-based first-principles
approaches have emerged as powerful tools for describing and
understanding of point defects in solids [63], and is becoming an
indispensable complement to experiments that are often difficult
and expensive to carry out. Since usually a large supercell is
required to model defects in solids, the LCAO technique, which
scales favorably with the system size, is a preferable choice for
simulating the electronic structures of defects.

As a specific example, we employ the ABACUS package to study
the group III-V semiconductor alloy GaAs;_,N,, where x is the con-
centration of the nitrogen impurity. Both GaAs and GaN are tech-
nologically important materials in semiconductor industry, hence
there has been considerable interest in alloying GaAs and GaN to
obtain optoelectronic properties that bridge nitrides and arsenides.
The simulations are done again with the supercell approach with
successively increasing cell size, containing 16, 32, 64, 128, 256,
512, and finally 1024 atoms. These correspond to approximate x
values of 0.125, 0.063, 0.031, 0.016, 0.008, 0.004, and 0.002 respec-
tively. Only I'-point is used in the simulations of supercells with
512 atoms and more. For smaller supercells, finite k-point meshes
are used. Specifically, they are 1x1x2, 1x2x2, 2x2x2,
2 x2 x4, and 2 x 4 x 4 k-point meshes for system sizes ranging
from 256 atoms to 16 atoms, respectively. The LDA is chosen to
be exchange-correlation functional. The internal geometry of each
supercell is fully relaxed.

3.5.1. Band gap of GaAs;_xNx

The photoluminescence edge of GaAs;_xNy for small x shows an
unexpected redshift, instead of a blueshift [64] as inferred from the
linear interpolation between the two endpoints (1.4 eV for GaAs
and 3.8 eV for GaN). The narrowing of the alloy band gap E,(x) from
the composition-weighted linear average value
Eg(x) = XEg(0) + (1 — X)Eg(1) is called the band-gap bowing, which
is a general feature of semiconductor alloys and can often be
described as JEg(x) = bx(x — 1) with b being the optical bowing
parameter [65]. In GaAs;_,N,, the bowing effect is extremely pro-
nounced with a large b coefficient of about 16 eV, in stark contrast
with most isovalent semiconductor alloys that have a b value of
only a fraction of eV. This not only leads to a pronounced
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Fig. 5. Calculated band gap of GaAs; 4N, as a function of the N concentration x. The
solid square on the left corresponds to the band gap of GaAs bulk. The number of
atoms used in a supercell is labeled for each blank black point. The lines connecting
the data points are for guidance.
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Fig. 6. The N defect formation energy of GaAs; N, as a function of the N
concentration x. Two LCAO basis set setups are used in the ABACUS calculations:
DZP for all elements (black circles); DZP for Ga and As, and TZDP for N (red
diamonds). Results obtained from VASP (blue squares) and ABACUS/PW basis
(violet triangles) calculations are shown for comparisons. The energy cutoff is set to
500 eV in VASP calculations. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

band-gap narrowing for small x (x < 0.015), but also even a closing
of the band gap for large x values.

Such a peculiar behavior has been analyzed in details by several
theoretical studies [66-69] based on first-principle calculations,
and the strong bowing effect has been attributed to the substantial
lattice mismatch (> 20%) between GaAs and GaN [66,67] and the
formation of spatially separated and sharply localized band-edge
states [68]. However, due to the limitation of the computational
resources, the previous calculations of GaAs;_xN, focused only on
the alloy regime with x = 0.25, 0.50 and 0.75 [66-68], or were
based on empirical pseudopotentials [69].

The ABACUS package with LCAO basis sets allows us to reach
large systems with x as low as 0.002. The calculated band gaps of
GaAs;_xN, systems are shown in Fig. 5. The blank square points
from right to left are the band gaps obtained from supercell calcu-
lations using 16, 32, 64, 128, 256, 512, and 1024 atoms, respec-
tively. Note that the x = 0 limit represents the calculated band
gap of bulk GaAs, which is 1.13 eV from LDA. Although LDA based
calculation in general underestimates the band gap of materials, it
reproduces very well the experimental finding that the band gap of
GaAs;_xN, gets continuously reduced as x increases. We note that,
the geometries of the supercells in this work are chosen in a special
way, i.e., by doubling the supercell size successively along the x, y,

and z directions. Thus the exact behavior of the plot in Fig. 5 might
slightly changes if the shape of the supercells is chosen differently.
However, this should not alter the general trend we obtained. We
also find that the closing of the band gap happens when x is larger
than 0.125.

As a side remark, we noticed that the reported LDA band gaps of
bulk GaAs scatter significantly in literatures, ranging from 0.5 to
1.16 eV [70-73]. Our calculated LDA gap is close to the result in
Ref. [72], but is noticeably larger than other reported values. A
careful analysis reveals that if the semi-core d states of Ga are
included as valence electrons in the pseudopotential calculation,
the band gap then gets significantly reduced. In addition, the band
gap computed at the LDA lattice constant is also appreciably larger
than the one computed at the experimental lattice constant (which
is larger than the LDA lattice constant), in agreement with the
results in Ref. [72]. Since our primary concern here is the capability
of ABACUS, and to identify the trend of band gap change of
N-doped GaAs, rather than the accurate LDA band gap of bulk
GaAs, the cheaper and less accurate Ga norm-conserving pseu-
dopotential was used in our calculation. We however remind the
reader that the Ga 3d states should be treated as valence electrons
in the pseudopotential calculations if one aims at very accurate
LDA band gap of GaAs.

3.5.2. Formation energy of GaAs;_xNy

The next relevant issue is the stability of the GaAs,_,N, alloy. A
key quantity here, for small x, is the formation energy of an N
defect, which is defined as

Er = E(GayAs,_1N) — E(GayAs,) + (As) — i(N), (31)

where E(Ga,As,) is the energy of a Ga,As, supercell containing n
GaAs formula units, E(Ga,As,_1N) is the energy of the above super-
cell but with one As atom replaced by an N impurity atom. p(As)
and p(N) are the chemical potentials for the As atom and the N
atom, respectively. The actual value of the atomic chemical poten-
tial depends on the chemical conditions in the experiment.

Here we consider two situations: the As-rich & N-rich condition
and the As-poor & N-rich condition. In the first one,
W(As) = prieh(As) is chosen to be the energy per atom in the yellow
arsenic crystal form. In the second case, pP°°"(As) is given by adding
the formation enthalpy of bulk GaAs to pf"(As). The formation
enthalpy of bulk GaAs bulk is taken here as the atomization energy
of GaAs per atom at zero temperature (2.00 eV). Finally, p"(N) is
chosen to be one half of the total energy of the N, molecule.
Obviously, the corresponding N concentration in the supercell
Ga,As,_1N is given by x = 1/n. We would like to point out that,
by using Eq. (31), the N impurities are regarded as point defects,
and the possible interactions between neighboring N defects are
neglected.

In Fig. 6, the formation energy of an N defect is plotted as a
function of the N concentration x for both As-rich (upper panel)
and As-poor (lower panel) conditions. Calculations are done using
the ABACUS package with two sets of LCAO bases: (1) DZP for all
elements; (2) DZP for Ga and As, and TZDP for N. The results are
compared to those obtained from the ABACUS/PW calculations,
and those obtained by the Vienna Ab-initio Simulation Package
(VASP) package with projected augmented wave method [74,75].
Fig. 6 shows that under the As-rich condition, the N defect forma-
tion energies of GaAs;_xNy are positive for all N compositions, indi-
cating the very low probability to dope N into GaAs under such
condition. However, under the As-poor condition, the formation
energies become negative for small N concentrations, which is con-
sistent with the experimental finding that GaAs;_xNy alloy can only
be formed for narrow composition range near the endpoints [64].
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Fig. 7. Scaling behavior of the computational time of one electronic iteration of bulk
Si (diamond structure) as a function of the system size. We use eight supercells
containing 8, 64, 128, 192, 256, 384, 512, and 768 atoms respectively. For all
calculations 8 Intel(R) Xeon(R) CPU cores were used.

The formation energy curves from ABACUS/DZP calculations
follow the same trend as the ones from ABACUS/PW calculations
for both As-rich and As-poor cases in Fig. 6. However, there are
noticeable differences of calculated formation energies between
the two methods. Specifically, the formation energies associated
with the DZP basis set are underestimated by 0.2-0.3 eV compared
to the ones from PW calculations. This is due to the fact that y(N) is
calculated by half of the N, energy (cf. Eq. (31)), and the N, total
energy calculated with the DZP basis still has an appreciable differ-
ence from the PW reference result, as shown in Fig. 2. In fact, by
just increasing the N basis set from DZP to TZDP, the corresponding
formation energy difference is largely improved to within 0.1 eV
compared to PW results for all cases, as shown in Fig. 6. Finally,
comparing the ABACUS/PW results and the VASP results reveals
that there exists an appreciable difference between the
norm-conserving pseudopotential treatment and the projector
augmented wave method. Despite these differences, the general
trend of the dependence of the formation energy on the N concen-
tration is well reproduced within all calculations.

In conclusion, the study of GaAs;_,N, alloy illustrates that the
ABACUS package with its LCAO basis sets can be used for reliable
defect calculations. We would also like to note that, for a thorough
and faithful treatment of the phase stability problem of the
GaAs;_xN, alloy, one needs to consider the influence of finite tem-
peratures and include the entropy effect, but this goes beyond the
scope of the present work.

3.6. Scaling behavior of the code

An important issue is the computational efficiency of the code.
Fig. 7 shows how the computational time of one electronic itera-
tion for bulk Si grows with the supercell size. Calculations were
done with 8 CPU cores and the DZP basis set (13 functions for Si)
was used. The energy cutoff of the pseudopotential (using LDA)
and the cutoff radius of basis functions are listed in Table 1. The
data points in Fig. 7 correspond to eight supercells containing 8,
64, 128, 192, 256, 384, 512, and 768 atoms respectively. Only
T"-point was used in the BZ sampling.

For each electronic iteration in the KS-DFT calculation, the com-
putational cost can be splitted into two parts: (1) the construction
of the KS Hamiltonian, and (2) the diagonalization of the
Hamiltonian matrix. The computational timings for both parts

are also given in Fig. 7. For smaller systems (below 200 atoms),
the first part dominates while the cost for the second part is signif-
icantly smaller than the first. However, the situation changes as the
system size keeps increasing: The computational costs of the two
parts become comparable at a system size of about 400 atoms,
and the diagonalization of the Hamiltonian matrix eventually dom-
inates for even bigger systems. This is because, in our implementa-
tions, the cost for the construction of the Hamiltonian matrix scales
quasi-linearly with the system size whereas the matrix diagonal-
ization has a canonical scaling of O(N?).

Since the rapid increase of the computational cost for systems
with more than 400 atoms is due to the matrix diagonalization,
we are at the moment working to improve the efficiency of the
eigenvalue solver. On one hand, it is possible to interface
ABACUS  with the ELPA  (Eigenvalue  SoLvers for
Petaflop-Applications) [76] solver, with which we will be able to
push the cross point in Fig. 7 to larger systems. On the other hand,
the efficiency of PEXSI method in ABACUS has been shown in our
previous study [5], we are currently working on integrating the
parallel version of PEXSI into ABACUS and a more detailed analysis
of the performance of PEXSI within ABACUS will come out in near
future. Our near-future goal is to run molecular dynamics simula-
tions for systems with 0(10%) atoms with only modest computer
facilities.

4. Summary

To summarize, in this paper we introduce a comprehensive
first-principles package, named ABACUS, in which both plane
waves and efficient localized atomic orbitals can be used for
electronic-structure calculations. In particular, we present the
mathematical foundation and numerical techniques behind the
atomic-orbital-based implementation within this package. The
performance and reliability of the ABACUS package were bench-
marked for a variety of systems containing molecules, solids, sur-
faces and defects. Furthermore, we show that the hierarchial
atomic basis sets generated with the CGH scheme allows for a sys-
tematic convergence towards the plane-wave accuracy, and the
DZP basis set offers an excellent compromise between accuracy
and the computational load, and can be used in production calcu-
lations for most purposes. The package is currently under active
development, with more features and functionalities are being
implemented. With all these efforts, we expect the ABACUS pack-
age will become a powerful and reliable tool for simulations of
large-scale materials.
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Appendix A
A.1. Two-center integrals

The overlap matrix and the kinetic energy matrix can be effi-
ciently calculated by two-center integral technique [26], which
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has been described with full details in Ref. [6]. Here we briefly
introduce this algorithm. The overlap matrix is written as

~ [ 6iontr - Ryc, (A1)
which can be further written as [6],
ZImax l “
SR) = > Symytumyim(R)Glymy tymy i Yim (R). (A2)
1=0 m=—I

Here I,(l,) and m,(m,) are angular momentum and magnetic quan-
tum numbers for orbital u (v). The radial part is

St tym, im(R) = 4! / JikR)f (k)f (k)P dk. (A3)
0

Here f,(k) and f,(k) are one dimensional Fourier transform of the
radial atomic functions introduced in Eq. (15),

fulk) = \/%(—i)’” /0 "R, (kn)f (r)dr. (A4)

Stmybmyim(R) can be tabulated with dense sampling of distances
between ¢, and é,. Gim,tm.m N Eq. (A2) is called the Gaunt
coefficient,

21

Yl#m# (97 (IS)Y[\,m‘_ (97 ¢)Ylm(97 ¢)d¢7
(A.5)

which can be calculated and tabulated recursively from the

Clebsch-Gordan coefficients [6]. For convenience, the real spherical

harmonic functions are actually used in ABACUS. The overlap

matrix formed by an atomic orbital |¢,) and a non-local projector

[Zamn) (s€€ Eq. (6)) can be calculated exactly in the same way.
The kinetic energy operator matrix element,

— [ 60 (~53 9% )bt - Rye (A6)

is slightly different. This term can be calculated in a similar way as
S(R) by replacing Sy, m, ,m,m(R) with

T
Gl“m#.lvmv,lm = / SiI‘l(O)d@
JO Jo

Tymytimim(R) = 27i” [ " J(RR)F L (K)F, (R)K*dk. (A7)
0

Because Sy, m, t,myim(R), Giumytymyim a0 Tiymy, 1,m, im (R) are all indepen-
dent of the coordinates of atoms, they can be tabulated at the begin-
ning of the DFT calculations once for all. For any given distance
between two atoms, the corresponding overlap matrix elements
and kinetic energy matrix elements can be calculated efficiently
by interpolation method.

A.2. Grid-based techniques

The Hamiltonian matrix elements Vi‘jf are evaluated on a uni-

form real space grid, with both atomic orbitals and local potentials
presented on each grid point. The local potential is,

V() = VH(r) + VH(r) + V() (A-8)

where Vi(r) = S x>, 04(r — T, — R) is the summation of all the
local pseudopotentials for i-th atom of element type «. Plane wave
basis and Fast Fourier Transform (FFT) techniques are used here to
efficiently evaluate V*(r) and V¥ (r) on the grid. Because the local
pseudopotential 2% (r) has a fairly long tail in real space, it is ineffi-
cient to calculate V*(r) directly on a real space grid. Therefore, V-(G)
is first calculated in reciprocal space as

H(6) =) S:(6)v4(G), (A.9)

where S, (G) = 3,7 is the structure factor. An FFT is carried out
to bring V*(G) back to real space. From our tests, this construction
processes of V(r) only take a small portion of total computational
time, even for systems containing thousands of atoms. This is differ-
ent from the method used in Ref. [6], where the short-ranged neu-
tral atom potentials are used. Using the same set of plane wave
basis, the Hartree potential is also first evaluated in reciprocal space
and then be brought back to real space by using an FFT. The full for-
mula of Hartree potential is

1Gr
nz |G\ )

G#0

(A.10)

A.3. Force calculations

As shown in the main text, the forces evaluated from the basis
of atomic orbitals have four contributions,

Fpulay+Fortho+

F— FFH + FEwald7

(A11)
which are the Feynman-Hellmann force, the Pulay force, the force
due to nonorthogonality of the atomic orbitals, and the Ewald force
due to the Coulomb interactions between the ions. The Ewald force
can be calculated analytically using the Ewlad summation tech-
niques [33], and therefore not discussed here. We discuss here
the techniques to evaluate the rest three terms as follows.

1. Feynman-Hellmann force,
Y = -35 (g,
R

In Hamiltonian H, only the local and non-local pseudopotentials
explicitly depend on the coordinates of ions. Thus we can further
break F' into two terms related to pseudopotentials. The first
one is related to the local pseudopotential, and can be evaluated
in reciprocal space,

= iGe TV G)p'(G).

G#0

Jgvo > (A12)

(A13)

This method has been shown to be accurate and fast [77]. The
second term involves the non-local pseudopotential,

FNL ZZ<¢#R ¢10>
R wv
= 7222 <<¢H ‘ dymlmn> </C,almn|¢\0>

R v Imn

+<¢;1R|X1ilmn>< ym{mn\d" >)

A non-local pseudopotential projector x,, is also a one dimen-
sional numerical orbital like atomic orbital. Therefore, the above
equation can be evaluated efficiently using two-center integral
technique introduced before.

2. Pulay force.
The existence of Pulay force is due to the fact that the basis set
is not complete,

S5 (G i) + (sl 52)). - (Aa15)

R wv

ovM

(A14)

pulay
F od

The kinetic energy term and the non-local pseudopotential term
in F2% can also be calculated by the two center integral tech-
nique, whereas the local potential term is evaluated by the grid
integral technique. These steps are similar to the calculations of
Hamiltonian matrix, except one needs to substitute ¢, and ¢,
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with % and %. To evaluate the derivatives of an atomic orbital
oi ol

with respect to the coordinates of the atoms, one needs to deal
with both radial atomic orbital and spherical harmonic function
parts. The radial part can be calculated numerically on a one
dimensional grid while the second part can be obtained analyt-
ically by using the real spherical harmonic functions.

3. The force arises from the fact that atomic orbitals are not
orthogonal,

9S,(R)

tho __ uw

Fi = *ZR:ZEW(R) s (A16)
uy

where

1 .
Ew(R) = N > fuk€nkCniCrvice ¥ (A.17)

nk

is the element of “energy density matrix” [6]. The derivative of
overlap matrix with respect to atomic coordinates is,

OSwR) 05, (R) dsS,,(R)

oty oty ~  dD

(A.18)

where 7, and 7, are the atomic coordinates for orbital u and v,
and D =R + 1, — 7y, is the distance between two orbitals. The
further expansion of this term is

dS,w(R) ~d [ -
o - 25 |2 Sumutm (D) Gyt Yon (B)D'D

_ d =~
+,ZD 'Syt (D) Gyt g | Yim(D)D'] (A.19)
m

In order to make Y, (D) analytical at the origin, here it is multiplied
by D. & (D"S,Mm#.,vmv_,m (D)) can be calculated numerically using

interpolation method while % [Ylm(f))D’] can be calculated analyti-
cally by using real spherical harmonic functions.
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