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ABSTRACT

The thermodynamic properties of intrinsic and extrinsic (Ti, V, Zr, Nb, Hf, Ta, Re) defects in tungsten have
been investigated using density functional theory calculations. The formation energies of substitutional
defects are discussed with respect to their thermodynamic solubility limits. Several different interstitial
configurations have been identified as local minima on the potential energy surface. In addition to
dumbbell configurations with orientations along (111) and (110), a lower symmetry configuration is
described, which is referred to as a bridge interstitial. This interstitial type is found to be the lowest
energy configuration for mixed-interstitials containing Ti, V, and Re, and can be up to 0.2 eV lower in
energy than the other configurations. According to the calculations Ti, V and Re also trap self-interstitial
atoms, which can be produced in substantial numbers during ion irradiation, affecting the mobility of the
latter.

Ion irradiation
Trapping
Radiation-induced segregation
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1. Introduction

Tungsten alloys are considered for structural applications in
fusion reactors, especially for armor materials at the divertor and
first wall [1—4]. This interest is motivated by promising physical
properties such as high melting point, low coefficient of thermal
expansion, high thermal conductivity, and high sputtering resis-
tance. Alloy formation occurs naturally during fusion reactor
operation due to nuclear transmutation caused by high energy
neutron exposure [5]. In this fashion pure tungsten will gradually
evolve into an W—Re—0s—Ta alloy [6]. Alloying has also been
suggested to lower the temperature range in which the fracture
mode of pure tungsten changes from ductile to brittle [7,8]. The
latter intersects with the operation temperature window of current
and future fusion reactors [2,9], which causes concern with regard
to mechanical integrity. Since alloying affects many properties of
importance including mechanical performance, thermal conduc-
tivity, as well as swelling under irradiation, it is important to
develop our understanding of tungsten alloys under the relevant
conditions [10].

With regard to applications in fusion reactors one must in
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particular consider the performance of the material under ion
irradiation, which causes the localized production of lattice defects
such as vacancies and interstitials [11,12]. Whereas vacancies are
relatively immobile, interstitials in pure tungsten can migrate
extremely fast [13] allowing for efficient defect recombination,
which is a crucial factor with respect to radiation tolerance [14]. In
alloys solute atoms and interstitials can potentially bind to each
other, reducing the mobility of the latter and possibly accelerating
damage buildup compared to the pure material.

An assessment of different alloys for applications in fusion en-
vironments should thus invoke information regarding the inter-
action of intrinsic point defects, solute atoms, and dislocations. As
such information is difficult to obtain experimentally, computa-
tional modeling plays an important role in investigating the
fundamental limits of materials performance. Since the problem at
hand involves many length and time lengths, a multiscale modeling
approach must be employed. In this context, first-principles cal-
culations can provide critical microscopic parameters that cannot
be accessed otherwise. While pure tungsten has been studied
extensively, see e.g., Ref. [ 15], our understanding of alloy behavior is
still in its infancy. Recent first-principles calculations considered
the energetics of intrinsic defects and solute atoms for a range of
transition elements and identified chemical trends across the pe-
riodic table [16]. The migration behavior has been investigated
using a similar approach for the two dominant products of nuclear
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transmutation (Re, Os) [6]. There is also information available
regarding the interaction of substitutional Re with dislocations and
its effect on lattice expansion [17].

The objective of the present paper is to deepen our under-
standing of the interaction of alloy elements with intrinsic defects
(formation and binding energies) and to provide parameters that
characterize the elastic long-range interactions between different
defects (formation volume tensors) in particular with respect to
dislocations [17]. The focus is on refractory elements that are close
to W in the periodic table and possess a similar electronic structure.
The paper provides a careful analysis of the computational pa-
rameters that affect the convergence of the respective data. For Ti,
V, and Re, a low symmetry interstitial configuration is observed,
referred to as a bridge interstitial, which is between 0.05 and 0.2 eV
lower in energy than the commonly investigated dumbbell con-
figurations [16]. For these three elements, we also find a strong
binding to self-interstitial atoms (SIAs), on a scale which prohibits
detrapping on realistic time scales. The analysis of the formation
volume tensors reveals a very strong elastic anisotropy for the
interstitial defects, which can be expected to enhance long-range
defect—defect interaction and alignment.

2. Methodology
2.1. Computational details

Calculations were performed within density functional theory
(DFT) using the projector augmented wave (PAW) method [18,19]
as implemented in the Vienna ab—initio simulation package
[20—23]. Exchange-correlation effects were treated within the
generalized gradient approximation as parametrized by Perdew,
Burke and Ernzerhof [24] and the occupation of electronic states
was performed using the first order Methfessel-Paxton scheme
with a smearing width of 0.2 eV. Defect configurations based on
supercells with up to 250 atoms were considered corresponding to
5 x 5 x 5 repetitions of the conventional (2-atom) unit cell. For
structural optimizations the atomic coordinates as well as the cell
metric were relaxed until the atomic forces were converged to
within 20 meV/A and the residual stresses were less than 0.2 GPa. A
plane wave energy cutoff energy of 300 eV was employed;
increasing the cutoff energy up to 500 eV led to changes in for-
mation and binding energies by less than 0.02 eV. We furthermore
carefully considered the effects of Brillouin zone sampling, super-
cell size, and semi-core states on the formation and binding en-
ergies as detailed in Sect. 3.1 below.

2.2. Thermodynamic relations

Defect formation energies were calculated using a well estab-
lished thermodynamic formalism [25] (also see Ref. [26])

Ef — pdefect _ pideal _ Z Anu;, (1)
i

where E%/ct s the energy of the defective system and E9°? is the
total energy of the perfect reference cell. The variation of the for-
mation energy with the chemical environment is given by the last
term in Eq. (1), which involves the chemical potentials of the
constituents. The difference between the number of atoms of type i
in the reference cell and the defective cell is denoted by An;, where
positive and negative values correspond to the addition and
removal of an atom relative to the ideal cell, respectively. Here, we
take the chemical potential yu; of each constituent to be identical to
its cohesive energy per atom [26].

The binding energy between solute atoms and point defects is a

key factor for understanding the thermodynamic properties of al-
loys [27,28]. It is given by the difference between formation en-
ergies of the mixed-interstitial, Ef([X — W])yy, and the sum of
formation energy of the self-interstitial, E (W — W])y, and sub-
stitutional configurations, Ef (X)y,

E} = E/(IX — Wly) — B/ (W — W]y) — B (Xw). (2)
In this notation, the binding energy corresponds to the reaction
enthalpy of the quasi-chemical reaction

b
(W= W)y + Xw Beox-wy

| ~—
self —interstitial  extrinsic substitutional defect mixed interstitial

Negative binding energies thus imply an attractive interaction
between SIA and extrinsic substitutional defect.

The elastic distortion caused by a defect can be quantified by its
formation volume tensor [29—31]. It determines the long-range
elastic interaction between defects including but not limited to
point and line defects. Given the cell metrics of the ideal supercell
Lo and the fully relaxed supercell containing the defect L, the for-
mation volume tensor can be obtained from the relation [29,31].

v = det(Lo)ln(L51L) ~det(Lo) (L - L61>L6]. 3)

The formation volume equals one third of the trace of the for-
mation volume tensor. By diagonalizing the formation volume
tensor one obtains the orientation and the strength of the strain
field. The former is specified by the eigenvectors whereas the latter
is related to the magnitude of the eigenvalues. In particular, we
consider below the anisotropy defined here as the ratio of the
largest to the smallest eigenvalue.

3. Results and discussion
3.1. Convergence considerations

3.1.1. Brillouin zone sampling

The calculation of defect formation energies in metallic systems
via density functional theory calculations and the supercell
approach is subject to several sources of errors most importantly
the sampling of the Brillouin zone via a discrete k-point mesh, the
interaction between periodic images of the same defect, and the
treatment of semi-core states. The first aspect results from the fact
that defects in metals act as perturbations, which can cause long-
range oscillations in the electronic structure (Friedel oscillations).
To capture these oscillations it is not uncommon that one requires a
denser k-point mesh than for the corresponding defect free system.
This is illustrated in Fig. 1(a) for the W vacancy. It is apparent from
these data that even for a 250-atom cell (5 x 5 x 5 conventional
unit cells) one requires at leasta 5 x 5 x 5 Monkhorst-Pack mesh in
order to converge the formation energy to better than 0.1 eV; this is
equivalent to a 25 x 25 x 25 mesh with respect to the primitive unit
cell. For comparison, a 15 x 15 x 15 Monkhorst-Pack is sufficient to
converge the total energy of a primitive cell to better than 1 meV/
atom. In the case of interstitials, which are also strong perturbation
centers, the formation energies exhibit a slightly smaller yet still
pronounced variation than for the vacancy as illustrated in Fig. 1(c).
Finally, for substitutional defects the effect is rather weak as shown
for substitutional Ti in Fig. 1(b). An extensive data set of calculated
formation energies provided in the appendix demonstrates that the
aforementioned effects are present for all alloying elements
considered in the present study. All formation energies discussed in
Sect. 3.2 were calculated using a 6 x 6 x 6 Monkhorst-Pack grid in
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Fig.1. Convergence of the formation energies of (a) vacancy, (b) Ti substitutional, (c) and Ti bridge interstitial with k-point density for different system sizes. (d) Finite size scaling of
formation energies for Ti interstitial defects. The defect configurations are schematically shown in Fig. 3. The calculations shown here did not include semi-core states.

order to minimize Brillouin zone sampling errors.

3.1.2. Size dependence

The most widely methodology to describe defects in the dilute
limit is the supercell approach, in which a defect is represented by a
periodic array of identical configurations. The approach has sig-
nificant computational advantages and avoids surface effects. Even
with relatively large supercells there is, however, a contribution to
the formation energy that results from the interaction of a periodic
array of elastic dipoles.! In an elastically isotropic medium the
elastic interaction scales with the inverse volume, i.e.

Ef(N)=Ef(N— o) +a/V = E;(N—o0) + b/N, (4)

where a and b are constants of proportionality. This relation en-
ables one to correct for this error by finite size scaling [33,34]. This
is illustrated for Ti interstitial configurations in Fig. 1(d), which
clearly exhibits an inverse linear behavior; the interstitial config-
urations are shown in Fig. 3. Note that smaller cells than the ones
included here (e.g., a 2 x 2 x 2 16-atom cell) deviate from the in-
verse linear behavior because of non-linear contributions associ-
ated with interacting defect cores. The formation energies
discussed in Sect. 3.2 were obtained using the same finite-size
scaling approach as used in Fig. 1(d) based on the data compiled
in the appendix. The error associated with fitting the data to Eq. (4)
is 0.03 eV or less for all defect configurations.

3.1.3. Semi-core states

It is has been argued that the inclusion of semi-core states,
specifically W-5p states, in the pseudo-potential or PAW data set is
important to correctly describe the formation energies of SIAs in
tungsten [16,35]. This is reasonable as interstitial configurations
involve very short interatomic distances and are therefore more
sensitive to the core radius of the pseudo-potential/PAW data set.
To quantify these effects for the present defects, we carried out a
systematic analysis of the effect of including semi-core states. As
the computational effort increases significantly due to approxi-
mately twice as many electrons in the calculation, the bulk of this
study was restricted to 128-atom cells and a 3 x 3 x 3 Monkhorst-
Pack k-point mesh, see table in the appendix. For a selected number
of configurations including both interstitial and substitutional

' In the case of semiconductors additional effects such as image charge in-
teractions and potential alignment corrections need to be taken into account [32].

defects, we also studied 250-atom cells as well as 6 x 6 x 6 k-point
grids. These data showed that the effect of semi-core states is only
weakly dependent by Brillouin zone sampling and system size.

From the data in Table 2, one can deduce that semi-core states
have a negligible influence on the formation energies of substitu-
tional defects with the exception of V and possibly Zr. The situation
is quite different in the case of the interstitial defects, for which the
effect ranges from almost zero (Zr, Nb) to 0.5 eV and above (Ti, V,
Ta). The energy shift varies between the different configurations
and in some cases changes the energetic order (Ti, V). It is typically
larger for (110) interstitials, which have the shortest interatomic
separation, than for (111) and bridge interstitial configurations.

Given the computational expense associated not only with the
treatment of semi-core states but system size and Brillouin zone
sampling, we below present formation energies that are obtained
as follows. We consider calculations that are based a 6 x 6 x 6
Monkhorst-Pack mesh and do not include semi-core states. These
data are subjected to the finite-size scaling procedure described in
Sect. 3.1.2, after which we add the shift in the formation energies
due to semi-core states that was obtained using 128-atom cells and
a 3 x 3 x 3 Monkhorst-Pack mesh. All respective formation en-
ergies are shown explicitly in Table 2. Based on the analysis in the
present section, we conservatively estimate the error in the
calculated formation energies to be about 0.1 eV for absolute
numbers and 0.05 eV for energy differences.

3.2. Formation energies

3.2.1. Substitutional defects

The formation energies for substitutional solute atoms are
compiled in Table 1 and are shown in Fig. 2. One observes that both
the elements from group 4 (V, Nb, Ta) and group 5 (Ti, Zr, Hf) exhibit
a non-monotonic variation as one passes the 3d to the 5d series.
These observations are in accord with earlier calculations [16]
although in the latter case the formation energy of Zr is slightly
negative whereas it is slightly positive in the present case. As dis-
cussed in Sect. 3.1, various sources of errors have been very carefully
considered in the present case and the full data set shown in Table 2
also shows the present data to be very consistent.

The formation energy of a substitutional defect is related to the
slope of the mixing energy curve in the dilute limit. Negative for-
mation energies therefore imply a tendency to form solid solutions
over a wide temperature range with W and additionally indicate a
tendency to form ordered phases at lower temperatures [39—41].
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Table 1
Formation energies and volumes of intrinsic and extrinsic point defects in tungsten.
Element Formation energies Formation volumes
Sub (111)-int (110) -int bridge-int . Yo, Aa Y110y Agio) u{mdge Abridge
w 10.16 10.59 10.17 — 1.63 9.05 1.66 6.16 1.64 12.10
DFT [36] 9.55 9.84
DFT [37] 9.82 10.10
Expt [38]. 9.06+0.63
Ti -0.81 8.83 8.99 8.73 0.01 1.38 8.99 1.30 8.34 133 9.45
\% -0.60 8.00 8.10 7.77 -0.18 1.21 16.37 1.19 14.93 1.20 2437
Zr 0.07 11.21 11.74 11.21 0.28 1.85 5.18 1.83 335 1.85 5.62
Nb -0.32 10.22 10.74 10.19 0.12 1.73 7.42 1.74 4.44 1.73 7.49
Hf -0.20 9.99 11.53 10.14 0.25 1.86 8.25 1.64 4.96 1.85 7.04
Ta -0.47 10.34 11.01 10.33 0.06 1.70 7.58 1.67 5.48 1.69 8.03
Re 0.17 9.53 9.55 9.49 -0.02 1.56 15.25 1.63 8.72 1.60 18.68

For the group 5 elements one obtains consistently negative
formation energies, which is consistent with the mixing energy
curves calculated earlier for the W—V [41], W—Nb [39], and W—Ta
[39,41] systems.

While in the case of the group 5 alloys all boundary phases
possess a BCC lattice structure, the situation is more complicated in
the case of the group 4 and group 7 (Re) elements, for which the
low temperature boundary phases with the exception of W adopt a
hexagonal-close packed (HCP) structure. In addition, in the case of
the group 4 elements one furthermore observes a high-
temperature BCC phase that is vibrationally stabilized, whereas it
is mechanically unstable at low temperatures.

Experimentally, it is difficult to accurately assess the phase di-
agrams of W-based alloys down to low temperatures due to the
slow kinetics of refractory systems even at relatively high tem-
peratures. As a result, most of the information available to date is
based on thermodynamic assessments, which are frequently based
on assumptions concerning the nature of the interatomic in-
teractions [42].

In the case of Ti the calculated phase diagram [42] suggests a
very extended solubility region at high-temperatures but a van-
ishing solubility as the temperature approaches zero. Barring any
experimental information for temperatures below approximately
1000 K [43], this assessment was based on the assumption that the
mixing energy is positive over the entire concentration range [42].
The present finding suggests that this assumption needs to be
revised and a better data basis is required to accurately determine
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Fig. 2. Variation of the formation energies of substitutional defects across the periodic
table according to the present calculations as well as prior calculations by Kong et al.
[16].

the solvus line for Ti in W. It should be noted that while this region
of the phase diagram is difficult to access by thermodynamic
equilibrium studies, it can nonetheless be relevant for the behavior
of the material under irradiation conditions as it determines the
thermodynamic driving forces.

The solubility limits of Zr [42], Hf [42] as well as Re [44] in W are
not determined by the equilibrium between W and another
elemental phase but rather several ordered structure including the
x and ¢ phases [45]. This implies that the respective compound
formation enthalpy should be used to determine the chemical
boundary conditions that enter Eq. (1) in the form of the chemical
potentials u;. This level of analysis is beyond the scope of the pre-
sent work.

3.2.2. Interstitial defects

A systematic exploration of interstitial configurations associated
with solute atoms in BCC tungsten, revealed three distinct low
energy configurations corresponding to different local minima on
the potential energy surface; these configurations are shown in
Fig. 3. In addition to the well known (111) and (110) dumbbell
configurations [3,13,36] a third “bridge interstitial” configuration
[see Fig. 3(a)] was identified. This configuration can be understood
as a lower symmetry derivative of the (111) dumbbell configura-
tion, in which the solute atom has moved away from the (111) di-
rection along one of the three (211) directions. This results in a
bond angle with the nearest neighbors of approximately 150°
(compared to 180° in the case of the straight dumbbell interstitial).

A configuration similar to the bridge interstitial has been re-
ported for SIAs [6,35] and for the Re mixed-interstitial [6], which in
the latter reference was referred to as a (11h) interstitial. In both of
those cases the energy difference relative to the respective (111)
interstitial configurations appeared to be rather small (less than
0.05 eV). In particular in the case of the SIA the energy difference
between crowdion and bridge (11h) configurations is quite sensi-
tive to supercell size and shape with the crowdion configuration
being the most stable in the limit of large defect separations [35].
We have carried out a vibrational analysis of bridge and crowdion
configurations that demonstrates the slow size convergence of the
crowdion configuration (due its strongly delocalized nature [3])
and supports the earlier analysis and conclusion [35]. In absolute
numbers our results are very close to previous calculations [36,37].

The formation energies of extrinsic interstitial configurations
are compiled in Table 1 and shown in Fig. 4. The bridge interstitial is
found to be the most stable configuration for Ti, V, and Re in-
terstitials. In the case of Zr and Hf the (111) dumbbell shows the
lowest formation energy, while for Nb and Ta the bridge and (111)
dumbbell configurations are energetically practically degenerate
(yet configurationally distinct). Our finding of a bridge interstitial
for Re agrees the results presented in Ref. [6]. Note that bridge
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Table 2
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Convergence of formation energies (in units of electronvolts) of intrinsic and extrinsic point defects in tungsten with respect to cell size, k-point sampling, and the treatment of
semi-core states. Numbers in upright format correspond to calculations, in which the semi-core states (in particular the W-5p states) were not included. By contrast, italicized
numbers show the results from calculations that did include semi-core states with numbers in brackets indicating the difference between the two types of calculations.
Additional calculations with semi-core states were carried out for selected 250-atom supercell configurations. These calculations confirmed that the shift in the formation
energies due to the neglect of semi-core states is only weakly dependent on system size. The last but one column reports the formation energies in the dilute limit from finite
size scaling using data obtained in calculations without semi-core states (w/o sc) using 6 x6 x 6 k-point grids. The final column shows these data including a semi-core

correction (w/sc) as described in Sect. 3.1.3.

Element Defect 54-atom cells (3 x 3 x 3) 128-atom cells (4 x 4 x 4) 250-atom cells (5 x 5 x 5) Extrapolated
N 3 4 5 6 3 4 6 3 4 6 6
w/o sc w/sc diff wfosc  wi/sc
self (110)-int 9.21 9.83 10.15 1049  (0.34) 10.20 10.07 10.24 10.16 10.25 10.59
(111)-int 8.92 9.40 9.66 9.61 9.82 10.09 (0.27) 9.88 9.71 9.96 9.73 9.87 9.89 10.16
bridge-int 8.88 9.53 9.78 10.10 (0.32) 9.84 9.69 9.88 9.79 9.85 10.17
Ti sub -0.83 -0.82 -0.72 -0.77 -0.74 -0.76  (-0.02) -0.67 -0.78 -0.75 -0.81 -0.79 -0.79 -0.81
(110)-int 7.66 8.12 8.30 894  (0.64) 833 8.24 8.36 8.31 8.35 8.99
(111)-int 7.64 8.26 8.43 877  (0.34) 8.50 8.36 8.56 8.46 8.49 8.83
bridge-int 7.51 8.07 8.27 872  (045) 8.31 8.18 8.32 8.24 8.28 8.73
\Y sub -0.44 -0.45 -0.41 -0.44 -0.42 -059  (-0.17) -0.38 -0.44 -0.41 —-0.46 -0.43 -0.43 —0.60
(110)-int 6.94 7.40 7.55 804  (049) 7.60 7.52 7.63 7.82 7.61 8.10
(111)-int 6.87 7.49 7.65 795  (0.30) 7.71 7.59 7.78 7.67 7.70 8.00
bridge-int 6.70 7.24 7.41 7.76  (0.35) 7.46 734 7.46 7.38 7.42 7.77
Zr? sub 0.08 0.09 0.19 0.14 0.17 0.11 (-0.06) 0.23 0.13 0.18 0.09 0.13 0.13 0.07
(110)-int 10.71 11.33 11.66 11.64 (-0.02) 11.68 11.54 11.75 11.69 11.76 11.74
(111)-int 10.14 10.86 11.10 11.15  (0.05) 11.18 10.98 11.27 11.13 11.16 11.21
Nb sub -0.30 -0.30 -0.27 -0.30 -0.29 -032  (-0.03) -0.24 -0.30 -0.27 -0.31 -0.29 -0.29 -0.32
(110)-int 9.71 10.33 10.67 1064  (-0.03) 10.70 10.57 10.76 10.68 10.77 10.74
(111)-int 9.22 9.91 10.13 10.17  (0.04) 10.21 10.02 10.28 10.15 10.18 1022
bridge-int 9.25 9.95 10.13 10.16  (0.03) 10.21 10.02 10.28 10.15 10.16 10.19
Hf sub -0.27 -0.25 -0.15 -0.19 -0.16 -0.16  (0.00) —-0.10 —-0.20 -0.17 -0.23 —0.20 -0.20 -0.20
(110)-int 9.98 10.52 10.78 1147  (0.69) 10.79 10.69 10.84 10.78 10.84 11.53
(111)-int 9.68 10.39 9.72 10.01 (0.29) 9.80 9.59 9.80 10.10 9.71 9.99
bridge-int 8.91 9.56 9.76 10.11 (0.35) 9.85 9.65 9.88 9.77 9.79 10.14
Ta sub -0.48 -0.48 -0.45 -0.47 —0.45 -046  (-0.01) -0.41 -0.47 -0.45 -0.47 —0.46 —0.46 -0.47
(110)-int 9.53 10.12 10.42 1090 (0.48) 10.45 10.34 10.51 10.45 10.53 11.01
(111)-int 9.06 9.74 9.97 1027  (0.30) 10.04 9.86 10.11 10.01 10.04 10.34
bridge-int 9.08 9.76 9.98 1027  (0.29) 10.05 9.86 10.12 10.02 10.04 10.33
Re sub 0.12 0.15 0.18 0.18 0.17 0.17  (0.00) 0.12 0.18 0.18 0.18 0.17 0.17 0.17
(110)-int 8.29 8.91 9.23 948  (0.25) 9.28 9.14 9.29 9.21 9.30 9.55
(111)-int 8.25 8.93 9.21 944  (0.23) 9.25 9.09 9.33 9.25 9.30 9.53
bridge-int 8.24 8.86 9.14 941 (0.27) 9.18 9.06 9.23 9.15 9.22 9.49

2 In the case of Zr, the bridge interstitial configuration always relaxed toward the (111)-int configuration regardless of system size.

interstitial-type configurations were not considered in Ref. [16].
Furthermore, the binding of solute atoms was investigated relative
to the (111)-crowdion interstitial rather than with regard to the
respective lowest energy configuration. For radiation induced
segregation and precipitation processes, however, the latter quan-
tity, which yields the thermodynamic binding energy, is the most
relevant quantity.

In contrast to the present calculations for W—V, Muzyk et al. [41]

(a) bridge interstitial

(b) (110) dumbbell

found the (110) dumbbell interstitial to be the most stable config-
uration. The latter study, however, relied on calculations involving
only 128-atom supercells and a 3 x 3 x 3 k-point mesh. The
analysis of computational errors provided in Sect. 3.1 suggests that
these values are not fully converged.

For reference, Table 1 also contains data for SIAs, which have
been extensively described before [6,35]. The geometries and en-
ergetics obtained here agree with these earlier calculations.

(c) (111) dumbell

I S L s
A B
[110]

Fig. 3. Representative configurations of (a) bridge, (b) (110) dumbbell, and (c) (111) dumbbell interstitial defects. The (111) crowdion configuration closely resembles the (111)
dumbbell configuration with a slightly larger spacing of the defect atoms along (111) axis. The figure shows a slice parallel to a {110} plane of the structure. Small (blue) spheres
indicate tungsten atoms whereas large (gray) spheres indicate alloying elements in the case of extrinsic and tungsten atoms in the case of intrinsic defects. Thicker (yellow)
cylinders indicate bond lengths shorter than 2.3 Awhereas thinner (gray) cylinders indicate bond lengths shorter than 2.5 A. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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3.3. Binding energies

Interactions of impurities and alloying elements with point
defects are of great importance for materials under irradiation as
they can significantly affect the mobility of defects [4]. This can
result in segregation, precipitation and/or the formation of sec-
ondary phases at grain boundaries. To assess the tendency of
different elements to trap SIAs we have therefore calculated bind-
ing energies between impurities and interstitials. As shown in Fig. 5
negative values are obtained for Ti, V and Re interstitial configu-
rations, while for the remaining elements the binding energies are
positive.

A previous study [4] has also reported an attractive interaction
between Re and SIAs of E’=—0.8 eV, the orientation of the mixed-
interstitial was, however, not specified. The binding energies ob-
tained in the present study are E{;ridge =-062 eV,

(111 —0.52 eV and E“10 int = —0.36 eV.
fle negative binding energies for Ti, V and Re, which are also
the three elements that favor bridge interstitial configurations,
imply an attractive interactions with SIAs, whence these elements
are expected to trap interstitials. The binding is very strong
(~0.6—1.8 eV) in all three cases, indicating that thermal detrapping
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Fig. 5. Binding energies in units of electronvolts between self-interstitial atoms and

substitutional solute atoms relative to the respective most stable mixed-interstitial
configuration according to Eq. (2).
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is oriented along (111) and (110}, respectively. Calculations were carried out using 128-
atom cells at constant volume.

is unlikely. Trapping is a precursor to segregation and associated
with radiation-induced segregation and precipitation. Previous
experimental studies have confirmed radiation-induced Re pre-
cipitation in tungsten [46,47], yet no equivalent experimental data
has yet been reported for Ti and V.

SIAs travel with very high mobility along the crowdion direction
with a migration barrier on the order of a few meV (<0.046 eV)
[48]. The high diffusivity of SIAs is closely related to the effective
delocalization of the defect center and the fact that their migration
involves only small atomic displacements [3]. The strong tendency
of impurities to bind with SIAs causes the interstitial to localize and
reduces its mobility dramatically. In this context it is important to
quantify the range of the SIA-solute interaction as it provides a
measure for the effective capture radius associated with a substi-
tutional solute atom. Fig. 6 shows the formation energy of solute-
interstitial configurations as a function of the distance between
interstitial center and solute atom for the case of Ti. The data
indicate a short interaction range as binding is practically absent
outside a radius of approximately 2.5 A, which corresponds to the
first nearest neighbor shell of the BCC lattice.
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Fig. 7. Formation volumes of intrinsic and extrinsic defects in tungsten (left axis). For
comparison the atomic radii are shown on the right axis.
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3.4. Formation volumes and formation volume tensors

A defect can affect other point as well as line defects (disloca-
tions) either via a direct “chemical” interaction or via long-range
elastic interactions. The strain field can modify the saddle points
during point defect migration [49]. Similarly, it can affect the bar-
riers for dislocation kink nucleation and growth and thereby affect
the plastic behavior of the materials [17]. Formation volumes
quantify the induced strain in terms of linear elasticity theory; the
formation volume tensors provide additional information con-
cerning the orientation and anisotropy of the strain field.

From constant pressure calculations we obtain the change in cell

shape due to defect formation L—Lg, from which one readily obtains
the formation volume tensor ¥ using Eq. (3). All solute atoms are
associated with a symmetric lattice relaxation whence the forma-
tion volume tensor is simply v = VI, where v = (1/3)Trvf is the
formation volume. The values are compiled in Table 1 and Fig. 7,
which shows that the formation volumes closely correlate with the
atomic radii.

In the case of interstitial defects the formation volume tensor
reflects the orientation of the dumbbell as illustrated in Fig. 9. The
formation volumes are reported in Table 1 and Fig. 7. The strongly
elongated shape of the ellipsoids in Fig. 9 indicates a large degree of
anisotropy. The latter can be conveniently measured by the ratio A
of the largest and smallest eigenvalues of the formation volume
tensor, see Table 1. Large values of A are obtained with typical
values in the range from 6 to 10. For Re and V the anisotropy is even
larger with A values up to 24, see Fig. 8. It is remarkable that the
three elements that favor the bridge interstitial configuration and
trap SIAs, are also the three elements with the largest anisotropy
ratio.

Finally, for the vacancy one obtains a formation volume that is
very close to zero, which is an indication for the covalent bonding
character that is characteristic for W.

4. Conclusions

Substitutional and interstitial defects in W associated with
several alloying elements of interest were investigated by first-
principles calculations based on density functional theory. A sys-
tematic investigation of computational parameters was carried out
in order to establish the accuracy limits of the present calculations.
The errors due to finite size, Brillouin zone sampling, and the
treatment of semi-core effects were shown to be of similar

Fig. 9. Ellipsoids representing (formation) volume tensors corresponding to a (left) tungsten atom in the perfect lattice, (center) a Ti (111) dumbbell interstitial, and (right) a Ti (110)

dumbbell interstitial.
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magnitude and a procedure was described to account for each
contribution.

Negative formation energies were obtained for substitutional Ti,
V, Nb, Hf as well as Ta and positive values for Zr and Re. The
negative values suggest a negative mixing energy for the BCC so-
lutions, which should result in an extended miscibility range and
possibly the formation of ordered phases at low temperatures, see
Refs. [40,41]. This is partially at odds with phase diagrams based on
thermodynamic calculations. As the latter are based on limited
experimental data due to the refractory nature of the W-alloys, this
suggests that further investigations should be carried out to
establish the low temperature phase diagrams as they determine
the thermodynamic driving forces that underpin the dynamic
behavior of the material.

While interstitials are practically absent under equilibrium
conditions due to their large formation energies, they are important
under reactor relevant conditions when SIAs are produced by ion
irradiation. In addition to high symmetry dumbbell configurations,
here another interstitial configuration has been systematically
investigated that was referred to as a bridge interstitial. For mixed-
interstitials involving Ti, V, and Re the bridge interstitial configu-
ration is found to be the most stable configuration.

The same three elements (Ti, V and Re) exhibit negative binding
energies with respect to SIAs and are thus predicted to trap these
defects. This causes a reduction of the interstitial mobility, which is
likely to accelerate damage build up. It is also of interest in
connection with radiation-induced segregation and precipitation,
which has already been observed for Re.

Finally, the elastic strain field of both substitutional and inter-
stitial defects was quantified in the form of formation volume
tensors. Remarkably, again Ti, V, and Re interstitials are the defects
that exhibit the strongest anisotropy as quantified by the ratio
between the largest and smallest eigenvalues of the formation
volume tensor. These parameters are suitable e.g., for the con-
struction of kinetic Monte Carlo models of defect migration and
dislocation mobility.
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